
Computer Science Lecture 8, page Computer Science

Today: Process Management

• Scheduling (final thoughts) 

• Minix Interrupts Handling and IPC 

• Process refresher 
– Sequential and concurrent processes 
– Process creation 

• Minix Process Creation

1

Computer Science Lecture 8, page Computer Science

Course Roadmap

• Learn about OS through the lens of Minix and Linux 
• Linux “mini-course” - 4 lectures 

– L1: Linux architecture, L2: Scheduling, L3: Low-level kernel 
concepts, L4: Memory management and File Systems

2

Minix guy Linux guy 



Computer Science Lecture 8, page Computer Science

User Mode Scheduler

Move the scheduling mechanism from kernel mode to user mode.  

• Still uses MLFQ

3

Computer Science Lecture 8, page Computer Science

How it works

When a process is created, stopped, nice system call is used, or a process is 
out of quantum, the sched server is called, and to actually change the the 
current queue two system calls are used.

4



Computer Science Lecture 8, page Computer Science

Interface
Two system library routines are exposed to user mode, sys_schedctl and 
sys_schedule.  

These send messages to kernel requesting to start scheduling a particular 
process and to give a particular process quanta and priority, respectively.  

Once a process runs out of its quantum, the user mode scheduler is notified 
with a message.  

This message contains system and process feedback that the scheduler may 
use for making scheduling decisions.

5

Computer Science Lecture 8, page Computer Science

Kernel Scheduling

6

● The Kernel information about the process in the process table such as: 

●  

● Default Policy: 
● Although the scheduler is in user space, a simple Kernel policy still exists 

for failure and for the time before the sched server is up, that is when a 
process finishes its quantum it is assigned a new one and added to the 
end of the quantum.



Computer Science Lecture 8, page Computer Science

Sched Server
The current SCHED implementation mimics the policy that was previously 
implemented in kernel.  

Each time a process runs out of quantum, it will be bumped down in priority by 
one.  

Then, periodically, the scheduler will run through all processes that have been 
bumped down and push them up, one queue at a time.

7

Computer Science Lecture 8, page Computer Science

Multiple Schedulers

Moving Scheduler into user space presents an important scheduling 
opportunity to create multiple schedulers, where a scheduler could exist per 
user, per device type, etc. Also, this allows better utilization of a multicore 
system as it allows higher cpu utilization and load balancing.

8



Computer Science Lecture 8, page Computer Science

Minix IPC and Interrupt Handling

9

Computer Science Lecture 8, page Computer Science

Minix IPC Message Types
• 7 message types (see file ipc.h) 

– Defines message struct, and send, receive, sendrecv 
• Message could have been array of bytes (unstructured) 

– Minix uses a union on message types 
– 7 types: message type 1 to 8  (6 is obsolete) 

• Message struct:  m_source: who sent the message 
» m_type: what is the message type 
» data fields 

– Technically,  x.m_u: union of struct,   x.m_u.m_1.m1_i1 
• Use macros to simplify:  x.m1_i1 
• data types: integer, long, pointer, char, char array

10



Computer Science Lecture 8, page Computer Science

Minix IPC

• Use rendezvous communication (blocking) 
– send: check if destination waiting, copy msg to recv buffer,  

• otherwise block sender until receiver receives message 
• How are messages used?   

– Kernel calls 
– proc.c  sys_call 

• convert software interrupt into message, send and recv 
• actual work done in mini_send, mini_recv, mini_notify

11

Computer Science Lecture 8, page Computer Science

MINIX Message Types
The seven  message types used in  MINIX 3. The sizes 
of  message elements will vary, depending upon the  
CPU architecture; figure shows 32-bit points for Intel 

12



Computer Science Lecture 8, page Computer Science

Interrupt Handling on Intel PCs
 Interrupt processing hardware on a 32-bit Intel PC.

13

Computer Science Lecture 8, page Computer Science

Interrupt Handling on Intel PCs

• Intel 32 bit CPUs: 2 controller chips  
– each handles 8 inputs: one master and one slave 
– 15 interrupts, IRQ 0: clock input 

• IF INT raised, INT pin tells CPU that INT n occurred 
• Interrupt vector: index a table of 256 entries 

– Minix uses 56 of these entries 
– Interrupt Gate Descriptors (IGD) 
– Jump to Interrupt Handler 
– CPU disables all other interrupts when an interrupt occurs.

