
Computer Science Lecture 11, page Computer Science

Today: Minix Memory Management

•

1

Computer Science Lecture 11, page Computer Science

Process and Memory Mgmt

• Memory management is tied to process management 
– Processes are allocated memory and use memory 

• Minix functionality has evolved over time in terms of 
memory management support

2



Computer Science Lecture 11, page Computer Science

Pre-3.1 Minix

• Process mgr (PM) included all memory management 
– One server handled processes and memory 

• Segmented view of process 
– each process has text, stack, heap segment 

• Segments are allocated contiguously in RAM 
– Memory is treated as a collection of holes and allocated 

segments 
• uses first-fit and best-fit policies for allocation 

• No Paging, no virtual memory/demand paging

3

Computer Science Lecture 11, page Computer Science

Pre-3.1 Minix

• Works well for older CPUs or embedded processors 
– CPUs lack support for paging 

• Entire processes must be resident in RAM 
• Fragmentation can occur

4



Computer Science Lecture 11, page Computer Science

post-3.2 Minix 

• Version 3.2.1 (used for our class), ver 3.3 
• Introduced VM (virtual memory) server 

– Memory mgmt code moved from PM to VM 
• Introduced support for paging and virtual memory 
• Support modern CPU with support for paging 
• Processes are a collection of segments 
• Process segments laid out contiguously in virtual rem 

– No contiguous assumption for physical memory 
– Segments are paged; only subset of pages in physical RAM 

• Segmented Paging with Virtual Memory

5

Computer Science Lecture 11, page Computer Science

Proc and Memory Mgmt

• Discussion of VM  (see Minix3 documentation) 
• Discussion of PM  as it related to memory management

6



Computer Science Lecture 11, page Computer Science

Typical PM-VM Interaction

• Fork creates a new process, which requires memory to 
be allocated for the new process

7

Computer Science Lecture 11, page Computer Science

VM Server

• Goals: track used, unused memory, allocate memory to 
process, free memory.   
– Manage virtual memory 

• Contains arch dependent and independent code 
• Virtual Region (struct vir_region or region_t) 

– contiguous range of virtual address space 
• Physical Region struct phys_region 

– physical blocks (pages) of memory 
– ref count, to track how many times the block is referenced 

• Disk cache (holds pages of disk blocks)

8



Computer Science Lecture 11, page Computer Science

Typical Call Structure
• Calls to VM come from userland, PM, kernel 
• Typical call handling 

– Receive call in main.c 
– Call-specific work in call-specific file: mmap.c, cache.c 
– Update data structures (region.c) and pagetable (pagetable.c)

9

Computer Science Lecture 11, page Computer Science

Handling Absent Memory

• Minix 3.2.1+ uses virtual memory: needed memory may 
not be present in RAM 

• Pagefault handling for anonymous memory

10



Computer Science Lecture 11, page Computer Science

Page faults  
• Page faults can occur for file-mapped region 

– Query cache else go to VFS

11

Computer Science Lecture 11, page Computer Science

Using Bitmaps and Linked Lists
A part of memory with five processes and three  
holes. The tick marks show the memory allocation units. 
The  shaded regions (0 in the bitmap) are free. (b) The 
corresponding bitmap. (c) The same information as a 
list.

12



Computer Science Lecture 11, page Computer Science

Memory Allocation Algorithms

• First fit Use first hole big enough 
• Next fit Use next hole big enough 
• Best fit Search list for smallest hole big enough 
• Worst fit Search list for largest hole available 
• Quick fit Separate lists of commonly requested sizes 

• Early Minix used these method for physical mem alloc 
• Later Minix versions uses holes and allocation for 

allocating a process in virtual memory

13

Computer Science Lecture 11, page Computer Science

Paging needs a MMU 

14



Computer Science Lecture 11, page Computer Science

Example MMU

15

Computer Science Lecture 11, page Computer Science

Paging using a MMU

The internal  operation of the MMU  with 16 4-KB  
pages.

16



Computer Science Lecture 11, page Computer Science

Multilevel Page  
(a) A 32-bit   address with two page table  
fields. (b) Two-level page  tables.

17

Computer Science Lecture 11, page Computer Science

TLBs—Translation Lookaside Buffers

A TLB to speed up paging.

18



Computer Science Lecture 11, page Computer Science

Segmentation 

Figure 4-22. A segmented memory allows each table to 
grow or shrink independently of the other tables.

19

Computer Science Lecture 11, page Computer Science

Segmentation vs Paging

Figure 4-23. Comparison of paging and segmentation.

20

. . .



Computer Science Lecture 11, page Computer Science

Segmentation vs Paging

21

. . .

Computer Science Lecture 11, page Computer Science

Segmentation with Paging:  

Intel Pentium (and later) virtual memory support 
Local Descriptor Table (LDT) 
Global Descriptor Table (GDT) 

Each process has its own LDT; one GDT shared by all 
LDT: segments local to a process 
GDT: system segments + OS segments 
Figure: Segment Selector

22



Computer Science Lecture 11, page Computer Science

Segmentation with Paging:  

Pentium code segment descriptor.  
Data segments differ slightly.

23

Computer Science Lecture 11, page Computer Science

Segmentation with Paging:  

Conversion of a (selector, offset)  
pair to a linear address.

24



Computer Science Lecture 11, page Computer Science

Segmentation with Paging:  

Since segments are paged, next, we map the 32-bit 
 linear address onto a physical address using page tables

25

Computer Science Lecture 11, page Computer Science

Process Manager Data Structures  
The message types, input parameters, and reply values 
used for communicating with the PM.

26

. . .



Computer Science Lecture 11, page Computer Science

Process Manager Data Structures  
The message types, input parameters, and reply values 
used for communicating with the PM.

27

. . .

Computer Science Lecture 11, page Computer Science

Sharing Text Segments

28



Computer Science Lecture 11, page Computer Science

The Hole List

The hole list is an array of struct hole.

29

Computer Science Lecture 11, page Computer Science

FORK System Call

Figure 4-36. The steps required to carry out the fork 
system call.

30



Computer Science Lecture 11, page Computer Science

EXEC System Call (1)

Figure 4-37. The steps required to carry out the exec 
system call.

31

Computer Science Lecture 11, page Computer Science

Other System Calls in PM

Three system calls involving time.

32



Computer Science Lecture 11, page Computer Science

Other System Calls in PM

Figure 4-51.  The system calls supported in servers/pm/
getset.c.

33

Computer Science Lecture 11, page Computer Science

Other System Calls in PM

Figure 4-52.  Special-purpose MINIX 3 system calls in 
servers/pm/misc.c.

34



Computer Science Lecture 11, page Computer Science

Other System Calls (4)
Debugging commands supported by servers/pm/
trace.c.

35

Computer Science Lecture 11, page Computer Science

Memory Management Utilities

Three entry points of alloc.c 

1.  alloc_mem – request a block of memory of given 
size 

2.  free_mem – return memory that is no longer needed 
3.  mem_init – initialize free list when PM starts 

running

36


