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Abstract — Dynamic capacity provisioning is a useful technique for handling the multi-time-scale
variations seen in Internet workloads. In this paper, we propose a novel dynamic provisioning
technique for multi-tier Internet applications that employs (i) a flexible queuing model to deter-
mine how much resources to allocate to each tier of the application, and (ii) a combination of
predictive and reactive methods that determine when to provision these resources, both at large and
small time scales. We propose a novel data center architecture based on virtual machine monitors
to reduce provisioning overheads. Our experiments on a forty-machine Xen/Linuz-based hosting
platform demonstrate the responsiveness of our technique in handling dynamic workloads. In one
scenario where a flash crowd caused the workload of a three-tier application to double, our tech-
nique was able to double the application capacity within five minutes, thus maintaining response
time targets. Our technique also reduced the overhead of switching servers across applications
from several minutes to less than a second, while meeting the performance targets of residual
sessions.

Categories and Subject Descriptors: DPgfformance]: Modeling and prediction
General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Internet application, Dynamic provisioning

1. INTRODUCTION
1.1 Motivation

An Internet hosting platform is a server farm that runs dsted applications such as an online retail store or an
online brokerage site. Typical Internet applications eal multi-tier architecture, with each tier providing ateém
functionality. Such applications tend to see dynamicadlgying workloads that contain long-term variations such as
time-of-day effects as well as short-term fluctuations duiéaish crowds. Predicting the peak workload of an Internet
application and capacity provisioning based on these weais estimates is notoriously difficult. There are numerous
documented examples of Internet applications that facemlitage due to an unexpected overload. For instance, the
normally well-provisioned Amazon.com site suffered ayariinute down-time due to an overload during the popular
holiday season in November 2000 [Amazon 2000].

Given the difficulties in predicting peak Internet worklsaén application needs to employ a combination of dy-
namic provisioning and request policing to handle workleadations. Dynamic provisioning enables additional
resources—such as servers—to be allocated to an applicatitreely to handle workload increases, while policing
enables the application to temporarily turn away excessastg while additional resources are being provisioned.

In this paper, we focus on dynamic resource provisioninghtédrhet applications that employ a multi-tier architec-
ture. We argue that (i) provisioning of multi-tier applicats raises new challenges not addressed by prior work on
provisioning single-tier applications, and (ii) agile ogaictive provisioning technigues are necessary to harutte b
long-term and short-term workload fluctuations seen byrh@tapplications. To address these issues, we present a
novel provisioning technique based on a combination ofiptied and reactive mechanisms.

1.2 The Case for A New Provisioning Technique

Dynamic provisioning of resources—allocation and deatioceof servers to replicated applications—has been stud-
ied in the context of single-tier applications, of whichstlered HTTP servers are the most common example. The
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Fig. 1. Strawman approaches for provisioning a multi-tiedigppon.

notion ofhot sparesaind their allocation to cluster-based applicationsdemandvas first proposed by Fox et al. [Fox

et al. 1997]. The Muse project proposed a utility-based @gghr based on an economic theory for allocation and
deallocation of servers to clustered Web servers [Chas®amglt 2001]. A model-based approach for resource pro-
visioning in single-tier Web servers was proposed by Doytd.gDoyle et al. 2003]. Kamra et al. [Kamra et al. 2004]
model a multi-tier e-commerce application as a single MIG#rver and present a Pl-controller based admission con-
trol for maintaining response time targets. Whereas migltithternet applications have been studied in the context o
SEDA [Welsh and Culler 2003; Welsh et al. 2001], the effodu®ed on admission control issues to maintain target
response times and did not explicitly consider provisigrigsues.

It is non-trivial to extend provisioning mechanisms desidifior single-tier applications to multi-tier scenarios. T
understand why, we consider two strawman approaches thairaple extensions of the above single-tier methods
and demonstrate their limitations for multi-tier applicas.

Since many single-tier provisioning mechanisms have dyrdeen proposed, a straightforward extension is to
employ such an approach at each tier of the application. drfables provisioning decisions to be made independently
at each tier based on local observations. Thus, our firstvstes is to provision additional servers at a tier when
the incoming request rate at that tier exceeds the currentlyisioned capacity; this can be inferred by monitoring
gueue lengths, tier-specific response times, or requeptrdtes. We refer to this approachiadependent per-tier
provisioning
Example 1: Consider a three-tier Internet application depicted iruFégl(a). Initially, let us assume that one server
each is allocated to the three tiers, and this enables tHeaixmn to service 15, 10 and 10.5 requests/sec at each tier
(since a user request may impose different demands atatiffdiers, the provisioned capacity at each tier may be
different). Let the incoming request rate be 14 requestsiS&ren the above capacities, all requests are let in throug
the first tier, and 4 requests/sec are dropped at the se@ndtie to these drops, the third tier sees a reduced request
rate of 10 requests/sec and is able to service them all. Thaffective good-put is 10 requests/sec. Since request
drops are only seen at the second tier, this tier is percewée the bottleneck. The provisioning algorithm at that
tier will allocate an additional server, doubling its efige capacity to 20 requests/sec. At this point, the first tiers
are able to service all incoming requests and the third ter sees a request rate of 14 requests/sec (see Figure 1(b)).
Since its capacity is only 10.5 requests/sec, it drops 3j6asts/sec. Thus, the bottleneck shifts to the third tied, a
the effective good-put only increases from 10 to 10.5 reigisec.

This simple example demonstrates that increasing the nuoflservers allocated to the bottleneck tier does not
necessarily increase the effective good-put of the apica Instead, it may merely shift the bottleneck to another
downstream tier. Although the provisioning mechanism igtdbwnstream tier will subsequently increase its capacity
such shifting bottlenecks may require a number of indepenol@visioning steps at various tiers before the effective
application capacity is actually increased. In the worsecaiptok provisioning steps, one at each tier, may be
necessary in &-tier application. Since allocation of servers to a tieraflatoverheads of several minutes or more
[Chase and Doyle 2001], and since Internet workloads maespiddenly, independent per-tier provisioning may be
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simply too slow to effectively respond to such workload dyiizs.

Our second strawman models the multi-tier application daeklbox and allocates additional servers whenever the
observed response time exceeds a threshold.

Example 2: Consider the same three-tier application from Example h tidr-specific capacities of 15, 20 and 10.5
requests/sec as depicted in Figure 1(b). We ignore admissiotrol issues in this example. Since the incoming
request rate is 14 requests/sec, the first two tiers are alslerve all requests, while the third tier saturates, cgusin
request queues to build up at this tier. This queue build opeases the end-to-end response time of the application
beyond the threshold. Thus, like in the single-tier casdaelkdbox approach can successfully detect when additional
servers need to be provisioned for the multi-tier applarati

However, determinindnow manyservers to provision andhereis far more complex for multi-tier applications.
First, since the application is treated as a black box, tbgigioning mechanism can only detect an increase in end-
to-end response times but can not determine which tier oresble for this increase. Second, for single-tier agplic
tions, an application model is used to determine how manyesgare necessary to service all incoming requests with
a certain response time threshold [Doyle et al. 2003]. Eltepsuch models to multi-tier applications is non-triyial
since each tier has different characteristics. In a tymeadmmerce application, for instance, this imptetiectively
modeling the effects of HTTP servers, Java applicationessrand database servers—a complex task. Third, not all
tiers of the application may be replicable. For instance,dhtabase tier is typically difficult to replicate on-the-fl
In the above example, if the third tier is a non-replicableabase, the black box approach, which has no knowledge
of individual tiers, will incorrectly signal the need to pision additional servers, when the correct action is @gter
request policing and let no more than 10.5 requests/sethattblack box”.

The above example demonstrates that due to the very natmmeltiftier applications, it is not possible to treat them
as a black box for provisioning purposes. Knowledge of thalmer of tiers, their current capacities, and constraints
on the degree of replication at each tier is essential forimggiroper provisioning decisions.

Both examples expose the limitations of using variants mfls-tier provisioning methods for multi-tier applica-
tions. This paper presents a multi-tier provisioning téghe that overcome these limitations.

1.3 Research Contributions

This paper addresses the problem of dynamically provisgoapacity to a multi-tier application so that it can sesvic
its peak workload demand while meeting contracted resptimgeguarantees. The provisioning technique proposed
in this paper is tier-aware, agile, and is able to take amyspecific replication constraints into account. Our woak h
led to the following research contributions.

Predictive and Reactive Provisionin@ur provisioning technique employs two methods that opeaatwo dif-
ferent time scales—predictive provisioning that allocatapacity at the time-scale of hours or days, and reactive
provisioning that operates at time scales of minutes toomdpo flash crowds or deviations from expected long-term
behavior. The combination of predictive and reactive @imriing is a novel approach for dealing with the multi-time-
scale variations in Internet workloads.

Analytical modeling and incorporating tails of workloadsttibutions: We present a flexible analytical model based
on queuing theory to capture the behavior of applicatiorte anarbitrary number of tiers. Our model determines
the number of servers to be allocated to each tier based astineated workload. A novel aspect of our model-based
provisioning is that it is based on thail of the workload distribution—since capacity is usually eragired for the
worst-case load, we use tails of probability distributitmestimate peak demand.

Fast server switchingAgile provisioning in a hosting platform requires the alyilto quickly reallocate servers
from one application to another. Doing so allows overloadgplications to be quickly allocated additional capacity
on under-loaded servers. To enable agile provisioning, pgse a novel technique that exploits the capabilities of
virtual machines to significantly reduce server switchimgrbeads. Our technique enables our system to be extremely
agile to load spikes with reaction times of tens of milliseds.

