
1

CS677: Distributed OSComputer Science Lecture 12, page 1

Last Class

• Vector timestamps

• Global state
– Distributed Snapshot

• Election algorithms

CS677: Distributed OSComputer Science Lecture 12, page 2

Today: Still More Canonical Problems

• Election algorithms
– Bully algorithm

– Ring algorithm

• Distributed synchronization and mutual exclusion

• Distributed transactions

2

CS677: Distributed OSComputer Science Lecture 12, page 3

Election Algorithms

• Many distributed algorithms need one process to act as
coordinator
– Doesn’t matter which process does the job, just need to pick one

• Election algorithms: technique to pick a unique
coordinator (aka leader election)

• Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

• Types of election algorithms: Bully and Ring algorithms

CS677: Distributed OSComputer Science Lecture 12, page 4

Bully Algorithm

• Each process has a unique numerical ID
• Processes know the Ids and address of every other process
• Communication is assumed reliable
• Key Idea: select process with highest ID
• Process initiates election if it just recovered from failure

or if coordinator failed
• 3 message types: election, OK, I won
• Several processes can initiate an election simultaneously

– Need consistent result

• O(n2) messages required with n processes

3

CS677: Distributed OSComputer Science Lecture 12, page 5

Bully Algorithm Details

• Any process P can initiate an election
• P sends Election messages to all process with higher Ids and awaits

OK messages
• If no OK messages, P becomes coordinator and sends I won

messages to all process with lower Ids
• If it receives an OK, it drops out and waits for an I won
• If a process receives an Election msg, it returns an OK and starts an

election
• If a process receives a I won, it treats sender an coordinator

CS677: Distributed OSComputer Science Lecture 12, page 6

Bully Algorithm Example

• The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

4

CS677: Distributed OSComputer Science Lecture 12, page 7

Bully Algorithm Example

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

CS677: Distributed OSComputer Science Lecture 12, page 8

Ring-based Election

• Processes have unique Ids and arranged in a logical ring

• Each process knows its neighbors
– Select process with highest ID

• Begin election if just recovered or coordinator has failed

• Send Election to closest downstream node that is alive
– Sequentially poll each successor until a live node is found

• Each process tags its ID on the message

• Initiator picks node with highest ID and sends a coordinator
message

• Multiple elections can be in progress
– Wastes network bandwidth but does no harm

5

CS677: Distributed OSComputer Science Lecture 12, page 9

A Ring Algorithm

• Election algorithm using a ring.

CS677: Distributed OSComputer Science Lecture 12, page 10

Comparison

• Assume n processes and one election in progress

• Bully algorithm
– Worst case: initiator is node with lowest ID

• Triggers n-2 elections at higher ranked nodes: O(n2) msgs

– Best case: immediate election: n-2 messages

• Ring
– 2 (n-1) messages always

6

CS677: Distributed OSComputer Science Lecture 12, page 11

Distributed Synchronization

• Distributed system with multiple processes may need to
share data or access shared data structures
– Use critical sections with mutual exclusion

• Single process with multiple threads
– Semaphores, locks, monitors

• How do you do this for multiple processes in a
distributed system?
– Processes may be running on different machines

• Solution: lock mechanism for a distributed environment
– Can be centralized or distributed

CS677: Distributed OSComputer Science Lecture 12, page 12

Centralized Mutual Exclusion

• Assume processes are numbered
• One process is elected coordinator (highest ID process)
• Every process needs to check with coordinator before

entering the critical section
• To obtain exclusive access: send request, await reply
• To release: send release message
• Coordinator:

– Receive request: if available and queue empty, send grant; if
not, queue request

– Receive release: remove next request from queue and send
grant

7

CS677: Distributed OSComputer Science Lecture 12, page 13

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then
replies to 2

CS677: Distributed OSComputer Science Lecture 12, page 14

Properties

• Simulates centralized lock using blocking calls

• Fair: requests are granted the lock in the order they were received

• Simple: three messages per use of a critical section (request, grant,
release)

• Shortcomings:
– Single point of failure

– How do you detect a dead coordinator?

• A process can not distinguish between “lock in use” from a dead
coordinator

– No response from coordinator in either case

– Performance bottleneck in large distributed systems

8

CS677: Distributed OSComputer Science Lecture 12, page 15

Distributed Algorithm

• [Ricart and Agrawala]: needs 2(n-1) messages

• Based on event ordering and time stamps

• Process k enters critical section as follows
– Generate new time stamp TSk = TSk+1

– Send request(k,TSk) all other n-1 processes
– Wait until reply(j) received from all other processes

– Enter critical section

• Upon receiving a request message, process j
– Sends reply if no contention

– If already in critical section, does not reply, queue request

– If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else
queue

CS677: Distributed OSComputer Science Lecture 12, page 16

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the

critical region.

9

CS677: Distributed OSComputer Science Lecture 12, page 17

Properties

• Fully decentralized

• N points of failure!

• All processes are involved in all decisions
– Any overloaded process can become a bottleneck

CS677: Distributed OSComputer Science Lecture 12, page 18

A Token Ring Algorithm

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

• Use a token to arbitrate access to critical section

• Must wait for token before entering CS

• Pass the token to neighbor once done or if not interested

• Detecting token loss in non-trivial

10

CS677: Distributed OSComputer Science Lecture 12, page 19

Comparison

• A comparison of three mutual exclusion algorithms.

Lost token, process
crash

0 to n – 11 to •Token ring

Crash of any
process

2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

Problems
Delay before entry (in
message times)

Messages per
entry/exit

Algorithm

CS677: Distributed OSComputer Science Lecture 12, page 20

Transactions

•Transactions provide higher level
mechanism for atomicity of
processing in distributed systems

– Have their origins in databases

•Banking example: Three
accounts A:$100, B:$200, C:$300

– Client 1: transfer $4 from A to B

– Client 2: transfer $3 from C to B

•Result can be inconsistent unless
certain properties are imposed on
the accesses

Write B:$203

Read B: $200

Write B:$204

Read B: $200

Write C:$297

Read C: $300

Write A: $96

Read A: $100

Client 2Client 1

11

CS677: Distributed OSComputer Science Lecture 12, page 21

ACID Properties

•Atomic: all or nothing

•Consistent: transaction takes
system from one consistent state to
another

•Isolated: Immediate effects are
not visible to other (serializable)

•Durable: Changes are permanent
once transaction completes
(commits) Read B: $204

Write C:$297

Write B:$207

Read C: $300

Write B:$204

Read B: $200

Write A: $96

Read A: $100

Client 2Client 1