14



Computer Science Lecture 8, page Computer Science

Hardware dependent Interrupt Support

• Inteel 8259 controller chip: code in i8259.c 
• Table stored on i8259 chip 

– Generates 8 bit index 
– CPU indexes into this table to find correct IGD entry 
– Jump to Interrupt handler 

• Minix device drivers are in user space! 
– kernel holds a stub to interrupt handler 
– interrupt handling code is in user-space device driver 
– Up-call from kernel to user-space driver to handle interrupt 

15

Computer Science Lecture 8, page Computer Science

Minix Kernel Interrupt Handling
Skeleton of what the lowest level of the operating system 
does when an interrupt occurs.

16



Computer Science Lecture 8, page Computer Science

Minix Kernel Interrupt Handling
Figure 2-40. (a) How a hardware interrupt is processed. 

17

Computer Science Lecture 8, page Computer Science

Software Interrupts
How a system call is made.

18



Computer Science Lecture 8, page Computer Science

Process Management

19

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

What is a process?

• The OS manages a variety of activities: 
– User programs 
– Batch jobs and command scripts 
– System programs: printers, spoolers, name servers, file servers, network 

listeners, etc. 
• Each of these activities is encapsulated in a process. 
• A process includes the execution context (PC, registers, VM, 

resources, etc.) and all the other information the activity needs to 
run. 

• A process is not a program. A process is one instance of a program 
in execution.  Many processes can be running the same program.  
Processes are independent entities.

20



Computer Science Lecture 8, page Computer Science CS377: Operating Systems

What's in a Process?

• Process: dynamic execution context of an executing program 
• Several processes may run the same program, but each is a distinct process 

with its own state (e.g., MS Word). 
• A process executes sequentially, one instruction at a time 
• Process state consists of at least: 

§ the code for the running program, 
§ the static data for the running program, 
§ space for dynamic data (the heap),  the heap pointer (HP), 
§ the Program Counter (PC), indicating the next instruction, 
§ an execution stack with the program's call chain (the stack), the stack pointer (SP) 
§ values of CPU registers 
§ a set of OS resources in use (e.g., open files) 
§ process execution state (ready, running, etc.).

21

Computer Science Lecture 8, page Computer Science

The Process Model (1)
Multiprogramming of four programs.

22



Computer Science Lecture 8, page Computer Science

The Process Model (2)
Conceptual model of four independent, sequential 
processes.

23

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Example Process State in Memory

What you wrote: 

    void X (int b){ 
           if ( b == 1 ) … 
     } 
  
     main(){ 
        int a = 2; 
        X ( a ); 
    } 
     

What’s in memory

PC ->

24



Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Process Execution State
• Execution state of a process indicates what it is doing 
� � new:� � the OS is setting up the process state 
� � running:� executing instructions on the CPU 
� � ready:�� ready to run, but waiting for the CPU 
� � waiting:� waiting for an event to complete 
� � terminated:� the OS is destroying this process 
• As the program executes, it moves from state to state, as 

a result of the program actions (e.g., system calls), OS 
actions (scheduling), and external actions (interrupts).

25

Computer Science Lecture 4, page Computer Science CS377: Operating Systems

Process Data Structures
• Process Table : OS data structure to keep track of all processes 

– The PCB tracks the execution state and location of each process 
– The OS allocates a new PCB on the creation of each process and places it 

on a state queue 
– The OS deallocates the PCB when the process terminates 

• The process table contains:

• Process state (running, waiting, etc.) 
• Process number 
• Program Counter 
• Stack Pointer 
• General Purpose Registers 
• Memory Management Information

• Username of owner 
• List of open files 
• Queue pointers for state queues 
• Scheduling information (e.g., priority) 
• I/O status 
• …

26



Computer Science Lecture 8, page Computer Science

Minix Process Table

Fields of the MINIX 3 process table.  The fields are 
distributed over the kernel,  the process manager, and the 
file system.