Handling session-based workloadstodern Internet workloads are predominantly session ba€eshsequently,
our techniques are inherently designed to handle sessisedbworkloads—they can account for multiple requests
that comprise a session and the stateful nature of sesassdbnternet applications.

Implementation and experimentatiofe implement our techniques on a forty-machine Linux-bdsesting plat-
form and use our prototype to conduct a detailed experirhemgduation using two open-source multi-tier applica-
tions. Our results show: (i) our model effectively captukeg characteristics of multi-tier applications and ovenes
the shortcomings inherent in existing provisioning teciueis based on single-tier models and (ii) the combination
of predictive and reactive mechanisms allows us to deal priidictable workload variations as well as unexpected

ACM Journal Name, Vol. V, No. N, Month 20YY.



spikes (during a flash crowd, our data center could doubledbacity of a three-tier application within 5 minutes).

1.4 Relevance of our research to adaptive and autonomic computing

The techniques presented in this paper can be classifiedlagti@e” or “semi-autonomous”, in the sense that they are
designed to adapt to changing environmental conditiors (he workload) with limited human intervention. While
there are certain aspects of the system that require offtialgsis, such as a subset of the application model parameter
ization, most other aspects of the system are completelgeoahd purely observation-based, such as the construction
of the predictive model as well as reaction to recent woitklloehavior. Moreover, the provisioning mechanisms used
in our system, such as agile VM-based server switching, ameptetely automated, and do not require any human
intervention. We believe our work is a step towards a compteautonomic” system that can employ more sophis-
ticated learning techniques within the framework presgirtethis paper to infer application behavior and workload
characteristics on its own.

The remainder of this paper is structured as follows. Sestiband 3 present an overview of the proposed system.
Sections 4 and 5 present our provisioning algorithms, w&detion 6 presents our fast server switching algorithm.
We present our prototype implementation in 7 and our expental evaluation in Section 8. We discuss related work
in Section 9 and present our conclusions in Section 10.

2. SYSTEM OVERVIEW
This section presents an overview of Internet applicateordsthe hosting platform assumed in our work.

2.1 Multi-tier Internet Applications

Modern Internet applications are designed using multiplest A multi-tier architecture provides a flexible, modula
approach for designing such applications. Each tier pesvia certain functionality, and the various tiers form a
processing pipeline. Each tier receives partially proegsgquests from the previous tier and feeds these requests
into the next tier after local processing (see Figure 2). éxample, an online bookstore can be designed using three
tiers—a front-end Web server responsible for HTTP procgssimiddle-tier Java application server that implements
the application logic, and a back-end database that statafbgs and user orders.

The various tiers of an application are assumed to be dis&ibacross different servers. Depending on the desired
capacity, a tier may also be clustered. In an online boo&sfor example, the front-end tier can be a clustered Apache
server that runs on multiple machines. If a tier is both @wed and replicable on-demand, it is assumed that the
number of servers allocated to it, and thus the provisiormgrcity, can be varied dynamically. Not all tiers may be
replicable. For instance, if the back-end tier of the boolesemploys a database wihared-nothingarchitecture, it
cannot be replicated on-demand. Database servers witlr@dsbeerything architecture [oracle9i 2005], in contrast
can be clustered and replicated on-demand, but with cestaistraints. We assume that each tier specifies its degree
of replication, which is the limit on the maximum number ofs®s that can be allocated to'it.

Each clustered tier is also assumed to employ a load bae&ément that is responsible for distributing requests
to servers in that tier [Pai et al. 1998]. The workload of atednet application is assumed to be session-based, where
a session consists of a succession of requests issued nawith think times in between. If a session is stateful,
successive requests will need to be serviced by the samer sgr@ach tier, and the load balancing element will need
account for this server state when redirecting requests.

Every application also runs a special component called tyserhe sentry polices incoming sessions to an appli-
cation’s server pool—incoming sessions are subjected tasaibn control at the sentry to ensure that the contracted
performance guarantees are met; excess sessions are awagduring overloads (see Figure 2). Observe that, un-
like systems that use per-tier admission control [Welsh@ulier 2003], we assume a policer that makes a one-time
admission decision when a session arrives. Once a sessidreka admitted, none of its requests can be dropped at
any intermediate tier. Thus, sufficient capacity needs forbeisioned at various tiers to service all admitted sewssio
Such a one-time policer avoids resource wastage resuttngpartially serviced requests that may be dropped at later
tiers.

Finally, we assume that each application desires a perfuwenbound from the hosting platform that is specified in
the form of a service-level agreement (SLA). Our work assthat the SLA is specified either in terms of the average
response time or a suitable high percentile of the respameedistribution (e.g., a SLA may specify that 95% of the
requests should incur an end-to-end response time of notimamel second).

IThe degree of replication of a tier can vary from one to infindiepending on whether the tier is partially, infinitely,nat replicable.
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Fig. 3. Hosting Platform Architecture.

2.2 Hosting Platform Architecture

Our hosting platform is a data center that consists of a@lugtcommodity servers interconnected by gigabit Ethernet
One or more high bandwidth links connect this cluster to ttierhet. Each server in the hosting platform can take on
one of the following roles: run an application component, tlie control plane, or be part of the free pool (see Figure
3). The free pool contains all unallocated servers.

Servers Hosting Application Component$ie hosting platform runs multiple third-party applicaisoconcurrently
in return for revenues [Chase and Doyle 2001; Shen et al.;20@2onkar et al. 2002]. This work assumes a dedicated
hosting model, where each application runs on a subset sétfvers and a server is allocate@tonostone application
at any given timé&. The dedicated model is useful for running large clustergaliegtions such as online mail [Saito
et al. 1999], retail and brokerage sites, where servermpasiinfeasible due to the client workload—the server pool
is partitioned among applications running on the platform.

The component of an application that runs on a server isreafeéo as aapsule Each server also rungacleus—a
software component that performs online measurement&afahsule workload, its performance and resource usage;
these statistics are periodically conveyed to the contesign

Control Plane: The control plane is responsible for dynamic provisionifigervers to individual applications. It
tracks the resource usage on servers, as reported by the, rarad determines the number of servers to be allocated
to each application.

3. PROVISIONING ALGORITHM OVERVIEW

The goal of our provisioning algorithm is to allocate suffiti capacity to the tiers of an application so that its SLA
can be met even in the presence of the peak workload. At thé dfeany provisioning algorithm lie two issuesow
muchto provision andvher? We provide an overview of our provisioning algorithm franistperspective.

How much to provision. To address the issue of how many servers to allocate to ezchntil each application,
we construct an analytical model of an Internet applicati@ur model takes as input the incoming request rate
and service demand of an individual request, and compugesumber of servers needed at each tier to handle the
aggregate demand.

We model a multi-tier application as a network of queues whesrch queue represents an application tier (more
precisely, a server at an application tier), and the queves 4 tier feed into the next tier. We model a server at a tier as

2A dedicated hosting model is different from shared hostinggldnkar et al. 2002] where the number of application exctredsumber of servers,
and each server may run multiple applications concurrently.
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a G/G/1 system, since it is sufficiently general to captubérary arrival distributions and service time distrilmnis.

By using this building block, which we describe in Sectiorwk determine the number of servers necessary at
each tier to handle a peak session arrival rate. @hd provision resources accordingly. Our approach oveesom
the drawbacks of independent per-tier provisioning andothek box approaches: (1) While the capacity needed at
each tier is determined separately using our queuing mtigefesired capacities are allocated to the various tiers al
at once. This ensures that each provisioning decision irfatedd results in an increase in effective capacity of the
application. (2) The use of a G/G/1 building block for a seateeach tier enables us to break down the complex task
of modeling an arbitrary multi-tier application into moreanageable units. Our approach retains the ability to model
each tier separately, while being able to reason about thesnaf the application as a whole.

When to Provision. The decision of when to provision depends on the dynamicatefriet workloads. Internet
workloads exhibit long-term variations such as time-of-daseasonal effects as well as short-term fluctuations such
as flash crowds. While long-term variations can be predichesa of time by observing past variations, short-term
fluctuations are less predictable, or in some cases, notcpaibte. Our techniques employ two different methods
to handle variations observed at different time scales. ¥éepredictive provisioning to estimate the workload for
the next few hours and provision for it accordingly. Reagfirovisioning is used to correct errors in the long-term
predictions or to react to unanticipated flash crowds. Wisgpeadictive provisioning attempts to “stay ahead” of the
anticipated workload fluctuations, reactive provisionemgbles the hosting platform to be agile to deviations frioen t
expected workload.

The following sections present our queuing model, and tkdiptive and reactive provisioning methods.

4, HOW MUCH TO PROVISION: MODELING MULTI-TIER APPLICATIONS

To determine how many servers to provision for an applicatiee present an analytical model of a multi-tier appli-
cation. Consider an application that consisté ¢iers, denoted by, Ts, . . . T.. Let the desired end-to-end response
time for the application b&; this value is specified by the application’s contracted SA8sume that the end-to-end
response time is broken down into per-tier response fintenoted byl , do, . . ., dy, such thal" d; = R. Let the
incoming session rate be Since capacity is typically provisioned based on the woase demand, we assume that
A is some high percentile of the arrival rate distribution—atineate of the peak session rate that will be seen by the
application.

