
Computer Science Lecture 7, page Computer Science

Today: Processor Scheduling

• Goals for processor scheduling

• CPU Scheduling Refresher

• CPU Scheduling in Minix

1CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling Processes
• Multiprogramming: running more than one process

at a time enables the OS to increase system utilization
and throughput by overlapping I/O and CPU activities.

• Process Execution State

• All of the processes that the OS is currently managing
reside in one and only one of these state queues.

2CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Three Level Scheduling
Long-term, short-term, memory

3CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling Processes
• Long Term Scheduling: How does the OS determine the degree

of multiprogramming, i.e., the number of jobs executing at once
in the primary memory?

• Short Term Scheduling: How does (or should) the OS select a
process from the ready queue to execute?

– Policy Goals
– Policy Options
– Implementation considerations

4CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Short Term Scheduling
• The kernel runs the scheduler at least when

1. a process switches from running to waiting,
2. an interrupt occurs, or
3. a process is created or terminated.

• Non-preemptive system: the scheduler must wait for
one of these events

• Preemptive system: the scheduler can interrupt a
running process

5CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Process Behavior
Bursts of CPU usage alternate with periods of waiting for I/O.  
(a) A CPU-bound process. (b) An I/O-bound process.

6CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Criteria for Comparing Scheduling Algorithms

• CPU Utilization The percentage of time that the CPU is
busy.

• Throughput The number of processes completing in a unit
of time.

• Turnaround time The length of time it takes to run a
process from initialization to termination, including all the
waiting time.

• Waiting time The total amount of time that a process is in
the ready queue.

• Response time The time between when a process is ready to
run and its next I/O request.

7CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Goals

8CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling Policies
Ideally, choose a CPU scheduler that optimizes all criteria

simultaneously (utilization, throughput,..), but this is not
generally possible

Instead, choose a scheduling algorithm based on its ability to satisfy
a policy

• Minimize average response time - provide output to the user as quickly as
possible and process their input as soon as it is received.

• Minimize variance of response time - in interactive systems, predictability may
be more important than a low average with a high variance.

• Maximize throughput - two components
– minimize overhead (OS overhead, context switching)
– efficient use of system resources (CPU, I/O devices)

• Minimize waiting time - give each process the same amount of time on the
processor. This might actually increase average response time.

9CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling Policies
Simplifying Assumptions

• One process per user
• One thread per process
• Processes are independent
• Singe processor, single core

10CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling Algorithms: A Snapshot
FCFS: First Come, First Served

Round Robin: Use a time slice and preemption to alternate jobs.

SJF: Shortest Job First

Multilevel Feedback Queues: Round robin on each priority queue.

Lottery Scheduling: Jobs get tickets and scheduler randomly
picks winning ticket.

11CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling Policies
FCFS: First-Come-First-Served (or FIFO: First-In-First-Out)

• The scheduler executes jobs to completion in arrival order.
• In early FCFS schedulers, the job did not relinquish the CPU even

when it was doing I/O.
• We will assume a FCFS scheduler that runs when processes are

blocked on I/O, but that is non-preemptive, i.e., the job keeps the
CPU until it blocks (say on an I/O device).

12CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

FCFS: Advantages and Disadvantages
Advantage: simple

Disadvantages:
• average wait time is highly variable as short jobs may wait behind

long jobs.

• may lead to poor overlap of I/O and CPU since CPU-bound
processes will force I/O bound processes to wait for the CPU,
leaving the I/O devices idle

13CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

FCFS Scheduling Policy: Example

• If processes arrive 1 time unit apart, what is the average
wait time in these three cases?

14CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round-Robin Scheduling
Round-robin scheduling.
(a) The list of runnable processes.
(b) The list of runnable processes after B uses up its
quantum.

15CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round Robin Scheduling
• Variants of round robin are used in most time sharing systems
• Add a timer and use a preemptive policy.
• After each time slice, move the running thread to the back of the queue.
• Selecting a time slice:

– Too large - waiting time suffers, degenerates to FCFS if processes are never
preempted.

– Too small - throughput suffers because too much time is spent context switching.
� => Balance these tradeoffs by selecting a time slice where context switching is

roughly 1% of the time slice.
• Today: typical time slice= 10-100 ms, context switch time= 0.1-1ms
• Advantage: It's fair; each job gets an equal shot at the CPU.
• Disadvantage: Average waiting time can be bad.

16CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 100

2 100

3 100

4 100

5 100

Average

17CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 100 100 496 0 396

2 100 200 497 100 397

3 100 300 498 200 398

4 100 400 499 300 399

5 100 500 500 400 400

Average 300 498 200 398

18CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 50

2 40

3 30

4 20

5 10

Average

19CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 50 50 150 0 100

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 110 80 80

20CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

SJF/SRTF: Shortest Job First
• Schedule the job that has the least (expected) amount of work

(CPU time) to do until its next I/O request or termination.
• Advantages:

– Provably optimal with respect to minimizing the average waiting time
– Works for preemptive and non-preemptive schedulers
– Preemptive SJF is called SRTF - shortest remaining time first

� => I/O bound jobs get priority over CPU bound jobs

• Disadvantages:
– Impossible to predict the amount of CPU time a job has left
– Long running CPU bound jobs can starve

21CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Lengt
h

Completion Time Wait Time

FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20

5 10

Average

22CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Lengt
h

Completion Time Wait Time

FCFS RR SJF FCFS RR SJF

1 50 50 150 150 0 100 100

2 40 90 140 100 50 100 60

3 30 120 120 60 90 90 30

4 20 140 90 30 120 70 10

5 10 150 50 10 140 40 0

Average 110 110 70 80 80 40

23CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Priority Scheduling
A scheduling algorithm with four priority classes.

24CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Multilevel Feedback Queues (MLFQ)
• Multilevel feedback queues use past behavior to predict the future

and assign job priorities
� => overcome the prediction problem in SJF
• If a process is I/O bound in the past, it is also likely to be I/O

bound in the future (programs turn out not to be random.)
• To exploit this behavior, the scheduler can favor jobs that have

used the least amount of CPU time, thus approximating SJF.
• This policy is adaptive because it relies on past behavior and

changes in behavior result in changes to scheduling decisions.

25CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Approximating SJF: Multilevel Feedback
Queues

• Multiple queues with different priorities.
• Use Round Robin scheduling at each priority level, running the

jobs in highest priority queue first.
• Once those finish, run jobs at the next highest priority queue, etc.

(Can lead to starvation.)
• Round robin time slice increases exponentially at lower priorities.

26CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Adjusting Priorities in MLFQ
• Job starts in highest priority queue.

• If job's time slices expires, drop its priority one level.

• If job's time slices does not expire (the context switch comes from
an I/O request instead), then increase its priority one level, up to
the top priority level.

⇒CPU bound jobs drop like a rock in priority and I/O bound jobs
stay at a high priority.

27CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Multilevel Feedback Queues:Example 1

•3 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time

 Slice
Job

1 1

2 2

3 4

28CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Multilevel Feedback Queues:Example 1

•5 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 53 30 33

3 10 30 32 20 22

Average 46 2/3 48 1/3 26
2/3

28 1/3

Queue Time
Slice

Job

1 1 111 , 221 , 331

2 2 153 , 273 , 393

3 4 1137 , 2177 , 3217

12511 , 22911 , 33210 ...

29CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 1 sec,
context switch time of 0 sec, 2 queues.

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time

Slice
Job

1 1

2 2

30CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 1 sec,
context switch time of 0 sec, 2 queues.

Job Length

Completion
Time

Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 50 30 30

3 10 30 18 20 8

Average 46 2/3 45 26 2/3 25 1/3

31CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Improving Fairness
Since SJF is optimal, but unfair, any increase in fairness by giving

long jobs a fraction of the CPU when shorter jobs are available
will degrade average waiting time.

Possible solutions:
• Give each queue a fraction of the CPU time. This solution is only

fair if there is an even distribution of jobs among queues.
• Adjust the priority of jobs as they do not get serviced (Unix

originally did this.)
– This ad hoc solution avoids starvation but average waiting time

suffers when the system is overloaded because all the jobs end
up with a high priority,.

32CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Lottery Scheduling
• Give every job some number of lottery tickets.
• On each time slice, randomly pick a winning ticket.
• On average, CPU time is proportional to the number of tickets

given to each job.
• Assign tickets by giving the most to short running jobs, and fewer

to long running jobs (approximating SJF). To avoid starvation,
every job gets at least one ticket.

• Degrades gracefully as load changes. Adding or deleting a job
affects all jobs proportionately, independent of the number of
tickets a job has.

33CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Lottery Scheduling: Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% 9%
0/2
2/0
10/1
1/10

34CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Lottery Scheduling Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% (10/11) 9% (1/11)
0/2 50% (1/2)
2/0 50% (10/20)
10/1 10% (10/101) < 1% (1/101)
1/10 50% (10/20) 5% (1/20)

35CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Minix: When to Schedule
When scheduling is absolutely required:
 1. When a process exits.
 2. When a process blocks on I/O, or a semaphore.

When scheduling usually done (though not absolutely
required)
 1. When a new process is created.
 2. When an I/O interrupt occurs.
 3. When a clock interrupt occurs.

36CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Scheduling in MINIX

The scheduler maintains sixteen queues, one per priority
level. Shown here is the initial queuing process as
MINIX 3 starts up.

37CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

MLFQ Scheduling in Minix
• Priorities aligned with “nice” values in UNIX

– lower number is higher priority, with 0 being highest
• Idle process runs at lowest priority level (level 15)
• System and clock u-kernel tasks run at highest (level 0)
• Drivers and system processes run at priority levels 1-4
• User processes run at priority 7 to 14
• Priority of kernel tasks, drivers, system proc is fixed

• User process priority changes with behavior
– +1 is entire quantum is used
– -1 is blocks before using quantum

38CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science
Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Restart

Restart is the common point reached after system startup,
interrupts, or system calls. The most deserving process
(which may be and often is a different process from the
last one interrupted) runs next. Not shown: interrupts
that occur while the kernel itself is running.

39CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Minix Scheduler Implementation
• Implementation spread across multiple files
• main.c - call to restart

– rdy_heqd, rdy_tail: arrays with head/tail of each level queue
• table.c - initial queuing of processes during system startup

– enqueue, dequeue: used to add / remove entries to queue
• Function sched: determines which process should be on which

queue
– checks in process used its entire quantum and adjusts priority

+1 or -1
• Function pick_proc: test reach queue and find the first non-empty

queue

40CS577: Operating System Design and Implementation

Computer Science Lecture 7, page Computer Science

Minix Scheduler
• proc.c

– lock_send, lock_enqueu, lock_dequeue, lock_notify
• used for basic locking and unlocking of queues

• Clock task monitors all processes
– Quantum expires: put process at tail of the queue
– Drivers, servers given higher quanta, but can also be pre-

empted.

41CS577: Operating System Design and Implementation