27

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Processes versus Threads
• A process defines the address space, text, resources, etc., 
• A thread defines a single sequential execution stream within a 

process (PC, stack, registers). 
• Threads extract the thread of control information from the 

process 
• Threads are bound to a single process. 
• Each process may have multiple threads of control within it. 

– The address space of a process is shared among all its threads 
– No system calls are required to cooperate among threads 
– Simpler than message passing and shared-memory

28



Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Single and Multithreaded Processes

29

Computer Science Lecture 8, page Computer Science

Threads vs Processes
Three single-threaded processes vs one multi-threaded 
process

30



Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Example Threaded Program

• Forking a thread can be a system call to the kernel, or a 
procedure call to a thread library (user code). 
•Note: The example has 3 threads: main, producer and consumer. The main thread exits after creating the 
producer and consumer and is not shown.

31

Computer Science Lecture 8, page Computer Science

Threads

The first column lists some items shared by all 
threads in a process. The second one lists some 
items private to each thread.

32



Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Kernel Threads

• A kernel thread, also known as a lightweight process, is a thread 
that the operating system knows about. 

• Switching between kernel threads of the same process requires a 
small context switch. 
– The values of registers, program counter, and stack pointer must be 

changed. 
– Memory management information does not need to be changed since the 

threads share an address space. 
• The kernel must manage and schedule threads (as well as 

processes), but it can use the same process scheduling algorithms. 
èSwitching between kernel threads is slightly faster than 
    switching between processes.

33

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

User-Level Threads
• A user-level thread is a thread that the OS does not know about. 

• The OS only knows about the  process containing the threads. 

• The OS only schedules the process, not the threads within the 
process. 

• The programmer uses a thread library to manage threads (create 
and delete them, synchronize them, and schedule them).

34



Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Threading Models

• Many-to-one, one-to-one, many-to-many and two-level

35

Computer Science Lecture 8, page Computer Science

User-level Threads Scheduling

OS CPU scheduler picks a process, then run-time system 
picks a thread in that process

36

(a)



Computer Science Lecture 8, page Computer Science

Kernel Thread Scheduling 

OS CPU scheduler directly chooses a kernel thread (and 
hence the process) to schedule

37

(b)

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Pthreads and Win32 Threads
• May be provided either as user-level or kernel-level 
• A POSIX standard (IEEE 1003.1c) API for thread 

creation and synchronization 
• API specifies behavior of the thread library, 

implementation is up to development of the library 
• Common in UNIX operating systems (Solaris, Linux, 

Mac OS X) 

• WIN32 Threads: Similar to Posix, but for Windows

38



Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Java Threads
• Java threads are managed by the JVM 

• Typically implemented using the threads model 
provided by underlying OS 

• Java threads may be created by:�

– Extending Thread class 
– Implementing the Runnable interface�

39

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Examples

Pthreads:

    pthread_attr_init(&attr);  /* set default attributes */

    pthread_create(&tid, &attr, sum, &param);

Win32 threads

ThreadHandle  = CreateThread(NULL, 0, Sum, &Param, 0, &ThreadID);

Java Threads:

Sum sumObject = new Sum();

Thread t = new Thread(new Summation(param, SumObject));

t.start();  // start the thread 

40



Computer Science Lecture 8, page Computer Science

Thread Support in Minix

• Minix has no support for kernel-level threads 

• User-level threads only choice 

• libmthread  - lightweight Minix user-level thread 
library  
– supports large subset of pthreads 

• GNU pthreads - GNU pthreads library 
– full pthreads implementation as user-level threads

41

Computer Science Lecture 8, page Computer Science

Process Creation

42



Computer Science Lecture 8, page Computer Science

Process Creation
Principal events that cause processes to be created: 

1. System initialization. 
2. Execution of a process creation system call by a 
running process. 
3. A user request to create a new process. 
4. Initiation of a batch job.

43

Computer Science Lecture 4, page Computer Science CS377: Operating Systems

Creating a Process
• One process can create other processes to do work. 