Given the (peak) session rate and per-tier response timesbgective is to determine how many servers to allocate
such that each tier can service all incoming requests witke@mmesponse time df.

Our model is based on a network of queues. Each server abbt@the application is represented by a queue (see
Fig 2). Queues (servers) representing one tier feed intgethepresenting the next tier. The first step in solving our
model is to determine the capacity of an individual servdéeims of the request rate it can handle. Given the capacity
of a server, the next step computes the number of serversedai a tier to service the peak session rate. We model
each server as a G/G/1 queuing system. In a G/G/1 queuingnsystquests arrive at a server such that their inter-
arrival times are derived from a fixed, known distributiomch request brings with it a certain amount of work for the
server to do. The time it takes the server to finish this worlafeequest, when serving only that request, is called the
service timeof the request. In a G/G/1 system, service times are asswoieddrawn from a known, fixed distribution.
Requests are serviced in a First-Come-First-Served (FGfE8). The queue is assumed to be infinitely long, meaning
any request that arrives when the server is busy waits intbaajbehind all the requests that arrived before it and have
not yet been serviced. Finally, the servicing of request®ispreemptive. A G/G/1 system can express useful system
metrics like average request response time and throughpetrns of the inter-arrival and service time distributions
Since a G/G/1 system can handle an arbitrary arrival digioh and arbitrary service times, it enables us to capture
the behavior of a various tiers such as HTTP, J2EE, and dsaadsavers.

The behavior of a G/G/1 system can be captured using thenioigpqueuing theory result [Kleinrock 1976]:

2 2 -1
2%‘*‘%} 1)
(di — i)

whered; is the mean response time for tieg; is the average service time for a request a that tier \aiglthe request
arrival rate to tieri. o2 ando? are the variance of inter-arrival time and the variance ofise time, respectively.
Observe thatl; is known, while the per-tier service time as well as the variance of inter-arrival and service times

Ai > |:37, +

30ffline profiling can be used to break down the end-to-endaesp time into tier-specific response times.
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o2 ando? can be monitored online in our system. By substituting thedees into Equation 1, a lower bound on
request rate\; that can serviced by a single server can be obtained.

Given an average session think-timeAfa session issues requests at a raté ofJsing Little’s Law [Kleinrock
1976], we can translate theessiornarrival rate of)\ to arequestarrival rate of*—ZT, wherer is the average session
duration. Therefore, once the capacity of a single sexylias been computed, the number of seryerseeded at tier
1 to service a peak request ratefgf is simply computed as

o ﬁl)\T
=5 ] @

where ; is a tier-specific constant. The quantiti&sand r are estimated using online measurements. Note that
implicit in the above calculation is the assumption of petfead balancing among the servers comprising a tier. In
complementary research some of the co-authors have es@alencements to the model to incorporate the presence
of load imbalances [Urgaonkar et al. 2005].

Observe that a single incoming request might trigger maaa tine request (unit of work) at intermediate tiers. For
instance, a single search request at an online superstgte trigger multiple queries at the back-end database, one
in the book catalog, one in the music catalog and so on. Coesgly, our model assumes th@ incoming requests
impose an aggregate demand&g% requests at tier ]ﬁf—g requests at tier 2 and so on. The parameters. . Gy
are derived using online measurements. The valug; ofiay be greater that one than if a request triggers multiple
units of work at tieri or it may be less than one if caching at prior tiers reducesiéimeand at this tier.

An additional enhancement to our model is to incorporate lanigs that capsules may have on the number of
requests they can service simultaneously (e.g. the Apaeteséfver has a configurable upper limit on the number of
processes that it can spawn to handle requests). This sinvplyes setting the capacity of a server to be the minimum
of the capacity given by our model (expressed as the avenagéer of requests that it can process simultaneously)
and any concurrency limit that the capsule hosted on it mag.ha

Observe that our model can handle applications with anrarginumber of tiers, since the complex task of modeling
a multi-tier application is reduced to modeling an indiatlserver at each tier. Equation 2 assumes that servers are
homogeneous and that servers in each tier are load-balar®etth assumptions can be relaxed as we show in a
complementary paper [Urgaonkar et al. 2005].

The output of the model is the number of servers. . . n;, needed at thé tiers to handle a peak demand)ofWe
then increase the capacity of all tiers to these values inglesstep, resulting in an immediate increase in effective
capacity. In the event; exceeds the degree of replicatiafy of a tier the actual allocation is reduced to this limit.
Thus, each tier is allocated no more thawin(n;, M;) servers. To ensure that the SLA is not violated when the
allocation is reduced td/;, the excess requests must be turned away at the sentry.

5. WHEN TO PROVISION?

In this section, we present two methods—predictive and igaetto provision resources over long and short time-
scales, respectively.

5.1 Predictive Provisioning for the Long Term

The goal of predictive provisioning is to provision res@sover time scales of hours and days. The technique uses a
workload predictor to predict the peak demand over the resdrsl hours or a day and then uses the model presented
in Section 4 to determine the number of servers that are deiedmeet this peak demand. Predictive provisioning is
motivated by long-term variations such as time-of-day asseal effects exhibited by Internet workloads [Hellgrste

et al. 1999]. For instance, the workload seen by an IntenpgliGation typically peaks around noon every day and

is minimum in the middle of the night. Similarly, the workkb@een by online retail Web sites is higher during the
holiday shopping months of November and December than otioeiths of the year. These cyclic patterns tend to
repeat and can be predicted ahead of time by observing péatieas. By employing a workload predictor that can
predict these variations, our predictive provisioninghteique can allocate servers to an application well ahealaeof t
expected workload peak. This ensures that applicatiompaeince does not suffer even under the peak demand.

The key to predictive provisioning is the workload predictdn this section, we present a workload predictor
that estimates the tail of the arrival rate distributioe.(ithe peak demand) for the next few hours. Other statistica
workload predictive technigues proposed in the literatae also be used with our predictive provisioning technique
[Hellerstein et al. 1999; Rolia et al. 2002].
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Fig. 4. The workload prediction algorithm.

Our workload predictor is based on a technique proposed by Bial. [Rolia et al. 2002] and uses past observations
of the workload to predict peak demand that will be seen oymrad of 7" time units. For simplicity of exposition,
assume thdf’ = 1 hour. In that case, the predictor estimates the peak derhahdiil be seen over the next one hour,
at the beginning of each hour. To do so, it maintains a higibtiye session arrival rate seen during each hour of the day
over the past several days. A histogram is then generateghfdr hour using observations for that hour from the past
several days (see Figure 4). Each histogram yields a pridgabstribution of the arrival rate for that hour. The peak
workload for a particular hour is estimated as a high perieeot the arrival rate distribution for that hour (see Figur
4). Thus, by using the tail of the arrival rate distributiorpredict peak demand, the predictive provisioning tealaiq
can allocate sufficient capacity to handle the worst-cas@, Ishould it arrive. Further, monitoring the demand fotheac
hour of the day enables the predictor to capture time-ofeffgcts. Since workloads of Internet applications exhibit
occasional overloads, the peak values of their resouradsrafeen far exceed the resources that they need most of the
times. Using an appropriate high percentile of the resoneegl distribution allows our system to prevent the wastage
of resources that would result from provisioning based @npbak values. The reactive component of our scheme,
described in the next section, is designed to add capacitggiauch overloads when the provisioned capacity falls
short of the application needs.

In addition to using observations from prior days, the woakl seen in the past few hours of the current day can be
used to further improve prediction accuracy. SupposeXha(t) denotes the predicted arrival rate during a particular
hour denoted by. Further let\,,; (¢) denote the actual arrival rate seen during this hour. Thdigtien error is simply
obs (t) — Aprea(t). In the event of a consistentpyositiveprediction error over the past few hours, indicating that th
predictor is consistently underestimating peak demarwl ptidicted value for the next hour is corrected using the
observed error:

t—1
/\pred(t) = A;m“ed(t) + Z

i=t—h

maa:(O, )\obs ('L) - )\prpd(l))
h

where the second expression denotes the mean predict@roger the pask hours. We only consider positive errors
in order to correct underestimates of the predicted pealaddrm-negative errors indicate that the observed workload
is lessthan the peak demand, which only means that the worst-caddoad did not arrive in that hour and is not
necessarily a prediction error.

