
1

CS677: Distributed OSComputer Science Lecture 11, page 1

Last Class: Clock Synchronization

• Physical clocks

• Clock synchronization algorithms
– Cristian’s algorithm

– Berkeley algorithm

• Logical clocks

CS677: Distributed OSComputer Science Lecture 11, page 2

Today: More Canonical Problems

• Causality
– Vector timestamps

• Global state and termination detection

• Election algorithms

2

CS677: Distributed OSComputer Science Lecture 11, page 3

Causality

• Lamport’s logical clocks
– If A -> B then C(A) < C(B)

– Reverse is not true!!

• Nothing can be said about events by comparing time-stamps!

• If C(A) < C(B), then ??

• Need to maintain causality
– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)

– Capture causal relationships between groups of processes

– Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

CS677: Distributed OSComputer Science Lecture 11, page 4

Vector Clocks
• Each process i maintains a vector Vi

– Vi[i] : number of events that have occurred at i
– Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows
– Local event: increment Vi[I]
– Send a message :piggyback entire vector V
– Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows
occurred at another process k

• Also Vj[i] = Vj[i]+1

• Homework: convince yourself that if V(A)<V(B), then A
causally precedes B

3

CS677: Distributed OSComputer Science Lecture 11, page 5

Global State

• Global state of a distributed system
– Local state of each process

– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system
– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a
distributed system?
– Each process is independent

– No global clock or synchronization

• Distributed snapshot: a consistent global state

CS677: Distributed OSComputer Science Lecture 11, page 6

Global State (1)

a) A consistent cut
b) An inconsistent cut

4

CS677: Distributed OSComputer Science Lecture 11, page 7

Distributed Snapshot Algorithm

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

• On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
– Subsequent marker on a channel: stop saving state for that

channel

CS677: Distributed OSComputer Science Lecture 11, page 8

Distributed Snapshot

• A process finishes when
– It receives a marker on each incoming channel and processes

them all

– State: local state plus state of all channels

– Send state to initiator

• Any process can initiate snapshot
– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

5

CS677: Distributed OSComputer Science Lecture 11, page 9

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed
snapshot

CS677: Distributed OSComputer Science Lecture 11, page 10

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local
state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording

the state of the incoming channel

6

CS677: Distributed OSComputer Science Lecture 11, page 11

Termination Detection

• Detecting the end of a distributed computation
• Notation: let sender be predecessor, receiver be successor
• Two types of markers: Done and Continue
• After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
• Send a Done only when

– All of Q’s successors send a Done
– Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone

CS677: Distributed OSComputer Science Lecture 11, page 12

Election Algorithms

• Many distributed algorithms need one process to act as
coordinator
– Doesn’t matter which process does the job, just need to pick one

• Election algorithms: technique to pick a unique
coordinator (aka leader election)

• Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

• Types of election algorithms: Bully and Ring algorithms

7

CS677: Distributed OSComputer Science Lecture 11, page 13

Bully Algorithm

• Each process has a unique numerical ID
• Processes know the Ids and address of every other process
• Communication is assumed reliable
• Key Idea: select process with highest ID
• Process initiates election if it just recovered from failure

or if coordinator failed
• 3 message types: election, OK, I won
• Several processes can initiate an election simultaneously

– Need consistent result

• O(n2) messages required with n processes

CS677: Distributed OSComputer Science Lecture 11, page 14

Bully Algorithm Details

• Any process P can initiate an election
• P sends Election messages to all process with higher Ids

and awaits OK messages
• If no OK messages, P becomes coordinator and sends I

won messages to all process with lower Ids
• If it receives an OK, it drops out and waits for an I won
• If a process receives an Election msg, it returns an OK and

starts an election
• If a process receives a I won, it treats sender an

coordinator

8

CS677: Distributed OSComputer Science Lecture 11, page 15

Bully Algorithm Example

• The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

CS677: Distributed OSComputer Science Lecture 11, page 16

Bully Algorithm Example

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

