Module 1: OS Virtualization

Emulate OS-level interface with native interface

“Lightweight” virtual machines
— No hypervisor, OS provides necessary support

Solarls 10 - global zone

Container 1 Container 2 Container 3
Applications Applications Applications -
L L) |

Host OS Kernel with virtualization layer

Hardware ch D|sk PCIe Memory
\ Hardware /

Referred to as containers
— Solaris containers, BSD jails, Linux containers

5 Computer Science Lecture 13, page 1

Linux Containers (LXC)

Containers share OS kernel of the host
— OS provides resource isolation

Benefits
— Fast provisioning, bare-metal like performance, lightweight

App || App

App || App App || App

HH

Virtu ne e
Operating System Operating System

"Realizing Linux Containers”
by Boden Russell, IBM

) Type 1 Hypervisor Type 2 Hypervisor Linux Containers
5 Computer Science Lecture 13, page 2

OS Mechanisms for LXC

* OS mechanisms for resource isolation and
management

* namespaces: process-based resource isolation
* Cgroups: limits, prioritization, accounting, control
 chroot: apparent root directory

* Linux security module, access control
» Tools (e.g., docker) for easy management

Lecture 13, page 3

Linux Namespaces

« Namespace: restrict what can a container see?
— Provide process level isolation of global resources

* Processes have illusion they are the only processes in
the system

* MNT: mount points, file systems (what files, dir are
visible)?

« PID: what other processes are visible?

« NET: NICs, routing

« Users: what uid, gid are visible?

chroot: change root directory

Computer Science Lecture 13, page 4

Linux cgroups

» Resource isolation
— what and how much can a container use?
+ Set upper bounds (limits) on resources that can be used
 Fair sharing of certain resources
« Examples:
— cpu: weighted proportional share of CPU for a group
— cpuset: cores that a group can access
— block 10: weighted proportional block IO access
— memory: max memory limit for a group

Without CPU Core Pinning With CPU Core Pinning

xxxxxxxxxx ERER 0
http-Ixc http-Ixc (core 0)
. ~ - ~ /\\ w\ = == = " mysql-xc . . . ® mysghxe (core 1-3)
X = = - 8 hadoop-ixc . . . B hadoop-ixc (core 4-11)
i1 - B i ® mbbithc (core 12-15)
T a1 | |
|
5§ Computer Science Lecture 13, page 5
&

Module 2: Proportional Share Scheduling

— Uses a variant of proportional-share scheduling
* Share-based scheduling:
— Assign each process a weight w_1 (a “share”)
— Allocation is in proportional to share
— fairness: reused unused cycles to others in proportion to weight
— Examples: fair queuing, start time fair queuing

» Hard limits: assign upper bounds (e.g., 30%), no
reallocation

 Credit-based: allocate credits every time T, can
accumulate credits, and can burst up-to credit limit
— can a process starve other processes?

Computer Science Lecture 13, page 6

Share-based Schedulers

From paolo <>
Subject [PATCH RFC RESEND 00/14] New version of the BFQ I/O Scheduler
Date Tue, 27 May 2014 14:42:24 +0200

From: Paolo Valente <paolo.valente@unimore.it>

[Re-posting, previous attempt seems to have partially failed]

Hi,

this patchset introduces the last version of BFQ, a proportional-share

storage-I/0 scheduler. BFQ also supports hierarchical scheduling with
a cgroups interface. The first version of BFQ was submitted a few

wrAma Am~ 11 T dn Aamatrad am w0 dm dbha mabahan ba Adabdinaniakh 4

[PATCH RFC 00/22] Replace the CFQ I/0 Scheduler with BFQ

From: Paolo Valente
Date: Mon Feb 01 2016 - 17:50:39 EST

e Next messase: Panlo Valente: "IPATCH RFEC 03/221 black - cfa* remave deen seek anenes lngic"

T2 instances’ baseline performance and ability to burst are governed by CPU Credits. Each T2 instance receives CPU Credits
continuously, the rate of which depends on the instance size. T2 instances accrue CPU Credits when they are idle, and use CPU credits
when they are active. A CPU Credit provides the performance of a full CPU core for one minute.