Using the predicted peak arrival rate for each applicatibe,predictive provisioning technique uses the model to
determine the number of servers that should be allocateddb ger of an application. An increase in allocation
must be met by borrowing servers from the free pool or undadéd applications—under-loaded applications are
those whose new allocations are less than their currertdagitms. If the total number of required servers is less than
the servers available in the free pool and those releaseddgrdoaded applications, then a utility-based approach
[Chase and Doyle 2001] can be used to arbitrate the allotafiavailable servers to needy applications—servers are
allocated to applications that benefit most from it as deflmetheir utility functions.
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5.2 Reactive Provisioning: Handling Prediction Errors and Flash Crowds

The workload predictor outlined in the previous sectionas perfect—it may incur prediction errors if the workload
on a given day deviates from its behavior on previous daygher) sudden load spikes or flash crowds are inherently
unpredictable phenomena. Finally, errors in the onlinesueaments of the model parameters can translate into errors
in the allocations computed by the model. Reactive promisip is used to swiftly react to such unforeseen events.
Reactive provisioning operates on short time scales—onrither @f minutes—checking for workload anomalies. If
any such anomalies are detected, then it allocates adalitapacity to various tiers to handle the workload increase

Reactive provisioning is invoked once every few minutesah also be in-
yoked on-demand by the application. sentry if th_e observedest drop rate .. - machines (Domains)
increases beyond a threshold. In either case, it compaeesuttrently ob- Privileged
served session arrival rabe,s(t) over the past few minutes to the predicted (Pomaino
rate \,q(t). If the two differ by more than a threshold, corrective actis Applications
necessary. Specifically g‘% > 7, or drop rate> 75, wherer; andr, are
application-defined thresholds then it computes a newcatilon of servers. @ @
This can be achieved in one of two ways. One approach is tcheseliserved Xen VMM
arrival rate),;s(t) in Equation 2 of the model to compute a new allocation of
servers for the various tiers. The second approach is tedserthe alloca-
tion of all tiers that are at or near saturation by a constarduat (e.g., 10%).
The new allocation needs to ensure that the bottleneck dueshift to another .
downstream tier; the capacity of any such tiers may also teéé increased Fig. 5. The Xen VMM hosting mul-
proportionately. The advantage of using the model to comthé new alloca- tiple VMs.
tion is that it yields the new capacity in a single step, asospp to the latter approach that increases capacity by a
fixed amount. The advantage of the latter approach is thairidependent of the model and can handle any errors in
the measurements used to parameterize the model. In eitberthe effective capacity of the application is raised to
handle the increased workload.

The additional servers are borrowed from the free pool iflalike. If the free pool is empty or has insufficient
servers, then these servers need to be borrowed from otter-loaded applications running on the hosting platform.
An application is said to be under-loaded if its observedkead is significantly lower than its provisioned capacity:
if Am((tt)) < Tiow, Wherer;,,, is a low water-mark threshold.

Since a single invocation of reactive provisioning may b&ufficient to bring sufficient capacity online during a
large load spike, repeated invocations may be necessanjdhk succession to handle the workload increase.

Together, predictive and reactive provisioning can hatwig-term predictable workload variations as well as short
term fluctuations that are less predictable. Predictiveipianing allocates capacity ahead of time in anticipatiba
certain peak workload, while reactive provisioning takegective actiorafteran anomalous workload increase has
been observed. Put another way, predictive provisionitepgits to stay ahead of the workload fluctuations, while
reactive provisioning follows workload fluctuations catiag for errors.

Normal

Operating
Systems

Hardware

5.3 Request Policing

The predictor and reactor convey the peak session arrieglaawhich they have allocated capacity to the applicagion
sentry. This is done every time the allocation is changecde §dntry then ensures that the admission rate does not
exceed this threshold—excess sessions are dropped at the Bkte that in our system, admission control decisions
are made only in front of the first tier of the application. @redmitted, a request is not explicitly dropped at a
subsequent tier within the application. This is in conttastome related work [Welsh and Culler 2003], where each
tier employs its own admission control. Dropping a requeybind the first tier results in wastage of resources at all
the tiers that processed it. Any system with per-tier adimissontrol can be converted into one where only the first
tier performs admission control. By modeling all the tiensldheir interactions, our multi-tier model allows us to
integrate admission control decisions for various tiets asingle sentry.

6. AGILE SERVER SWITCHING USING VMMS

A Virtual Machine Monitor (VMM) is a software layer that viralizes the resources of a physical server and supports
the execution of multiple virtual machines (VMs) [Goldberg74]. Each VM runs a separate operating system and
an application capsule within it. The VMM enables servespuces, such as the CPU, memory, disk and network
bandwidth, to be partitioned among the resident virtuallmraes. Figure 5 shows a hypothetical Xen VMM [Barham
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et al. 2003] hosting VMs running two different operatingteyss.

Traditionally VMMs have been employed in shared hostingiremments to run multiple applications and their
VMs on a single server; the VM provides isolation across iappibns while the VMM supports flexible partitioning
of server resources across applications. In dedicateéhigpsto more than one application can be active on a given
physical server, and as a result, sharing of individualesenesources across applications is moot in such envirotsmen
Instead, we employ VMMs for a novel purpose—fast server $wity.

Traditionally, switching a server from one application tmther for purposes of dynamic provisioning has entailed
overheads of several minutes or more. Doing so involves samadl of the following steps: (i) wait for residual
sessions of the current application to terminate, (ii) ieate the current application, (i) scrub and reformat disk
to wipe out sensitive data, (iv) reinstall the OS, (v) inlséadd configure the new application. Our hosting platform
runs a VMM on each physical server. Doing so enables it toieite many of these steps and drastically reduces
switching time.

6.1 Techniques for agile server switching

We assume that each EIf server runs multiple virtual machamal capsules of different applications within it. Only
one capsule and its virtual machine is active at any time—ighise capsule to which the server is currently allocated.
Other virtual machines are dormant—they are allocated nahgarver resources by the underlying VMM and most
server resources are allocated to the active VM. If the sdyedngs to the free pool, all of its resident VMs are
dormant.

In such a scenario, switching an EIf server from one apptinab another implies deactivating a VM by reducing
its resource allocation te, and reactivating a dormant VM by increasing its allocation(100<)% of the server
resource$. This only involves adjusting the allocations in the undiexdyVMM and incurs overheads in the order of
tens of milliseconds. Thus, in theory, our hosting platfaram switch a server from one application to another in a
few milliseconds. In practice, however, we need to condigeresidual state of the application before it can be made
dormant. Figure 6 illustrates the process of activatingrandat VM hosting a replica of tier-2 of a hypothetical 3-tier
application.

To do so, we assume that once the predictor or the reactodalézireassign a server from an under-loaded to
an overloaded application, they notify the load balancilggnent of the under-loaded application tier. The load
balancing element stops forwarding new sessions to thigisdfiowever, the server retains state of existing sessions
and new requests may arrive for those sessions until theyirtate. Consequently, the under-loaded application tier
will continue to use some server resources and the amoumesofirces required will diminish over time as existing
sessions terminate. As a result, the allocation of the ntlyractive VM can not be instantaneously ramped down;
instead the allocation needs to be reduced gradually, viileeasing the allocation of the VM belonging to the
overloaded application. Two strategies for ramping dovenatocation of the current VM are possible.

—Fixed rate ramp down:ln this approach, the resource allocation of the underddadM is reduced by a fixed
amounté everyt time units until it reduces te; the allocation of the new VM is increased correspondinglye
advantage of this approach is that it switches the servar &moe application to another in a fixed amount of time,
namelyt/6. The limitation is that long-lived residual sessions widl forced to terminate, or their performance
guarantees will be violated if the allocation decreaseshéyhat necessary to service them.

—Measurement-based ramp down:this approach, the actual resource usage of the unddedbdM is monitored
online. As the resource usage decreases with terminatssjoses, the underlying allocation in the VMM is also
reduced. The approach requires monitoring of the CPU, mgmetwork and disk usage so that the allocation can
match the falling usage. The advantage of this approachaigtie ramp-down is more conservative and less likely
to violate performance guarantees of existing sessions.dféwback is that long-lived sessions may continue to
use server resources, which increases the server swittitriag

In either case, use of VMMSs enables our hosting platformdace system switching overheads. The switching time
is solely dominated by application idiosyncrasies. If thpelaation has short-lived sessions or the applicationisie
stateless, the switching overhead is small. Even whenmesare long-lived, the overloaded application immedyatel
gets some resources on the server, which increases itsivaffeapacity; more resources become available as the
current VM ramps down.

4¢is a small value such that the VM consumes negligible serveuress and its capsule is idle and swapped out to disk.
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Privileged VMs (Dom0Os)

Tier 2
replica
(dormant)

Tier 2 resource
needs increase:
newly activated
VM for replica

Tier 2
replica
(active)

Virtual Machine Monitors

Dormant VMs (negligible
resource allocations)

Fig. 6. lllustration of agile server switching. A 3-tier digation is shown here. Each tier actively uses one server in
the first configuration. Due to increased resource needsi#orZT its dormant replica is activated by increasing its
resource allocations.

As a final detail, observe that we have assumed that suffid@mant VMs are always available for various tiers
of an overloaded application to arbitrarily increase itpamty. The hosting platform needs to ensure that there is
always a pre-spawned pool of dormant VMs for each applindtidhe system. As dormant VMs of an application
are activated during an overload, and the number of dormatg félls below a low water-mark, additional dormant
VMs need to be spawned on other EIf servers, so that theravég/ala ready pool of VMs that can be tapped.

6.2 Do VMMs Render Predictive Provisioning Unnecessary?

Given the agile switching of servers enabled by the use of \Avid described above, it is tempting to argue in
favor of a purely reactive provisioning mechanism: suchavigioning mechanism might be able to match the server
allocations for various applications with their worklodmsquickly moving servers where they are needed. However,
such a purely reactive scheme has the following shortcasing

(1) The agility of reactive provisioning is crucially depant on when it is conducted. For example, in our system,
adding a replica to a tier to deal with an increased worklo@&y imvolve transferring a large image over the
network to active a dormant VM. This transfer time would dep@n the network utilization - the higher the
network utilization, the higher the transfer time. Preidetmechanisms can identify the most opportune times for
conducting such transfers, thereby assisting in fastikeaptovisioning. We will demonstrate this phenomenon
using an experiment in Section 8.3.2.

