CS677: Programming Assignment 3
Renaldo: The final saga

Distributed Operating Systems Spring 2003
Department of Computer Science
University of Massachusetts, Amherst, MA 01003 USA

shenoy@cs.umass.edu

1 The problem

This project has two purposes, namely to gain experience with...
e overlay networks
e replication and fault-tolerance

You are encouraged to re-use your work from your second programming assign-
ment as much as possible. In this project, we will focus on the mechanism for
sending update messages.

2 Introduction

Upon deploying your server-less Renaldo game concept for a trial period on
their networks, Fundingo game corporation found that the game does not scale
well with the number of clients. It was found that ALMC from each peer
flooded the network. In the extra credit section of programming assignment
2, we alluded to an overlay network (fig 1) as being a cheaper alternative to
ALMC for broadcasting requests. In this assignment, we examine the overlay
network concept more closely. Application-level multicast does not scale with
the number of peers. In a distributed system, we have a physical network which
is modeled as a graph.

In this graph, a node represents a host on which a peer runs and an edge
represents the physical interconnect between nodes. This graph is sometimes
referred to as a host graph (fig 2).

Among the peers we maintain "logical” connections through an RPC mech-
anism. This is modeled by a graph where nodes are peers and edges are logical

Host A Host B Hust C

Figure 1: Overlay network

Sl & e

Figure 2: Host graph

X

Figure 3: Task graph

connections. This is sometimes called a task graph (fig 3). An overlay network
is a task graph built upon or embedded in a host graph.

3 Overlay Details

By the ALMC approach, each node maintains a list of peers on the network and
sends a unicast message to each peer in the game. Rather than send n—1 unicast
messages, we organize nodes in a connected graph that is used for performing
the multicast. By this approach, a message is forwarded along the task graph
and eventually distributed to all nodes. Because the graph is connected, the
message reaches every node. Because a node only sends unicast messages to its
neighbors, message complexity is reduced.

Again, as we have seen is the case in distributed systems, this added feature
comes at a cost. We must somehow manage the graph topology for the overlay
network to accomodate nodes which join the game as well as nodes which leave
the game. To do this, we introduce a topology manager. A topology manager
is a service whose responsibility is to manage the construction of the overlay
network. The topology manager implements a graph construction algorithm.
When a node joins the game, it is inserted in the overlay network by the topol-
ogy manager. Likewise, when a node leaves the game, the topology manager
manages updates to the overlay network. The topology manager constructs the
overlay network by propagating updates to peers informing them of who is ad-
jacent (neighbor) in the overlay graph. It is assumed that the topology manager
is available on the network before the game runs. In order to maintain fault
tolerance, the topology manager is a replicated service. To simplify things a
little bit, the topology manager will maintain a main copy to which reads and
writes are issued. The replica copy will service only read requests. In the event
that the main copy fails, the replica copy will resume servicing requests.

4 Overlay distribution

Rather than ALMC-ing messages, the ALMC client and service implemented by
each peer will be changed to implement an overlay client and service. Requests
in the overlay network take two forms. The first is a flooding mode.

In flooding mode (fig 4), a client sends a request by issuing a unicast message
to each neighboring node. Upon receipt of a request message, a node forwards
it to each of its neighbors after appending its node identifier. If a message
arrives at the node for which it is intended, it sends a response message along
the reverse path described by the accumulated node ids. Once the response
message is received back at the sender, the path to the sender is cached. The
next time a message is intended for the same recipient, the cached path is
used instead of flooding. Thus, messages are sent along the overlay network
by flooding or by cached path. When a cached path is not known, flooding is
used to send messages. During flooding, a routes along the overlay network are

e Fy sends mf fom F1 fo Pd)
i %
b Y

/ Pl Fa forwards mi from F1 o P4, F3)

F i P4 mecewes mi from P1to P4, F3) ard buids route P1,P3 P4

F1 sends
eSS
fkndi% E?;:ute

also discovered P4 sends response riP4, P3P o P3

\ P32 forwards response rfR4, F3, P1) to P
; P1 gets response and caches route to P4: P11, P3, P4

o . F1 sends next message using cached route to P4

Figure 4: Flooding and route caching

discovered by piggybacking an accumulated path on the request. A discovered
route is piggybacked on the response message. Discovered routes are cached at
the sender. Flooding is a way to perform route discovery in the overlay network.
A number of events can trigger route discovery. When a peer sends a request, it
sets a timer. If this timer expires before a response arrives, the peer consults the
topology manager for a neighbor update and reverts to flooding in an attempt
to discover a quicker path.

