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Today: Processor Scheduling

• Goals for processor scheduling  

• CPU Scheduling Refresher 

• CPU Scheduling in Minix
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Scheduling Processes
• Multiprogramming:  running more than one process 

at a time enables the OS to increase system utilization 
and throughput by overlapping I/O and CPU activities. 

• Process Execution State 

• All of the processes that the OS is currently managing 
reside in one and only one of these state queues. 
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Three Level Scheduling 
Long-term, short-term, memory

3CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling Processes
• Long Term Scheduling: How does the OS determine the degree 

of multiprogramming, i.e., the number of jobs executing at once 
in the primary memory? 

• Short Term Scheduling: How does (or should) the OS select a 
process from the ready queue to execute? 

– Policy Goals 
– Policy Options 
– Implementation considerations
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Short Term Scheduling
• The kernel runs the scheduler at least when 

1. a process switches from running to waiting, 
2. an interrupt occurs, or 
3. a process is created or terminated. 

• Non-preemptive system: the scheduler must wait for 
one of these events 

• Preemptive system: the scheduler can interrupt a 
running process
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Process Behavior 
Bursts of CPU usage alternate with periods of waiting for I/O.  
(a) A CPU-bound process. (b) An I/O-bound process.
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Criteria for Comparing Scheduling Algorithms

• CPU Utilization The percentage of time that the CPU is 
busy. 

• Throughput The number of processes completing in a unit 
of time. 

• Turnaround time The length of time it takes to run a 
process from initialization to termination, including all the 
waiting time. 

• Waiting time The total amount of time that a process is in 
the ready queue. 

• Response time The time between when a process is ready to 
run and its next I/O request.
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Goals
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Scheduling Policies 
Ideally, choose a CPU scheduler that optimizes all criteria 

simultaneously (utilization, throughput,..),   but this is not 
generally possible 

Instead, choose a scheduling algorithm based on its ability to satisfy 
a policy 

• Minimize average response time - provide output to the user as quickly as 
possible and process their input as soon as it is received. 

• Minimize variance of response time - in interactive systems, predictability may 
be more important than a low average with a high variance. 

• Maximize throughput - two components 
– minimize overhead (OS overhead, context switching) 
– efficient use of system resources (CPU, I/O devices) 

• Minimize waiting time - give each process the same amount of time on the 
processor.  This might actually increase average response time.
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Scheduling Policies
Simplifying Assumptions 

• One process per user 
• One thread per process 
• Processes are independent 
• Singe processor, single core 
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Scheduling Algorithms: A Snapshot
FCFS:  First Come, First Served 

Round Robin: Use a time slice and preemption to alternate jobs. 

SJF: Shortest Job First 

Multilevel Feedback Queues: Round robin on each priority queue. 

Lottery Scheduling: Jobs get tickets and scheduler randomly 
picks winning ticket.
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Scheduling Policies
FCFS:  First-Come-First-Served (or FIFO: First-In-First-Out) 

• The scheduler executes jobs to completion in arrival order. 
• In early FCFS schedulers, the job did not relinquish the CPU even 

when it was doing I/O. 
• We will assume a FCFS scheduler that runs when processes are 

blocked on I/O, but that is non-preemptive, i.e., the job keeps the 
CPU until it blocks (say on an I/O device).
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FCFS: Advantages and Disadvantages
Advantage:  simple 

Disadvantages: 
• average wait time is highly variable as short jobs may wait behind 

long jobs. 

• may lead to poor overlap of I/O and CPU since CPU-bound 
processes will force I/O bound processes to wait for the CPU, 
leaving the I/O devices idle
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FCFS Scheduling Policy: Example

• If  processes arrive 1 time unit apart, what is the average 
wait time in these three cases?
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Round-Robin Scheduling
Round-robin scheduling.  
(a) The list of runnable processes.  
(b) The list of runnable processes after B uses up its 
quantum.

15CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round Robin Scheduling
• Variants of round robin are used in most time sharing systems 
• Add a timer and use a preemptive policy. 
• After each time slice, move the running thread to the back of the queue. 
• Selecting a time slice: 

– Too large - waiting time suffers, degenerates to FCFS if processes are never 
preempted. 