(2) As described above, due to the presence of residualosssen a server being moved from one application
(call it lendel) to another (call itborrower), it may take up to several minutes for the server to fullydmee
available toborrower. Therefore, despite using VMMs, a reactive provisioniniyesne may not yield the best
possible switching times. The situation worsens if mostesarin the hosting platform are being utilized (because
this increases the probability of a server having residessi®sns when the reactor decides to move it from one
application to another). Additionally, long-lasting anesource-intensive sessions will further exacerbate this
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problem. With a predictor in addition to the reactor, theuwsmning algorithm can start moving servers with
residual sessions (and stop admitting new sessiolendén well in time for the server to be availabletorrower
when it needs it.

(3) If the workload of an application changes fast, the axtiof a purely reactive provisioning mechanism may lag
the workload. In such cases, the application may experidageaded performance till the reactor has pulled in
enough servers to meet the application’s needs.

7. IMPLEMENTATION CONSIDERATIONS

We implemented a prototype data center on a cluster of 40uPerservers connected via a 1 Gbps Ethernet switch
and running Linux 2.4.20. Each machine in the cluster ranadribe following entities: (1) an application capsule
(and its nucleus) or load balancer, (2) the control planea @entry, (4) a workload generator for an application. The
applications used in our evaluation (described in detafléntion 8.1) had two replicable tiers—front tier based on the
Apache Web server and a middle tier based on Java servidedhms the Tomcat servlets container. The third tier
was a nhon-replicable Mysql database server.

Virtual Machine Monitor . We use Xen 1.2 [Barham et al. 2003] as the virtual machine tmom our proto-
type. The Xen VMM has a special virtual machine called do®dirirtual machines are called domains in the Xen
terminology) that gets created as soon as Xen boots andnerfabughout the VMM'’s existence. Xen provides a
management interface that can be manipulated from domaio@ate new domains, control their CPU, network and
memory resource allocations, allocate IP addresses, gecaets to disk partitions, and suspend/resume domains to
files, etc. The management interface is implemented as d Bletavy functions (implemented in C) for which there
are Python language bindings. We use a subset of this ineerfac _domcr eat e. py andxc_domcontr ol . py
provide ways to start a new domain or stop an existing one¢ahnérol plane implements a script that remotely logs
on to domain0 and invokes these scripts. The control plas®iaiplements scripts that can remotely log onto any
existing domain to start a capsule and its nucleus or stap.thke_domcont r ol . py provides an option that can be
used to set the CPU share of an existing domain. The containkplses this feature for VM ramp up and ramp down.

Nucleus The nucleus was implemented as a user-space daemon thadipalty (once every 15 minutes in our
prototype) extracts information about tier-specific resis@eeded by the provisioning algorithms and conveysliteo t
control plane. Our nuclei use a combination of (i) online m@aments of resource usages and request performance,
(i) real-time processing of logs provided by the applicatsoftware components, and (iii) offline measurements to
determine various quantities needed by the control plan@néble low overhead recording of online measurements,
the logs are written to named pipes that are read by the nikeimade simple modifications to Apache and Tomcat
to record the average service timgof a request at these tiers. For Mysg),was determined using offline profil-
ing [Urgaonkar et al. 2002]. The variance of service timg,was determined from observations of individual service
times. We configured Apache and Tomcat (by turning on thegpijate options in their configuration files) to have
them record the arrival and residence times of individugliessts into their logs. The logs were written to named pipes
and processed in real-time by the nuclei to determitjethe variance of the request inter-arrival time. The patame
(; for tier : was estimated by the control plane as the ratio of the nunflreqaests reported by the nuclei at that tier
and the number of requests admitted by the sentry duringaigkriod. Finally, the nuclei used the sysstat package
[sar 2005] for online measurements of resource usages sfilegpthat is used by the reactive provisioning and by the
measurement-based strategy for ramping down the allocatia VM.

Sentry and Load Balancer We usedKernel TCP Virtual Serve(ktcpvs) version 0.0.14 [ktcpvs 2005] to im-
plement the policing mechanisms described in Section 5t8pvk is an open-source, Layer-7 request dispatcher
implemented as a Linux module. A round-robin load balanoglémented in ktcpvs was used for Apache. Load
balancing for the Tomcat tier was performedrpd jk, an Apache module that implements a variant of round robin
request distribution while taking into account sessioméifi The sentry keeps record of arrival and finish times of
admitted sessions as well as each request within a sesgiese Dbservations are used to estimate the average session
durationT and the average think tima.

Control Plane. The control plane is implemented as a daemon running on &atedi machine. It implements
the predictive and reactive provisioning techniques deedrin Section 5. The control plane invokes the predictive
provisioning algorithm periodically and conveys the newwse allocations or deallocations to the affected sentries
and load balancers. It communicates with the concerneglalirhachine monitors to start or stop capsules and nuclei.
Reactive provisioning is invoked by the sentries once e@arjnutes.
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8. EXPERIMENTAL EVALUATION
In this section we present the experimental setup followethbé results of our experimental evaluation.

8.1 Experimental Setup

The control plane was run on a dual-processor 450 MHz magtithel GB RAM. EIf and Ent servers had 2.8 GHz
processors and 512 MB RAM. The sentries were run on dualegsme 1GHz machines with 1 GB RAM. Finally,
the workload generators were run on uni-processor machiitbsl GHz processors. Elves and Ents ran the Xen 1.2
VMM with Linux; all other machines ran Linux 2.4.20. All maictes were interconnected by gigabit Ethernet.

We used two open-source multi-tier applications in our expental study.Rubisimplements the core functional-
ity of an eBay like auction site: selling, browsing and biagli It implements three types of user sessions, has nine
tables in the database and defines 26 interactions that caockesed from the clients’ Web browseRubboss a
bulletin-board application modeled after an online newarfolike Slashdot. Users have two different levels of access
regular user and moderator. The main tables in the databaskeausers, stories, comments, and submissions tables.
Rubbos provides 24 Web interactions. Both applicationsewvaeveloped by the DynaServer group at Rice Univer-
sity [dynaserver 2005]. Each application contains a Jased client that generates a session-oriented workload. We
modified these clients to generate workloads and take merasmts needed by our experiments. Rubis and Rubbos
sessions had an average duration of 15 minutes and 5 minesgectively. For both applications, the average think
time was 5 seconds.

We used 3-tier versions of these applications. The fronti#es based on Apache 2.0.48 Web server. The middle tier
was based on Java servlets that implement the applicatiin M/e employed Tomcat 4.1.29 as the servlets container.
Finally, the database tier was based on the Mysql 4.0.1&dsta

Both applications are assumed to require an SLA wheréiHepercentile of the response time is no greater than 2
seconds. We use a simple heuristic to translate this SLAantequivalent SLA specified using the average response
time—since the model in Section 4 uses mean response timas astianslation is necessary. We use application
profiling [Urgaonkar et al. 2002] to determine a distribatiwhosed5" percentile is 2 seconds and use the mean of
that distribution for the new SLA. The per-tier average gétgetsd,, d; andds were then set to be 10, 50 and 40%
of the mean response time, for Apache, Tomcat and Mysq| ctisphy.

We present the values for various parameters used by ourtiealinodels for our applications in Tables | and I,
respectively. Since these values are either (i) updateel every 15 minutes based on online measurements for Apache
and Tomcat tiers or (ii) recorded over 15 minute periods tbaseoffline measurements for Mysq|l, for each parameter,
we sort the observed values in an increasing order and régg5‘" percentile.

[ Parameter [ Apache [ Tomcat | Mysql |
d; 80 msec| 400 msec| 320 msec
S; 20 msec| 294 msec| 254 msec
a2 848 2304 1876
o? 0 3428 4024
Degree of replication inf inf 1
Concurrency limit per replica 256 256 2000

Table I. Per-tier workload characteristics for Rubis.

Parameter [ Apache [ Tomcat | Mysql |
d; 80 msec| 400 msec| 320 msec
S; 20 msec| 320 msec| 278 msec
o2 656 2018 1486
of 0 4324 2564
Degree of replication inf inf 1
Concurrency limit per replica 256 256 2000

Table Il.  Per-tier workload characteristics for Rubbos.

Finally, we present the parameters of our model that cagession characteristics for these applications in Table Il
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Parameter[| Rubis [ Rubbos |

Z 5sec 5sec
T 15 min 5 min
Table Ill. Session characteristics for Rubis and Rubbos.
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Fig. 7. Rubbos: Independent per-tier provisioning.

8.2 Effectiveness of Multi-tier Model

This section demonstrates the effectiveness of our maltirovisioning technique over variants of single-tiertme
ods.

8.2.1 Independent per-tier provisioningOur first experiment uses the Rubbos application. We userttetiaw-
man described in Example 1 of Section 1 for provisioning RisbbHere, each tier employs its own provisioning
technique. Rubbos was subjected to a workload that incseéasteps, once every ten minutes (see Fig. 7(a)). The
first workload increase occurs at= 600 seconds and saturates the tier-1 Web server. This triggengrovisioning
technique, and an additional server is allocated at 900 seconds (see Figure 7(b)). At this point, the two tier-1
servers are able to service all incoming requests, causmbdttleneck to shift to the Tomcat tier. The EIf running
Tomcat saturates, which triggers provisioning at tier 2.a#iditional server is allocated to tier 2tat 1200 seconds
(see Fig. 7(b)). The second workload increase occuts=atl200 seconds and the above cycle repeats. As shown
in Figure 7(c), since multiple provisioning steps are neebeyield an effective increase in capacity, the applicatio
SLA is violated during this period. Finally, Figure 7(d) pemts the CPU utilization of the server hosting the initial
Tomcat replica throughout the experiment. As seen, theoresptime spikes correspond to the CPU getting saturated
and subside when the addition of a new replica helps redecsttess on the CPU.