When the topology manager inserts a new node in the overlay (fig 5), it
informs affected nodes with an updated neighbor list. This update causes the
affected nodes to revert to flooding.

5 Topology manager

The topology manager maintains an overlay graph structure and an algorithm
for inserting and removing nodes which join and leave the network. The reads
on the topology manager are performed when someone requests a list of their
neighbors. Writes on the topology manager are performed when someone joins
the game. Requests to read or write to the topology manager are to be per-
formed using multicast. A read response is made by the topology manager in
the form of a unicast message. A write response is made by unicasting an ac-
knoldegement. Writes are serviced only by the main copy. Reads are serviced
either by the main copy or the replica. There are two ways to keep the replica
consistent with the main copy. By the push approach, writes to the main copy
causes it to send an invalidate message to the replica. The replica then invali-
dates its copy of the data. If a multicast request to read arrives at the replica
for a piece of stale data, it ignores the request. Associated with each piece of
data stored on the replica is an expiration date. This time lists the duration
after which the replica should request the data from the main copy. By the pull

[neigl-lborEF‘1j=TF'1,P2}] o
Topology Mgr !

Inﬂghbcr{F‘w 1={P3} Ili ! \

Figure 5: Topology manager updates

approach, the replica server maintains a version number for each piece of data.
The replica server periodically polls the main copy by comparing the version
number for each piece of data. If the server’s version is more up to date, the
replica marks its copy as invalid. Again, the data item is associated with an
expiration date which governs when the replica downloads a new copy. The
data kept in the main copy and replica is an adjacency list. For each node id,
its list of neighbors is kept. Data items kept in the main and replica copy are on
a granularity of neighbor list. The neighbors for a single node consitutes a data
item. The main copy will periodically send "heartbeat” messages to the replica
copy- If the replica copy does not receive a heartbeat message, it assumes the
role of primary and begins answering write requests in addition to read requests.

6 The assignment

For this assignment, you are to implement...
e topology manager service
e push or pull replication scheme
e overlay network message sending (flooding and cached route)
e heartbeat message and failover

In this assignment, you may simplify the game by reducing the grid to 25 x 25.
You are to test your overlay network with a non-trivial (not a straight line)
topology of your choosing with as many peers as necessary to demonstrate the
system works. You are to demonstrate a single failover to the replica copy. It is

assumed that the primary copy of the topology manager is taken down by killing
its server process. You also have leeway about the setting for the heartbeat
timer, the expiration date of topology manger records, and the send timer for
the overlay network. You are encouraged to be creative in this assignment.
If you would like to implement other mechanisms for maintaining consistency
between the replica and the primary, you are welcomed. Please make sure to
document your work clearly.

7 Comments

As this is the final programming assignment, please include your email address
in your project assignment so that the TA may contact you if there are questions
about your project submission. Distributed systems is a rich and intersting field
where one trades off simplicity, flexibility, scalability against performance. With
the first programming assignment, we saw a centralized solution and considered
how locking granularity affected performance. In the second assignment, we
took a distributed peer approach. Here we saw the kind of issues concerning
many aspects of distributed consensus. Since we reach consensus by exchanging
messages, we trade off message complexity against consistency. By spending
more in message complexity, we saw performance slow because a process has
to wait for ACKs to arrive in a totally ordered multicast. By spending less in
message complexity, we saw that inconsistent messages may be delivered at a
peer causing it to rollback, thus decreasing goodput. Here we try to reduce
message complexity using an overlay network. This introduces issues of its own.
As a distributed systems person, you will be faced with trade-offs. Depending
on your philosophy, you may choose to err on the side of message complexity
or goodput or having a fixed number of points of failure (less flexibility). The
important part is trying to characterize and understand these issues and trade-
offs. We hope that the Renaldo series have helped you to gain an appreciation
for these issues.

