Last Class: Fault Tolerance

 Basic concepts and failure models

* Failure masking using redundancy

* Agreement in presence of faults
— Two army problem
— Byzantine generals problem

m Computer Science CS677: Distributed OS
UMASS

Lecture 18, page |

Today: More on Fault Tolerance

* Reliable communication
— One-one communication
— One-many communication
* Distributed commit
— Two phase commit
— Three phase commit
* Failure recovery
— Checkpointing
— Message logging

m Computer Science CS677: Distributed OS
UMASS

Lecture 18, page 2




Reliable One-One Communication

* Issues were discussed in Lecture 3
— Use reliable transport protocols (TCP) or handle at the application layer

» RPC semantics in the presence of failures
 Possibilities

— Client unable to locate server

— Lost request messages

— Server crashes after receiving request

— Lost reply messages
— Client crashes after sending request

REQ Server REQ Server REQ Server
> Receive > Receive » Receive
Execute Execute
< REP Reply NO,R,I,EB,, NO,REE,_
(a) (b) (©
CS677: Distributed OS Lecture 18, page 3

m Computer Science
UMASS

Reliable One-Many Communication

Receiver missed

message #2fl
. . Sender Receiver Receiver ' Receiver Receiver
*Reliable multicast ooy |25
buffer ™ A,V"/ Last=24 Last =24 Last=23 Last =24
— Lost messages => need tc [M25] [M25)
retransmit L L2 . , !
twor
g eqe,e (@)
.POSSIbllltles Sender Receiver Receiver Receiver Receiver
— ACK-based schemes — last=25 | [Last=24 | |Last=23 | |Last=24
- w25 [wzs) [wi2s) wizs)
* Sender can become A sk | [ ] ‘
— | ACK25 | J Missed 24I/, ACK 25| )
bottleneck o -
(b)
— NACK-based schemes Sender receives Receivers suppress their feedback
only one NACK / / \
Sender Receiver § Receivery  Recever  yReceiver
o T=3 T=1
= NACK NACK
|‘r NACK | /J
1 1

Network

CS677: Distributed OS Lecture 18, page 4

m Computer Science
UMASS




Atomic Multicast

*Atomic multicast: a guarantee that all

process received the message or none at all Reliable multcast by multple
Repli d datab | P1 joins the group point-to-point messages P3 crashes P3 rejoins
— €p 1cate atabase cexample \ 7] /
"
R i x
LK /|
*Problem: how to handle process crashes? ™5 i/ A ?
SRR RIS S
| A4 ’f‘
*Solution: group view Pt v & |
. . . "G = {P1,P2P3PY / G ={P1,P2,P4} G={P1,P2P3P4
— Each message is uniquely associated /
ith £ Partial multicast Time —»
with a group of processes from P3 is discarded

* View of the process group when

message was sent Virtually Synchronous Multicast

» All processes in the group should
have the same view (and agree on
it)

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 5
UMASS

Implementing Virtual Synchrony in Isis

Unstable Flush message

message e
© > o

(@) (b) (©

a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message

9) Process 6 installs the new view when it has received a flush message from everyone
else

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 6
UMASS




Distributed Commit

* Atomic multicast example of a more general problem
— All processes in a group perform an operation or not at all
— Examples:
* Reliable multicast: Operation = delivery of a message
* Distributed transaction: Operation = commit transaction
* Problem of distributed commit
— All or nothing operations in a group of processes
* Possible approaches
— Two phase commit (2PC) [Gray 1978 ]
— Three phase commit

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 7
UMASS

Two Phase Commit

: . coordinator subordinate
*Coordinator process coordinates
the operation \
write ready to
*Involves two phases L
— VOtlng phase: processes vote on collectreplies fom
whether to commit S
— Decision phase: actually commit I wie commite
or abort e corms
-

Vote-request

(NT ) Vote-abort_——(" T

: =
Commit ™~ " Vote-request
Vote-request / Vote-commit
/ oo )
WAIT ‘, [ READY )
Vote-abort % Vote-commit | Global-abort ~ \\ Global-commit
Global-abort , Global-commit \_ ACK e a ACK
» \ % 4
( ABORT ) ( commIT | “»( ABORT | (commIT)
~— A ——

@ (b)

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 8
UMASS




Implementing Two-Phase Commit

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
wait for any incoming vote;
if timeout {
while GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;

record vote;

}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;
}else {
write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
}

* Outline of the steps taken by the coordinator in a
two phase commit protocol

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 9
UMASS

Implementing 2PC

actions by participant:

write INIT to local log; ) actions for handling decision requests:
yvglt for VOTE_REQUEST from coordinator; I*executed by separate thread */
if timeout {
write VOTE_ABORT to local log; while true {
exit; wait until any incoming DECISION_REQUEST
} is received; /* remain blocked */

if participant votes COMMIT {

write VOTE_COMMIT to local log; read most recently recorded STATE from the

send VOTE_COMMIT to coordinator; local log;
wait for DECISION from coordinator; if STATE == GLOBAL_COMMIT
if timeout { send GLOBAL_COMMIT to requesting
multicast DECISION_REQUEST to other participant;
participants; else if STATE == INIT or STATE ==

wait until DECISION is received; /* remain blocked */

write DECISION to local log; GLOBAL_ABORT

send GLOBAL_ABORT to requesting

} -
if DECISION == GLOBAL_COMMIT participant;
write GLOBAL_COMMIT to local log; else
else if DECISION == GLOBAL_ABORT skip; /* participant remains blocked */
write GLOBAL_ABORT to local log;
}else {

write VOTE_ABORT to local log;
send VOTE ABORT to coordinator;

?A Compu'rer' Science CS677: Distributed OS Lecture 18, page 10
UMASS




Three-Phase Commit

Vote-request

INIT Vote-abort INIT
Commit Vote-request
Vote-request Vote-commit

WAIT READY
Vote-abort Vote-commit Global-abort Prepare-commit
Global-abort Prepare-commit ACK Ready-commit

ABORT PRECOMMIT ABORT) &PRECOMIVI@

Ready-commit Global-commit
y Global-commit v ACK

COMMIT) COMMIT

(= (k)

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 11
UMASS

Recovery

* Techniques thus far allow failure handling

* Recovery: operations that must be performed after a
failure to recover to a correct state

* Techniques:
— Checkpointing:
* Periodically checkpoint state

 Upon a crash roll back to a previous checkpoint with a
consistent state

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 12
UMASS




Independent Checkpointing

Initial state Checkpoint
P1

WAV

Time —»

» Each processes periodically checkpoints independently of other
processes

* Upon a failure, work backwards to locate a consistent cut

* Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

+ Cascading rollbacks can lead to a domino effect.

? Computer Science CS677: Distributed OS Lecture 18, page 13
UMASS

Coordinated Checkpointing

» Take a distributed snapshot [discussed in Lec 11]

« Upon a failure, roll back to the latest snapshot
— All process restart from the latest snapshot

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 14
UMASS




Message Logging

* Checkpointing is expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive
— Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]
* Combine checkpointing (expensive) with message
logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
* Avoids recomputations from previous checkpoint

m Compu'rer' Science CS677: Distributed OS Lecture 18, page 15
UMASS