ACM Journal Name, Vol. V, No. N, Month 20YY.



15

10 : ‘ 600 ‘ ‘ ‘ 6000
# web servers
o gl # app servers R 2 500 1 5000 |
[ | k3 —~
z I S 400 ¢ g 4000
5 S a0} 1 £ 000 | 1
£ A A S 200 | 1 o 2000 | 1
S £ °©
L § ol , W
0 ‘ ‘ ‘ 0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 600 1200 1800 2400 0 600 1200 1800 2400 0 600 1200 1800 2400
Time (sec) Time (sec) Time (sec)
(a) Number of servers (b) Number of active sessions 9%t) response time

Fig. 8. Rubbos: Provision only the Tomcat tier

600 T T T 6000

10

T T
# web servers
# app servers - |

5000 |
4000 |-
3000 t
2000 | g
1000 W\'\v/\/b‘\
‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘

0 600 1200 1800 2400 0 600 1200 1800 2400 0 600 1200 1800 2400

Time (sec) Time (sec) Time (sec)

(a) Number of servers (b) Number of active sessions 9%t) response time

Number of servers

Num sessions active
w
o
o

95% resp. time (msec)

Fig. 9. Rubbos: Model-based multi-tier provisioning

A second strawman is to employ dynamic provisioning onlyhatrmost compute-intensive tier of the application,
since it is the most common bottleneck [Villela et al. 2004]Rubbos, the Tomcat tier is the most compute intensive
of the three tiers and we only subject this tier to dynamiw/jsioning. The Apache and Tomcat tiers were initially
assigned 1 and 2 servers respectively. The capacity of adtsacover was determined to be 40 simultaneous sessions
using our model, while Apache was configured with a connadtinit of 256 sessions. As shown in Figure 8(a),
every time the current capacity of the Tomcat tier is sa@ardlly the increasing workload, two additional servers are
allocated. The number of servers at tier-2 increases from& dver a period of time. At = 1800 seconds, the
session arrival rate increases beyond the capacity of ttetiéir, causing the Apache server to reach its connection
limit of 256. Subsequently, even though plenty of capacias\available at the Tomcat tier, newly arriving sessions
are turned away due to the connection bottleneck at Apacti¢henthroughput reaches a plateau (see Figure 8(b)).
Thus, focusing only on the the commonly bottlenecked tigroisadequate, since the bottleneck will eventually shift
to other tiers.

Next, we repeat this experiment with our multi-tier prowising technique. Since our technique is aware of the
demands at each tier and can take idiosyncrasies such asatimmilimits into account, as shown in Figure 9(a), it is
able to scale the capacity of both the Web and the Tomcatviginancreasing workloads. Consequently, as shown in
Figure 9(b), the application throughput continues to iasewith the increasing workload. Figure 9(c) shows that the
SLA is maintained throughout the experiment.

Result: Existing single-tier methods are inadequate favjmioning resources for multi-tier applications as they
may fail to capture multiple bottlenecks. Our techniqud@pates shifting bottlenecks due to capacity addition at a
tier and increases capacity at all needy tiers. Further,dhddentify different bottleneck resources at differeatdj
e.g. CPU at the Tomcat tier and Apache connections at the Meb t

8.2.2 The black box approachwe subjected the Rubis application to a workload that iredan steps, as shown

in Figure 11(a). First, we use the black box provisioningrapph described in Example 2 of Section 1. The pro-
visioning technique monitors the per-request responsestiover 30s intervals and signals a capacity increase if the
95" percentile response time exceeds 2 seconds. Since thedaad¢kchnique is unaware of the individual tiers, we
assume that two Tomcat servers and one Apache server arg tadthe application every time a capacity increase is
signaled. As shown in Figure 10(a) and (c), the provisiorauhcity keeps increasing with increasing workload and
whenever théd5*" percentile of response time is over 2 seconds. However,@srstn Figure 10(d), at = 1100
seconds, the CPU on the Ent running the database saturates tBe database server is not replicable, increasing
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Fig. 10. Rubis: Blackbox provisioning

capacity of the other two tiers beyond this point does ndthaay further increase in effective capacity. However, the
black box approach is unaware of where bottleneck lies antdrages to add servers to the first two tiers until it has
used up all available servers. The response time contiowegrade despite this capacity addition as the Java serviet
spend increasingly larger amounts of time waiting for qgeeto be returned by the overloaded database (see Figures
10(c) and (d)).

We repeat this experiment using our multi-tier provisiantechnique. Our results are shown in Figure 11. As
shown in Figure 11(b), the control plane adds servers toghBcation att = 390 seconds in response to the increased
workload. However, beyond this point, no additional capaisi allocated. Our technique correctly identifies that the
capacity of the database tier for this workload is around€ifitultaneous sessions. Consequently, when this capacity
is reached and the database saturates, it triggers politend of provisioning. The admission control is triggeaé
t = 1070 seconds and drops any sessions in excess of this limit dthengemainder of the experiment. Figure 11(d)
shows that our provisioning is able to maintain a satisfgatesponse time throughout the experiment.

Result: Our provisioning technique is able to take consiieimposed by non-replicable tiers into account. It can
maintain response time targets by invoking the admissiotrabivhen capacity addition does not help.

8.3 The Need for Both Reactive and Predictive Provisioning

In this section, we first evaluate the agile server switchmmeghanism based on the use of VMMs. Following this we
present experiments to demonstrate the need tolatpredictive and reactive provisioning mechanisms.

We used Rubis in these experiments. The workload was geddmased on the Web traces from the 1998 Soccer
World Cup site [Arlitt and Jin 1999]. These traces contaitieel number of arrivals per minute to this Web site
over an 8-day period. Based on these we created severaksimaties to drive our experiments. These traces were
obtained by compressing the original 24-hour long tracésliour—this was done by picking arrivals for every"
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Fig. 11. Model-based multi-tier provisioning

minute and discarding the rest. This enables us to captaertnte-of-day effect as a “time-of-hour” effect. Further,
we reduced the workload intensity by reducing the numberdfads by a factor of 100. The experiment invoked
predictive provisioning once every 15 minutes over the omer luration and weefer to these periods as Intervals
1-4; reactive provisioning was invoked on-demand or once ef@wminutes. For the sake of convenience, in the rest
of the section, we will simply refer to these traces by the fdlagn which they were constructed (even though they are
only 1-hour long). We present three of these traces: (i) feid2(a) shows the workload for day 6 (a typical day), (ii)
Figure 13(a) shows the workload for day 7, (moderate ovdjland (iii) Figure 15(a) shows the workload for day 8
(extreme overload). Throughout this section, we will asstinat the database tier has sufficient capacity to handle the
peak observed on day 8 and does not become a bottleneck. @tagasession duration in our trace was 5 minutes.

In the rest of this section, we first experimentally evaluaie predictive and reactive provisioning mechanisms in
isolation. Using the observations from these experimemtsnake a case for integrating these two mechanisms for
effective handling of the workloads seen by Internet appions. We then experimentally evaluate the efficacy of this
integrated provisioning approach.

8.3.1 Only predictive provisioningWe first evaluate our predictive provisioning mechanisngukeé 12 presents
the performance of the system during day 6 with the contrah@lemploying only predictive provisioning (with
reactive provisioning disabled). Day 6 was a “typical” dmganing the workload closely resembled that observed
during the previous days. The prediction algorithm was sssftl in exploiting this and was able to assign sufficient
capacity to the application at all times. In Figure 12(b) weerve that the predicted arrivals closely matched thehctu
arrivals. The control plane adds servers at 30 minutes. This was well in time for the increased workloadrtyr
the second half of the experiment. The application expeegsatisfactory response time throughout the experiment
(Figure 12(c)).
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Fig. 13. Provisioning on day 7—moderate overload

Result: Our predictive provisioning works well on “typi¢alays.

8.3.2 Only reactive provisioningln Section 6.2 we discussed the potential problems with alpueactive pro-
visioning mechanism. Our next experiment demonstratesicgiming of such a provisioning approach.

In Figure 13 we present the results for day 7. Comparing thlisklwad with that on day 6, we find that the
application experienced a moderate overload on day 7, Wéhatrival rate going up to about 150 sessions/minute,
more than twice the peak on day 6. The workload showed a moiwaity increasing trend for the first 40 minutes.

We first let the control plane employ only predictive prowising. Figure 13(b) shows the performance of our
prediction algorithm, both with and without using receinigls to correct the prediction. We find that the prediction
algorithm severely underestimated the number of arrivalaterval 2. The use of recent trends allowed it to progres-
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sively improve its estimate in Intervals 3 and 4 (predicteivals were nearly 80% of the actual arrivals in Interval 3
and almost equal in Interval 4). In Figure 13(c) we obserat tifte response time target was violated in Interval 2 due
to under allocation of servers.

Next, we repeat the experiment with the control plane usinly ceactive provisioning. Figure 13(d) presents
the application performance. Consider Interval 2 first. Weesve that, unlike predictive provisioning, the reactive
mechanism was able to pull additional servers-at15 minutes in response to the increased arrival rate, thugibngn
down the response time within target. However, as the exyari progresses, the server allocatiags behindthe
continuously increasing workload. Since reactive pravigig only responds to very recent workload trends, it does
not anticipate future requirement well and takes multiplecation steps to add sufficient capacity. Meanwhile, the
application experiences repeated violations of SLA duhimigrvals 2 and 3.