– Too small - throughput suffers because too much time is spent context switching. 
� => Balance these tradeoffs by selecting a time slice where context switching is 

roughly 1% of the time slice.  
• Today: typical time slice= 10-100 ms, context switch time= 0.1-1ms 
• Advantage: It's fair; each job gets an equal shot at the CPU. 
• Disadvantage: Average waiting time can be bad.
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Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 100

2 100

3 100

4 100

5 100

Average
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Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 100 100 496 0 396

2 100 200 497 100 397

3 100 300 498 200 398

4 100 400 499 300 399

5 100 500 500 400 400

Average 300 498 200 398
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Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context 
switch time of 0 seconds

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 50

2 40

3 30

4 20

5 10

Average

19CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 
1 second, context switch time of 0 seconds

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 50 50 150 0 100

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 110 80 80
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SJF/SRTF: Shortest Job First
• Schedule the job that has the least (expected) amount of work 

(CPU time) to do until its next I/O request or termination. 
• Advantages: 

– Provably optimal with respect to minimizing the average waiting time 
– Works for preemptive and non-preemptive schedulers 
– Preemptive SJF is called SRTF - shortest remaining time first 

� => I/O bound jobs get priority over CPU bound jobs 

• Disadvantages: 
– Impossible to predict the amount of CPU time a job has left 
– Long running CPU bound jobs can starve
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SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context 
switch time of 0 seconds

Job Lengt
h

Completion Time Wait Time

FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20

5 10

Average

22CS577: Operating System Design and Implementation



Computer Science Lecture 7, page Computer Science

SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context 
switch time of 0 seconds

Job Lengt
h

Completion Time Wait Time

FCFS RR SJF FCFS RR SJF

1 50 50 150 150 0 100 100

2 40 90 140 100 50 100 60

3 30 120 120 60 90 90 30

4 20 140 90 30 120 70 10

5 10 150 50 10 140 40 0

Average 110 110 70 80 80 40

23CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Priority Scheduling
A scheduling algorithm with four priority classes.
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Multilevel Feedback Queues (MLFQ)
• Multilevel feedback queues use past behavior to predict the future 

and assign job priorities 
� => overcome the prediction problem in SJF 
• If a process is I/O bound in the past, it is also likely to be I/O 

bound in the future (programs turn out not to be random.) 
• To exploit this behavior, the scheduler can favor jobs  that have 

used the least amount of CPU time, thus approximating SJF.  
• This policy is adaptive because it relies on past behavior and 

changes in behavior result in changes to scheduling decisions.
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Approximating SJF: Multilevel Feedback 
Queues

• Multiple queues with different priorities. 
• Use Round Robin scheduling at each priority level, running the 

jobs in highest priority queue first. 
• Once those finish, run jobs at the next highest priority queue, etc. 

(Can lead to starvation.) 
• Round robin time slice increases exponentially at lower priorities.
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Adjusting Priorities in MLFQ
• Job starts in highest priority queue. 

• If job's time slices expires, drop its priority one level. 

• If job's time slices does not expire (the context switch comes from 
an I/O request instead), then increase its priority one level, up to 
the top priority level. 

⇒CPU bound jobs drop like a rock in priority and I/O bound jobs 
stay at a high priority.
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Multilevel Feedback Queues:Example 1

•3 jobs, of length 30, 20, and 10 
seconds each, initial time slice 1 
second, context switch time of 0 
seconds, all CPU bound (no I/O), 3 
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time 

 Slice
Job

1 1

2 2

3 4

28CS577: Operating System Design and Implementation



Computer Science Lecture 7, page Computer Science

Multilevel Feedback Queues:Example 1

•5 jobs, of length 30, 20, and 10 
seconds each, initial time slice 1 
second, context switch time of 0 
seconds, all CPU bound (no I/O), 3 
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 53 30 33

3 10 30 32 20 22

Average 46 2/3 48 1/3 26 
2/3

28 1/3

Queue Time  
Slice

Job

1 1 111 , 221 , 331

2 2 153 , 273 , 393

3 4 1137 , 2177 , 3217 

12511 , 22911 , 33210 ...
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Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10 
seconds, the 10 sec job has 1 sec of I/0 
every other sec, initial time slice 1 sec, 
context switch time of 0 sec, 2 queues.