Lecture 13, page 7

Putting it all together

» Images: files/data for a container

— can run different distributions/apps on a host
* Linux security modules and access control
» Linux capabilities: per process privileges

my-1xc

LSM Confinment

USER NS (*

cgroups

Capabilities

Lecture 13, page 8

Module 3: Docker and Linux Containers

Linux containers are a set of kernel features
— Need user space tools to manage containers
— Virtuozo, OpenVZm, VServer,Lxc-tools, Docker

What does Docker add to Linux containers?
— Portable container deployment across machines
— Application-centric: geared for app deployment
— Automatic builds: create containers from build files
— Component re-use

Docker containers are self-contained: no
dependencies

g Computer Science Lecture 13, page 9

Docker

Docker uses Linux containers

CL RESL API Dockerfiles

& ¥
E1E] ﬂl IH I

EEZITEE cContainer
Container

Virtual Machine | Virtual Machine
Hypervisor

Operating System

Operating System

Type 1 Hypervisor Linux Containers docker

Computer Science Lecture 13, page 10

LXC Virtualization Using Docker

» Portable: docker images run anywhere docker runs

* Docker decouples LXC provider from operations

— uses virtual resources (LXC virtualization)

* fair share of physical NIC vs use virtual NICs that are fair-
shared

Non-Virtual Virtual

Computer Science Lecture 13, page 11

Docker Images and Use

* Docker uses a union file system (AuFS)
— allows containers to use host FS safely

» Essentially a copy-on-write file system
—read-only files shared (e.g., share glibc)
—make a copy upon write

» Allows for small efficient container images

* Docker Use Cases
— “Run once, deploy anywhere”
— Images can be pulled/pushed to repository

— Containers can be a single process (useful for
microservices) or a full OS

Computer Science Lecture 13, page 12

Use of Virtualization Today

» Data centers:
— server consolidation: pack multiple virtual servers onto a

smaller number of physical server
* saves hardware costs, power and cooling costs

* Cloud computing: rent virtual servers
— cloud provider controls physical machines and mapping of
virtual servers to physical hosts
— User gets root access on virtual server

* Desktop computing:
— Multi-platform software development
— Testing machines
— Run apps from another platform

Computer Science Lecture 13, page 13

Case Study: PlanetLab

Priviliged management

User-assigned
virtual machines

virtual machines

 Distributes =
m 3 2 I . -o"? '3" -30 .
— Used for T E TF TT Qg Q gnts and faculty in
networkll Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

 Usesavi
- LinuX V VI VIO

— Node manager per machine
— Obtain a “slice” for an experiment: slice creation service

Hardware

Computer Science Lecture 13, page 14

Module 4: Virtual Machine Migration

* VMs can be migrates from one physical machine to
another

« Migration can be live - no application downtime
* Iterative copying of memory state
« How are network connections handled?

* Inherently migrates the OS and all its processes

J/ Computer Science Lecture 13, page 15

Pre-Copy VM Migration

* 1. Enable dirty page tracking

« 2. Copy all memory pages to destination

* 3. Copy memory pages dirtied during the previous copy again

» 4. Repeat 3rd step until the rest of memory pages is small.

« 5.Stop VM

* 6. Copy the rest of memory pages and RETTTTTrTS

* non-memory VM states m:

* 7.Resume VM at destination v ;
8. ARP pkt to switch ’) ; ;

Machine A Machine B

Figures Courtesy: Isaku Yamahata, LinuxCon Japan 2012

5 Computer Science Lecture 13, page 16

Post-Copy VM Migration

* 1. Stop VM

« 2. Copy non-memory VM states to destination

* 3. Resume VM at destination

* 4. Copy memory pages on-demand/background
— Async page fault can be utilized

Copy memory pages
*On-demand(network fault)
sbackground(precache)

§ Computer Science Lecture 13, page 17

VM Migration Time

Copy VM memory before switching the execution host

Due to network fault

Round 2 Round N stop resume
NN o
Precopy &
Precopy Round 1 e g
Performance degradation Down time <§
Due to dirty page tracking E
-
Total migration time g
time »p <
stop resume E
E Postcopy ki
Postcopy € Demand/pre paging(with async PF) =
— £
Down time Performance degradation 8
5

Total migration time
Copy VM memory after switching the execution host

2 B Computer Science Lecture 13, page 18