Additionally, as pointed out in Section 6, the presence sithgal sessions may increase the effective time to switch
a server from one application to another. Therefore, despé use of VMM-based switching, there may be a consid-
erable delay before additional servers become availatde application experiencing increased workload.

Finally, we present an experiment to illustrate anotherrtsbming of a
purely reactive provisioning scheme. We present the tirezlee to activate 4y,
a dormant replica in the application tier of Rubis underatéht degrees of net-
work utilization. The Tomcat replica was hosted in a VM with@B memory
allocation. The image for the VM was stored on an NFS servanected by
a 1Gbps link and the VM was restored from a saved state. Thiegbamnd
network traffic was created by 6 machines sending iperf stseaf UDP traffic
at a constant rate to the NFS server. For each level of trafcrestored the
VM eight times and present the average of these in Figure diparing the ® 00 900 960 1020
points with the least and the most network traffic, we obséredtime to acti- Background Traffic (Mbps)
vate the replica went up by a factor of 20. Whereas, with a backgl traffic _ ] _
of 600 Mbps, the replica was ready in only 39 seconds, withféigrof 1 Gbps, F19- 14. Rubis: Time to activate
it took more than 11 minutes. It should be clear that a pragichechanism @ Tomcat replica under varying net-
that can pro-actively determine the right occasions fodating such reactive Work traffic conditions.
provisioning can result in significant improvement in thdiggof provisioning
(and thereby improve the performance provided to the aafidic).

Result: We need reactive mechanisms to deal with large fleskids. However, the actions taken by reactive
provisioning may lag the workload. Furthermore, the preseaf residual sessions may render any benefits offered by
VMM-based switching futile. Therefore, reactive provigimy alone may not be effective.

600

400

200

Start Time (sec)

8.3.3 Integrated provisioning and policingWe used the workload on day 8 where the application expezttan
extremely large overloafFigure 15(a)). The peak workload on this day was an orderagmitude (about 20 times)
higher than on a typical day. Figure 15(b) shows how the ptiedi algorithm performs during this overload. The
algorithm fails to predict the sharp increase in the wor#ldaring Interval 1. In Interval 2 it corrects its estimatséd
on the observed workload during Interval 1. The workloaddases drastically (reaching up to 1200 sessions/second)
during Intervals 3 and 4, and the algorithm fails to predict i

In Figure 15(c) we show the performance of Rubis when therobptane employs both predictive and reactive
mechanisms and session policing is disabled. In Intervahd reactive mechanism successfully adds additional
capacity (at = 8 minutes) to lower the response time. It is invoked again-at34 minutes (Observe that predictive
provisioning is operating in concert with reactive prowising; it results in the server allocationstat= 15, 30,45
minutes). However, by this time (and for the remainder of ékperiment) the workload is simply too high to be
serviced by the servers available. We impose a resourcedindi3 servers for illustrative purposes. Beyond this,
excess sessions must be turned away to continue meetingghfSadmitted sessions. The lack of session policing
causes response times to degrade during Intervals 3 and 4.

Next, we repeat this experiment with the session policirepéad. The performance of Rubis is shown in Figure
15(d). The behavior of our provisioning mechanisms is dydige above. However, by turning away excess sessions,
the sentry is able to maintain the SLA throughout.

Result: Predictive and reactive mechanisms and policirggadr integral components of an effective provisioning
technique. Our data center integrates all of these, enafitito handle diverse workloads.
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Fig. 15. Provisioning on day 8—extreme overload

8.4 VM-based Switching of Server Resources

We present measurements on our testbed to demonstratertbftdéhat our VM-based switching can provide. We
switch a server from a Tomcat capsule of Rubis to a Tomcatubaps Rubbos. We compare five different ways of
switching a server to illustrate the salient features ofsmlreme:

Scenario 1: New server taken from the free pool of servepsuda and nucleus have to be started on the server.

Scenario 2: New server taken from the free pool of servepsuda already running on a VM.

Scenario 3: New server taken from another application vaghdual sessions; we wait for all residual sessions to
finish.

Scenario 4: New server taken from another application vatidual sessions; we let the two VMs share the CPU
equally while the residual sessions exist.

Scenario 5: New server taken from another application véidual sessions; we change the CPU shares of the
involved VMs using the “fixed rate ramp down” strategy in $@t.

Table IV presents the switching time and the performancesifiual sessions of Rubis in each of the above scenar-
ios. Comparing scenarios 2 and 3, we find that in our VM-baskdrae, the time to switch a server is solely dependent
on the residual sessions—the residual sessions of Rubisihmk 17min to finish resulting in the large switching time
in scenario 3. Scenarios 4 and 5 show that by letting the twa \ébexist while the residual sessions finish, we can
eliminate this switching time. However, it is essential tmtinue providing sufficient capacity to the residual sessi
during the switching period to ensure good performance—émaio 4, new Rubbos sessions deprived the residual
sessions of Rubis of the capacity they needed, thus degrttiir response time.

Result: Use of virtual machines can enable agile switchihgeovers. Our adaptive techniques improve upon the
delays in switching caused by residual sessions.

ACM Journal Name, Vol. V, No. N, Month 20YY.



21

Scenario| Switching time | r.t. during switching
1 10 + 1 sec n/a
2 0 n/a
3 17 &+ 2 min n/a
4 < 1lsec 2400 4 200
5 < 1lsec 950 4+ 100

Table IV. Performance of VM-based switching; “n/a” stands‘fmt applicable”.

8.5 System Overheads

Two sources of overhead in the proposed system are the Ivin@ehines that run on the EIf nodes and the nuclei

that run on all nodes. Measurements on our prototype irglitett the CPU overhead and network traffic caused by
the nuclei is negligible. The control plane runs on a deditaiode and its scalability is not a cause of concern. We
chose the Xen VMM to implement our switching scheme sincepréormance of Xen/Linux has been shown to be

consistently close to native Linux [Barham et al. 2003]. tRer, Xen has been shown to provide good performance
isolation when running multiple VMs simultaneously, andagpable of scaling to 128 concurrent VMs.

9. RELATED WORK

Previous literature on issues related to managing ressimgaatforms hosting Internet services spans severasarea
In this section we describe the important pieces of work eséfhtopics.

Dynamic Provisioning and Managing Resources in ClustersThe work on dynamic provisioning of a platform’s
resources may be classified into two categories. Some phpeesaddressed the problem of provisioning resources
at the granularity of individual servers as in our work. Remgt al. [Ranjan et al. 2002] consider the problem of
dynamically varying the number of servers assigned to desisgyvice hosted on a data center. Their objective is to
minimize the number of servers needed to meet the serviaestargets. The algorithm is based on a simple scheme
to extrapolate the current size of the server set based @mnalt®ns of utilization levels and workloads to determine
the server set of the right size and is evaluated via sinmulatiThe Oceano project at IBM [Appleby et al. 2001] has
developed a server farm in which servers can be moved dya#ynacross hosted applications depending on their
changing needs. The main focus of this paper was on the ingpittion issues involved in building such a platform
rather than the exact algorithms for provisioning.

Other papers have considered the provisioning of resoatdeger granularity of resources. Muse [Chase and Doyle
2001] presents an architecture for resource managemertigstang center. Muse employs an economic model for
dynamic provisioning of resources to multiple applicatiom the model, each application has a utility function viahic
is a function of its throughput and reflects the revenue geadrby the application. There is also a penalty that the
application charges the system when its goals are not met.sf¥$tem computes resource allocations by attempting
to maximize the overall profitCluster Reservefgiron et al. 2000] has also investigated resource allonaticserver
clusters. The work assumes a large application running dussec, where the aim is to provide differentiated service
to clients based on some notion of servitass This is achieved by making the OS schedulers provide fixeolnee
shares to applications spanning multiple nodes. Chester-On Demand (CODChase et al. 2003] work presents
an automated framework to manage resources in a shareddpstiform. COD introduces the notion ofvatual
cluster, which is a functionally isolated group of hosts within agthhardware base. A key element of COD is a
protocol to resize virtual clusters dynamically in coopienra with pluggable middleware components. Chandra et
al. [Chandra et al. 2003] model a server resource that ssviwltiple applications as a GPS system and presents
online workload prediction and optimization-based tegbes for dynamic resource allocation. Some of the co-
authors address the problem of providing resource guasitedistributed applications running on a shared hosting
platform [Urgaonkar and Shenoy 2004b]. In another papenesof the co-authors propose a resource overbooking
based scheme for maximizing revenue in a shared platforgeftkar et al. 2002].

An alternate approach for improving performance of ovetézhweb servers is based on re-designing the schedul-
ing policy employed by the servers. Schroeder and HarcladteB[Schroeder and Harchol-Balter 2003] propose to
employ the SRPT algorithm based on scheduling the conmewgiib the shortest remaining time and demonstrate that
it leads to improved average response time. While schedalingmprove response times, under extreme overloads
admission control and the ability to add extra capacity adispensable. Better scheduling algorithms are comple-
mentary to our solutions for handling overloads.

