
Computer Science Lecture 13, page

Module 1: OS Virtualization
• Emulate OS-level interface with native interface
• “Lightweight” virtual machines

– No hypervisor, OS provides necessary support

• Referred to as containers
– Solaris containers, BSD jails, Linux containers

1

Computer Science Lecture 13, page

Linux Containers (LXC)
• Containers share OS kernel of the host

– OS provides resource isolation
• Benefits

– Fast provisioning, bare-metal like performance, lightweight

2

Material courtesy of
“Realizing Linux Containers”

by Boden Russell, IBM

Computer Science Lecture 13, page

OS Mechanisms for LXC
• OS mechanisms for resource isolation and

management

• namespaces: process-based resource isolation

• Cgroups: limits, prioritization, accounting, control

• chroot: apparent root directory
• Linux security module, access control
• Tools (e.g., docker) for easy management

3

Computer Science Lecture 13, page

Linux Namespaces
• Namespace: restrict what can a container see?

– Provide process level isolation of global resources
• Processes have illusion they are the only processes in

the system
• MNT: mount points, file systems (what files, dir are

visible)?
• PID: what other processes are visible?
• NET: NICs, routing
• Users: what uid, gid are visible?

• chroot: change root directory

4

Computer Science Lecture 13, page

Linux cgroups
• Resource isolation

– what and how much can a container use?
• Set upper bounds (limits) on resources that can be used
• Fair sharing of certain resources

• Examples:
– cpu: weighted proportional share of CPU for a group
– cpuset: cores that a group can access
– block io: weighted proportional block IO access
– memory: max memory limit for a group

5

Computer Science Lecture 13, page

Module 2: Proportional Share Scheduling
– Uses a variant of proportional-share scheduling

• Share-based scheduling:
– Assign each process a weight w_i (a “share”)
– Allocation is in proportional to share
– fairness: reused unused cycles to others in proportion to weight
– Examples: fair queuing, start time fair queuing

• Hard limits: assign upper bounds (e.g., 30%), no
reallocation

• Credit-based: allocate credits every time T, can
accumulate credits, and can burst up-to credit limit
– can a process starve other processes?

6

Computer Science Lecture 13, page

Share-based Schedulers

7

Computer Science Lecture 13, page

Putting it all together
• Images: files/data for a container

– can run different distributions/apps on a host
• Linux security modules and access control
• Linux capabilities: per process privileges

8

Computer Science Lecture 13, page

Module 3: Docker and Linux Containers
• Linux containers are a set of kernel features

– Need user space tools to manage containers
– Virtuozo, OpenVZm, VServer,Lxc-tools, Docker

• What does Docker add to Linux containers?
– Portable container deployment across machines
– Application-centric: geared for app deployment
– Automatic builds: create containers from build files
– Component re-use

• Docker containers are self-contained: no
dependencies

9

Computer Science Lecture 13, page

Docker
• Docker uses Linux containers

10

Computer Science Lecture 13, page

LXC Virtualization Using Docker

• Portable: docker images run anywhere docker runs
• Docker decouples LXC provider from operations

– uses virtual resources (LXC virtualization)
• fair share of physical NIC vs use virtual NICs that are fair-

shared

11

Computer Science Lecture 13, page

Docker Images and Use
• Docker uses a union file system (AuFS)

– allows containers to use host FS safely
• Essentially a copy-on-write file system

– read-only files shared (e.g., share glibc)
– make a copy upon write

• Allows for small efficient container images
• Docker Use Cases

– “Run once, deploy anywhere”
– Images can be pulled/pushed to repository
– Containers can be a single process (useful for

microservices) or a full OS

12

Computer Science Lecture 13, page

Use of Virtualization Today
• Data centers:

– server consolidation: pack multiple virtual servers onto a
smaller number of physical server

• saves hardware costs, power and cooling costs
• Cloud computing: rent virtual servers

– cloud provider controls physical machines and mapping of
virtual servers to physical hosts

– User gets root access on virtual server
• Desktop computing:

– Multi-platform software development
– Testing machines
– Run apps from another platform

13

Computer Science Lecture 13, page

Case Study: PlanetLab
• Distributed cluster across universities

– Used for experimental research by students and faculty in
networking and distributed systems

• Uses a virtualized architecture
– Linux Vservers
– Node manager per machine
– Obtain a “slice” for an experiment: slice creation service

14

Computer Science Lecture 13, page

Module 4: Virtual Machine Migration

• VMs can be migrates from one physical machine to
another

• Migration can be live - no application downtime
• Iterative copying of memory state
• How are network connections handled?

• Inherently migrates the OS and all its processes

15

Computer Science Lecture 13, page

Pre-Copy VM Migration
• 1. Enable dirty page tracking
• 2. Copy all memory pages to destination
• 3. Copy memory pages dirtied during the previous copy again
• 4. Repeat 3rd step until the rest of memory pages is small.
• 5. Stop VM
• 6. Copy the rest of memory pages and
• non-memory VM states
• 7. Resume VM at destination
• 8. ARP pkt to switch

16

Figures Courtesy: Isaku Yamahata, LinuxCon Japan 2012

Computer Science Lecture 13, page

Post-Copy VM Migration
• 1. Stop VM
• 2. Copy non-memory VM states to destination
• 3. Resume VM at destination
• 4. Copy memory pages on-demand/background

– Async page fault can be utilized

17

Computer Science Lecture 13, page

VM Migration Time

18

Fi
gu

re
 C

ou
rte

sy
: I

sa
ku

 Y
am

ah
at

a,
 L

in
ux

Co
n

Ja
pa

n
20

12