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time  

Slice
Job

1 1

2 2
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Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10 
seconds, the 10 sec job has 1 sec of I/0 
every other sec, initial time slice 1 sec, 
context switch time of 0 sec, 2 queues.

Job Length

Completion 
Time

Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 50 30 30

3 10 30 18 20 8

Average 46 2/3 45 26 2/3 25 1/3
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Improving Fairness
Since SJF is optimal, but unfair, any increase in fairness by giving 

long jobs a fraction of the CPU when shorter jobs are available 
will degrade average waiting time. 

Possible solutions: 
• Give each queue a fraction of the CPU time. This solution is only 

fair if there is an even distribution of jobs among queues. 
• Adjust the priority of jobs as they do not get serviced (Unix 

originally did this.)   
– This ad hoc solution avoids starvation but average waiting time 

suffers when the system is overloaded because all the jobs end 
up with a high priority,.
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Lottery Scheduling
• Give every job some number of lottery tickets. 
• On each time slice, randomly pick a winning ticket. 
• On average, CPU time is proportional to the number of tickets 

given to each job. 
• Assign tickets by giving the most to short running jobs, and fewer 

to long running jobs (approximating SJF).  To avoid starvation, 
every job gets at least one ticket. 

• Degrades gracefully as load changes.  Adding or deleting a job 
affects all jobs proportionately, independent of the number of 
tickets a job has.
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Lottery Scheduling: Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

# short jobs/ 
# long jobs

% of CPU each 
short job gets

% of CPU each 
long job gets

1/1 91% 9%
0/2
2/0
10/1
1/10
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Lottery Scheduling Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

# short jobs/ 
# long jobs

% of CPU each 
short job gets

% of CPU each 
long job gets

1/1 91% (10/11) 9% (1/11)
0/2 50% (1/2)
2/0 50% (10/20)
10/1 10% (10/101) < 1% (1/101)
1/10 50% (10/20) 5% (1/20)

35CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Minix: When to Schedule
When scheduling is absolutely required: 
 1. When a process exits. 
 2. When a process blocks on I/O, or a semaphore. 

When scheduling usually done (though not absolutely 
required) 
 1. When a new process is created. 
 2. When an I/O interrupt occurs. 
 3. When a clock interrupt occurs.
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Scheduling in MINIX

The scheduler maintains sixteen queues, one per priority 
level.  Shown here is the initial queuing process as 
MINIX 3 starts up.
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MLFQ Scheduling in Minix
• Priorities aligned with “nice” values in UNIX 

– lower number is higher priority, with 0 being highest 
• Idle process runs at lowest priority level (level 15) 
• System and clock u-kernel tasks run at highest (level 0) 
• Drivers and system processes run at priority levels 1-4 
• User processes run at priority 7 to 14 
• Priority of kernel tasks, drivers, system proc is fixed 

• User process priority changes with behavior 
– +1 is entire quantum is used 
– -1 is blocks before using quantum
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Restart

Restart is the common point reached after system startup, 
interrupts, or system calls. The most deserving process  
(which may be and often is a different process from the 
last one  interrupted) runs next. Not shown:  interrupts 
that occur while the kernel itself is running.

39CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Minix Scheduler Implementation
• Implementation spread across multiple files 
• main.c - call to restart 

– rdy_heqd, rdy_tail: arrays with head/tail of each level queue 
• table.c  - initial queuing of processes during system startup 

– enqueue, dequeue: used to add / remove entries to queue 
• Function sched: determines which process should be on which 

queue 
– checks in process used its entire quantum and adjusts priority 

+1 or -1 
• Function pick_proc: test reach queue and find the first non-empty 

queue
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Minix Scheduler
• proc.c 

– lock_send, lock_enqueu, lock_dequeue, lock_notify 
• used for basic locking and unlocking of queues 

• Clock task monitors all processes 
– Quantum expires: put process at tail of the queue 
– Drivers, servers given higher quanta, but can also be pre-

empted.
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