Modeling of Internet Applications: Modeling of single-tier Internet applications, of which HF servers are the
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most common example, has been studied extensively. A quenodel of a Web server serving static content was
proposed in [Slothouber 1996]. The model employs a netwbfkuwr queues—two modeling the Web server itself,
and the other two modeling the Internet communication ngkw@ queuing model for performance prediction of
single-tier Web servers with static content was proposg®ayle et al. 2003]. This approach (i) explicitly models
CPU, memory, and disk bandwidth in the Web server, (ii) zeti knowledge of file size and popularity distributions,
and (iii) relates average response time to available ressuA GPS-based queuing model of a single resource, such as
the CPU, at a Web server was proposed in [Chandra et al. 20B8]model is parameterized by online measurements
and is used to determine the resource allocation needed ab dasired average response time targets. A G/G/1
gueuing model for replicated single-tier applicationg (eclustered Web servers) was proposed in [Urgaonkar and
Shenoy 2004a]. The architecture and prototype implemientatf a performance management system for cluster-
based Web services was proposed in [Levy et al. 2003]. Th& wmploys an M/M/1 queuing model to compute
responses times of Web requests. A model of a Web server dgpulpose of performance control using classical
feedback control theory was studied in [Abdelzaher et @0220an implementation and evaluation using the Apache
Web server was also presented in the work. A combination ofiskb/ chain model and a queuing network model
to capture the operation of a Web server was presented inddben2003]—the former model represents the software
architecture employed by the Web server (e.g., processdbassus thread-based) while the latter computes the Web
server’s throughput.

Since these efforts focus primarily on single-tier Web sesythey are not directly applicable to applications em-
ploying multiple tiers, or to components such as Java engergervers or database servers employed by multi-tier
applications. Further, many of the above efforts assuntie $i&b content, while multi-tier applications, by theirye
nature, serve dynamic Web content.

A few recent efforts have focused on the modeling of mudti-tipplications. However, many of these efforts
either make simplifying assumptions or are based on simyknsions of single-tier models. A number of papers
have taken the approach of modeling only thest constrainedr the most bottlenecketier of the application. For
instance, [Villela et al. 2004] considers the problem ofysmning servers for only the Java application tier; itsise
an M/G/1/PS model for each server in this tier. Similarlye thava application tier of an e-commerce application
with N servers is modeled as a G/G/N queuing system in [Ranjan 20@2]. Other efforts have modeled the entire
multi-tier application using a single queue—an example iarfia et al. 2004], that uses a M/GI/1/PS model for an
e-commerce application. While these approaches are usefapécific scenarios, they have many limitations. For
instance, modeling only a single bottlenecked tier of a itidt application will fail to capture caching effects aher
tiers. Such a model can not be used for capacity provisioofragher tiers. Finally, as we show in our experiments,
system bottlenecks can shift from one tier to another witimges in workload characteristics. Under these scenarios,
there is no single tier that is the “most constrained”. Iis féper, we present a model of a multi-tier application that
overcomes these drawbacks. Our model explicitly accoamtthe presence of all tiers and also captures application
artifacts such as session-based workloads, tier remitdttad imbalances, caching effects, and concurrencyslimi

Some researchers have developed sophisticated queuetejsnoapable of capturing the simultaneous resource
demands and parallel sub-paths that occur within a tier oulitier application. An important example of such
models are Layered Queueing Networks (LQN). LQNSs are antatiap of the Extended Queueing Network defined
specifically to represent the fact that software servereaeeuted on top of other layers of servers and processors,
giving complex combinations of simultaneous requestsdeources [Rolia and Sevcik 1995; Woodside and Raghu-
nath 1995; Liu et al. 2001; Xu et al. 2006; Franks 1999]. Trau$oof most of these papers is on an Enterprise Java
Beans based application tier whereas the work reporteddrptper is concerned with a model for an entire multi-
tier application. While one possible approach to modelindtinier applications could be based on the use of these
existing per-tier models as building blocks, we do not perthis direction in this paper.

The research efforts on modeling of most interest to our vesekpapers by Kounev and Buchmann [S. Kouneyv,
A. Buchmann 2003] Bennani and Menasce [Benani and Menasi®,28nhd a paper by some of the co-authors [Ur-
gaonkar et al. 2005], all of which develop sophisticateduiug models based on networks of queues to capture
multi-tier applications. The authors employ an approxemaean-value analysis algorithm to develop an online pro-
visioning technique using this model. We believe that tinepdér model used in the research reported in this paper
can be replaced by these models to obtain more accuratefvedgirovisioning decisions.

Work by Cohen et al. [Cohen et al. 2004] uses a probabilistideting approach called Tree-Augmented Bayesian
Networks (TANS) to identify combinations of system-levettmics and threshold values that correlate with high-level
performance states - compliance with service-level agestsfor average response time - in a three-tier Web service
under a variety of conditions. Experiments based on rediagtipns and workloads indicate that this model is a
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suitable candidate for use in offline fault diagnosis andnenperformance prediction. Whereas it would be a useful
exercise to compare such a learning-based modeling agpvatitour queuing-theory based model, it is beyond the
scope of this paper. In the absence of such a comparativg ahdigiven the widely different natures of these two
modeling approaches, we do not make any assertions abquiahand cons of our model over the TAN-based model.

SLAs and Adaptive QoS Degradation: The WSLA project at IBM [wsla ] addresses service level mansayg
issues and challenges in designing an unambiguous andsgesification of SLAs that can be monitored by the
service provider, customer and even by a third-party. Atatedr and Bhatti [Abdelzaher and Bhatti 1999] propose to
deal with dynamically changing workloads by adapting dad content to load conditions.

Admission Control for Internet Services: Many papers have developed overload management solutasesib
on doing admission control. Several admission controlbgerate by controlling the rate of admission but without
distinguishing requests based on their sizes. Voigt etvaigf et al. 2001] present kernel-based admission control
mechanisms to protect web servers against overlo&¥N-policingcontrols the rate and burst at which new con-
nections are acceptegrioritized listen queueeorders the listen queue based on pre-defined conneciimnitips,
HTTP header-based contrehables rate policing based on URL names. Welsh and CullelspAand Culler 2003]
propose an overload management solution for Internetces\auilt using the SEDA architecture. A salient feature of
their solution is feedback-based admission controllersegfded into individuastagesof the service. The admission
controllers work by gradually increasing admission ratewperformance is satisfactory and decreasing it multplic
tively upon observing QoS violations. The QGuard systerm[dam et al. 2000] proposes an adaptive mechanism
that exploits rate controls for inbound to fend off overlaat provide QoS differentiation between traffic classes.
The determination of these rate limits, however, is not dyisebut is delegated to the administrator. lyer et al. [lyer
et al. 2000] propose a system based on two mechanisms—usasitids on the connection queue length to decide
when to start dropping new connection requests and sendedpfck to the proxy during overloads which would
cause it to restrict the traffic being forwarded to the sertawever, they do not address how these thresholds may
be determined online. Cherkasova and Phaal [CherkasovBlaaal 1999] propose an admission control scheme that
works at the granularity of sessions rather than individeguests and evaluate it using a simple simulation study.
This was based on a simple model to characterize sessiorsadrhission controller was based on rejectfigses-
sions for a small duration if the server utilization excekdepre-specified threshold and has some similarity to our
approximate admission control, except we use informatmutithe sizes of requests in various classes to determine
the drop threshold.

Several efforts have proposed solutions based on andlgtieaacterization of the workloads of Internet services
and modeling of the servers. Kanodia and Knightly utilize edaling technique calledervice envelopto devise
an admission control for web services that attempts to rifferesponse time targets for multiple classes of re-
guests [Kanodia and Knightly 2000]. Li and Jamin [Li and Jar2D00] present a measurement-based admission
control to distribute bandwidth across clients of unegaguirement. A key distinguishing feature of their algarith
is the introduction of controlled amounts of delay in theqassing of certain requests during overloads to ensure
different classes of requests are receiving the apprepsiaare of the bandwidth. Knightly and Shroff [Knightly and
Shroff 1999] describe and classify a broad class of admissimtrol algorithms and evaluate the accuracy of these
algorithms via experiments. They identify key aspects ahiagdion control that enable it to achieve high statistical
multiplexing gains.

Two admission control algorithms have been proposed rigctivat utilize measurements of request sizes to guide
their decision making. Verma and Ghosal [Verma and GhodaBPfropose a service time based admission control
that uses predictions of arrivals and service times in tloetgdlhrm future to admit a subset of requests that would
maximize the profit of the service provider. Elnikety et &lrikety et al. 2004] present an admission control for multi
tier e-commerce sites that externally observes executists ©f requests, distinguishing different requests types
measurement-based admission control is based on simglas iélthough the techniques differ in the details.

10. CONCLUSIONS

In this paper,we argued that dynamic provisioning of miidti-Internet applications raises new challenges not ad-
dressed by prior work on provisioning single-tier applicas. We proposed a novel dynamic provisioning technique
for multi-tier Internet applications that employs (i) a flebe queuing model to determine how much resources to al-
locate to each tier of the application, and (ii) a combinatd predictive and reactive methods that determine when to
provision these resources, both at at large and small timlescOur experiments on a forty machine Xen/Linux-based
hosting platform demonstrate the responsiveness of obnigee in handling dynamic workloads. In one scenario
where a flash crowd caused the workload of a three-tier agtfit to double, our technique was able to double the
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application capacity within five minutes while maintainingsponse time targets. Our technique also reduced the
overhead of switching servers across applications froraraéminutes or more to less than a second, while meeting
the performance targets of residual sessions.
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