– The creator is called the parent and the new process is the child 
– The parent defines (or donates) resources and privileges to its children 
– A parent can either wait for the child to complete, or continue in parallel 

• In Unix,  the fork system call called is used to create child 
processes 
– Fork  copies  variables and registers from the parent to the child 
– The only difference between the child and the parent is the value returned 

by fork 
* In the parent process, fork returns the process id of the child 
* In the child process, the return value is 0 

– The parent can wait for the child to terminate by executing the wait system 
call or continue execution 

– The child often starts a new and different program within  itself, via a call 
to exec system call.

44



Computer Science Lecture 4, page Computer Science CS377: Operating Systems

Creating a Process: Example
• When you log in to a machine running Unix, you create a shell 

process. 
• Every command you type into the shell is a child of your shell 

process and is an implicit fork and exec pair. 
• For example, you type emacs, the OS “forks” a new process and 

then “exec” (executes) emacs. 
• If you type an & after the command, Unix will run the process in 

parallel with your shell, otherwise, your next shell command 
must wait until the first one completes.

45

Computer Science Lecture 4, page Computer Science CS377: Operating Systems

Example Unix Program: Fork
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h>

main() { 
  int parentID = getpid();    /* ID of this process */
  char  prgname[1024]; 
  gets(prgname); /* read the name of program we want to start */
  int cid = fork();
  if(cid == 0) {  /* I'm the child process */
    execlp( prgname, prgname, 0);  /* Load the program */
    /* If the program named prgname can be started, we never get 
   to this line,  because the child program is replaced by prgname */
    printf("I didn't find program %s\n", prgname);
  } else { /* I'm the parent process */
    sleep (1);  /*  Give my child time to start. */
    waitpid(cid, 0, 0);  /*  Wait for my child to terminate. */
    printf("Program %s finished\n", prgname);
} }

46



Computer Science Lecture 4, page Computer Science CS377: Operating Systems

What is happening on the Fork

47

Computer Science Lecture 8, page Computer Science

Memory Layout for fork/exec
Figure 4-30. Memory allocation (a) Originally. (b) After 
a fork.  (c) After the child does an exec.  The shaded 
regions are unused memory.  The process is a common 
I&D one.

48



Computer Science Lecture 4, page Computer Science CS377: Operating Systems

Example Unix Program: Explanation
fork()  forks a new child process that is a copy of the parent. 

execlp()  replaces the program of the current process with the 
named program. 

sleep()  suspends execution for at least the specified time. 

waitpid()  waits for the named process to finish execution. 

gets()  reads a line from a file.

49

Computer Science Lecture 8, page Computer Science

Minix FORK System Call

Figure 4-36. The steps required to carry out the fork 
system call.

50



Computer Science Lecture 8, page Computer Science

EXEC System Call in Minix

The steps required to carry out the exec system call.

51

Computer Science Lecture 8, page Computer Science

EXEC System Call (2)
(a) The arrays passed to execve. (b) The stack built by 
execve. (c) The stack after relocation by the PM. (d) 
The stack as it appears to main at start of execution.

52



Computer Science Lecture 8, page Computer Science

EXEC System Call (3)

The key part of crtso,  the C run-time, start-off routine.

53

Computer Science Lecture 8, page Computer Science

Process Termination

Conditions that cause a process to terminate: 

1. Normal exit (voluntary). 
2. Error exit (voluntary). 
3. Fatal error (involuntary). 
4. Killed by another process (involuntary).

54



Computer Science Lecture 4, page Computer Science CS377: Operating Systems

Process Termination
• On process termination, the OS reclaims all resources 

assigned to the process. 

• In Unix 
– a process can terminate itself using the exit system call. 
– a process can terminate a child using the kill system

55

Computer Science Lecture 8, page Computer Science

Message Flow

56

Fork Termin
ate 

Out Of 
Quantum 

Change Nice 



Computer Science Lecture 8, page Computer Science

Performance

The performance of this approach is related to the performance overhead by minix itself, due 
to the IPC Mechanism used. So in the following cases the performance is measured using in 
context switching cased by IPCs. 

Fork: To execute a fork it requires (6 mode switches and 2 context switches). 

Termination: 2 mode switches, 2 context switches 

Out of Quantum: 1 mode switch, 1 context switch

57


