Multiprocessor Scheduling

*Will consider only shared memory multiprocessor
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*Salient features:
— One or more caches: cache affinity is important
— Semaphores/locks typically implemented as spin-locks: preemption
during critical sections
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Multiprocessor Scheduling

*Central queue — queue can be a bottleneck
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Scheduling

* Common mechanisms combine central queue with per
processor queue (SGI IRIX)

* Exploit cache affinity — try to schedule on the same
processor that a process/thread executed last

* Context switch overhead
— Quantum sizes larger on multiprocessors than uniprocessors
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Parallel Applications on SMPs

 Effect of spin-locks: what happens if preemption occurs
in the middle of a critical section?
— Preempt entire application (co-scheduling)
— Raise priority so preemption does not occur (smart scheduling)
— Both of the above

* Provide applications with more control over its
scheduling

— Users should not have to check if it 1s safe to make certain
system calls

— If one thread blocks, others must be able to run
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Distributed Scheduling: Motivation

 Distributed system with N workstations
— Model each w/s as 1dentical, independent M/M/1 systems
— Utilization u, P(system 1dle)=1-u

* What 1s the probability that at least one system 1s 1dle
and one job 1s waiting?
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Implications

* Probability high for moderate system utilization
— Potential for performance improvement via load distribution
* High utilization => little benefit
« Low utilization => rarely job waiting
« Distributed scheduling (aka load balancing) potentially useful
*  What is the performance metric?
— Mean response time

*  What is the measure of load?
— Must be easy to measure

— Must reflect performance improvement
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Design Issues

* Measure of load
— Queue lengths at CPU, CPU utilization
» Types of policies
— Static: decisions hardwired into system
— Dynamic: uses load information
— Adaptive: policy varies according to load

* Preemptive versus non-preemptive

Centralized versus decentralized

Stability: A>u => instability, A+A,<u,+u,=>load balance
— Job floats around and load oscillates
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Components

» Transfer policy: when to transfer a process?
— Threshold-based policies are common and easy
» Selection policy: which process to transfer?
— Prefer new processes
— Transfer cost should be small compared to execution cost
* Select processes with long execution times
* Location policy: where to transfer the process?
— Polling, random, nearest neighbor
 Information policy: when and from where?

— Demand driven [only 1f sender/receiver], time-driven
[periodic], state-change-driven [send update 1f load changes]
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Sender-initiated Policy

» Transfer policy

N=T
new L LT} -
PIOCESS
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= CPU

try to xfer

» Selection policy: newly arrived process

» Location policy: three variations
— Random: may generate lots of transfers => limit max transfers
— Threshold: probe n nodes sequentially
* Transfer to first node below threshold, if none, keep job
— Shortest: poll N nodes in parallel
* Choose least loaded node below T
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Receiver-initiated Policy

» Transfer policy: If departing process causes load < 7,
find a process from elsewhere

 Selection policy: newly arrived or partially executed
process
» Location policy:
— Threshold: probe up to N, other nodes sequentially
 Transfer from first one above threshold, 1f none, do nothing

— Shortest: poll #» nodes 1n parallel, choose node with heaviest
load above T
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Symmetric Policies

 Nodes act as both senders and receivers: combine
previous two policies without change

— Use average load as threshold T sender

initigted
recwr
initigted

» Improved symmetric policy: exploit polling information
— Two thresholds: LT, UT, LT <= UT
— Maintain sender, recetver and OK nodes using polling info

----avqg. load ---

— Sender: poll first node on receiver list ...

— Recetver: poll first node on sender list ... =~ sender

OK

LT
recvr
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Case Study: V-System (Stanford)

State-change driven information policy

— Significant change in CPU/memory utilization 1s broadcast to
all other nodes

M least loaded nodes are receivers, others are senders

Sender-1nitiated with new job selection policy

Location policy: probe random receiver, 1f still receiver,
transfer job, else try another
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Sprite (Berkeley)

* Workstation environment => owner 1s king!

 Centralized information policy: coordinator keeps info
— State-change driven information policy

— Receiver: workstation with no keyboard/mouse activity for 30
seconds and # active processes < number of processors

 Selection policy: manually done by user => workstation
becomes sender

* Location policy: sender queries coordinator

* WS with foreign process becomes sender 1f user
becomes active: selection policy=> home workstation
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Sprite (contd)

 Sprite process migration
— Facilitated by the Sprite file system
— State transfer
* Swap everything out
* Send page tables and file descriptors to receiver
* Demand page process in

* Only dependencies are communication-related

— Redirect communication from home WS to receiver
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Code and Process Migration

Motivation
* How does migration occur?

» Resource migration

Agent-based system
 Details of process migration
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Motivation

» Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

* Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data from
server to client (e.g., databases)

— Improve parallelism — agent-based web searches
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Motivation

» Flexibility

— Dynamic configuration of distributed system

— Clients don’t need preinstalled software — download on demand

2. Client and server

communicate

Client Server

d B

/ .

1. Client fetches code

Service-specific

client-side code

Code repository

m Computer Science CS677: Distributed OS
UMASS

Lecture 7, page 17



Migration models

* Process = code seg + resource seg + execution seg

* Weak versus strong mobility
— Weak => transferred program starts from 1initial state

 Sender-initiated versus receiver-initiated

» Sender-mitiated (code 1s with sender)
— Client sending a query to database server
— Client should be pre-registered

* Recerver-initiated
— Java applets
— Receiver can be anonymous
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Who executes migrated entity?

* Code migration:
— Execute 1n a separate process
— [Applets] Execute 1n target process

* Process migration
— Remote cloning

— Migrate the process
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Models for Code Migration

Weak mobility
Mobility mechanism

Strong mobility
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Do Resources Migrate?

* Depends on resource to process binding
— By 1dentifier: specific web site, ftp server
— By value: Java libraries

— By type: printers, local devices

* Depends on type of “attachments™
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
e Database, web sites
— Fixed resources

 Local devices, communication end points
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Resource Migration Actions

Process-to-
resource
binding

Resource-to machine binding

Unattached Fastened Fixed
By identifier MV (or GR) GR (or MV) GR
By value CP (or MV, GR) GR (or CP) GR
By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

« Actions to be taken with respect to the references to local resources
when migrating code to another machine.

* GR: establish global system-wide reference

« MYV: move the resources

* CP: copy the resource

* RB: rebind process to locally available resource
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Migration in Heterogeneous Systems

* Systems can be heterogeneous (different architecture, OS)

— Support only weak mobility: recompile code, no run time information
— Strong mobility: recompile code segment, transfer execution segment

[migration stack]
— Virtual machines - interpret source (scripts) or intermediate code [Java]
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