Security in Distributed Systems

- Introduction
- Cryptography
- Authentication
- Key exchange
- Readings: Tannenbaum, chapter 8
 Ross/Kurose, Ch 7 (available online)

Network Security

Intruder may
- eavesdrop
- remove, modify, and/or insert messages
- read and playback messages
Issues

Important issues:

• *cryptography*: secrecy of info being transmitted
• *authentication*: proving who you are and having correspondent prove his/her/its identity

Security in Computer Networks

User resources:

• login passwords often transmitted unencrypted in TCP packets between applications (e.g., telnet, ftp)
• passwords provide little protection
Security Issues

Network resources:
- often completely unprotected from intruder eavesdropping, injection of false messages
- mail spoofs, router updates, ICMP messages, network management messages

Bottom line:
- intruder attaching his/her machine (access to OS code, root privileges) onto network can override many system-provided security measures
- users must take a more active role

Encryption

- **plaintext:** unencrypted message
- **ciphertext:** encrypted form of message

Intruder may
- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms
Encryption

Passive intruder only listens to C
Active intruder can alter messages
Active intruder can insert messages

Plaintext, P → Encryption method → Ciphertext, $C = E_K(P)$ → Decryption method → Plaintext

Sender

Encryption key, E_K

Decryption key, D_K

Receiver

A simple encryption algorithm

Substitution cipher:

```
abcdefghijklmnopqrstuvwxyz
poiuytrewqasdfghjklmnbvcxz
```

• replace each plaintext character in message with matching ciphertext character:

plaintext: Charlotte, my love
ciphertext: iepksgmyy, dz sgby
Encryption Algo (contd)

- key is pairing between plaintext characters and ciphertext characters
- **symmetric key**: sender and receiver use same key
- 26! (approx 10^{26}) different possible keys: unlikely to be broken by random trials
- substitution cipher subject to decryption using observed frequency of letters
 - 'e' most common letter, 'the' most common word

DES: Data Encryption Standard

- encrypts data in 64-bit chunks
- encryption/decryption algorithm is a published standard
 - everyone knows how to do it
- substitution cipher over 64-bit chunks: 56-bit key determines which of 56! substitution ciphers used
 - substitution: 19 stages of transformations, 16 involving functions of key
Symmetric Cryptosystems: DES (1)

a) The principle of DES
b) Outline of one encryption round

Symmetric Cryptosystems: DES (2)

- Details of per-round key generation in DES.
Key Distribution Problem

Problem: how do communicant agree on symmetric key?
- N communicants implies N keys

Trusted agent distribution:
- keys distributed by centralized trusted agent
- any communicant need only know key to communicate with trusted agent
- for communication between i and j, trusted agent will provide a key

Key Distribution

We will cover in more detail shortly
Public Key Cryptography

• separate encryption/decryption keys
 – receiver makes *known* (!) its encryption key
 – receiver keeps its decryption key secret
• to send to receiver B, encrypt message M using B's publicly available key, EB
 – send EB(M)
• to decrypt, B applies its private decrypt key DB to receiver message:
 – computing DB(EB(M)) gives M

Public Key Cryptography

- knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
- only receiver can decrypt message

Question: good encryption/decryption algorithms
RSA: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:
• choose two prime numbers, p, q greater than 10^100
• compute n=pq and z = (p-1)(q-1)
• choose number d which has no common factors with z
• compute e such that ed = 1 mod z, i.e.,
 \[
 \text{integer-remainder(} (ed) / ((p-1)(q-1)) \text{)} = 1, \text{ i.e.,}
 \]
 \[
 ed = k(p-1)(q-1) +1
 \]
• three numbers:
 – e, n made public
 – d kept secret

RSA (continued)

to encrypt:
• divide message into blocks, \{b_i\} of size j: 2^j < n
• encrypt: encrypt(b_i) = b_i^e mod n

to decrypt:
• \(b_i = (\text{encrypt(b_i)})^d \)

to break RSA:
• need to know p, q, given pq=n, n known
• factoring 200 digit n into primes takes 4 billion years using known methods
RSA example

• choose $p=3$, $q=11$, gives $n=33$, $(p-1)(q-1)=20$
• choose $d = 7$ since 7 and 20 have no common factors
• compute $e = 3$, so that $ed = k(p-1)(q-1)+1$ (note: $k=1$ here)

Further notes on RSA

why does RSA work?
• crucial number theory result: if p, q prime then $b_i^{((p-1)(q-1)) \mod pq} = 1$
• using mod pq arithmetic:
 $(b^e)^d = b^{ed}$
 $= b^{k(p-1)(q-1)+1}$ for some k
 $= b \cdot b^{(p-1)(q-1)} \cdot b^{(p-1)(q-1)} \cdots b^{(p-1)(q-1)}$
 $= b \cdot 1 \cdot 1 \cdots 1$
 $= b$

Note: we can also encrypt with d and encrypt with e.
• this will be useful shortly
How to break RSA?

Brute force: get B’s public key

• for each possible b_i in plaintext, compute b_i^e
• for each observed b_i^e, we then know b_i
• moral: choose size of b_i "big enough"

Breaking RSA

man-in-the-middle: intercept keys, spoof identity: