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Abstract

The wide availability of broadband networking technologies such as cable modems and DSL coupled with

the growing popularity of the Internet has led to a dramatic increase in the availability and the use of online

streaming media. With the “last mile” network bandwidth no longer a constraint, the bottleneck for video

streaming has been pushed closer to the server. Streaming high quality audio and video to a myriad of

clients imposes significant resource demands on the server. In this work, we propose a demand adaptive and

locality aware (DALA) clustered media server architecture that can dynamically allocate resources to adapt

to changing demand and also maximize the number of clients serviced by the server cluster. Moreover, our

design exploits temporal locality among requests by dispatching newly arriving requests to servers that are

already servicing prior requests for those objects, thereby extracting the benefits of locality. We explore the

efficacy of the DALA clustered architecture through both performance models and simulations. Evaluation

of the models and simulation results show that, DALA exhibits significant performance gains when com-

pared to static schemes. Furthermore, our simulation results show that DALA is highly adaptive, and has a

low system overhead. Our results demonstrate that DALA is a simple, yet effective approach for designing

clustered media servers.
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1 Introduction

The wide availability of broadband networking technologies such as cable modems and DSL, coupled with

the popularity of the Internet, has led to a major increase in the availability and the use of online streaming

media such as entertainment movies, news clips, and educational and training materials. A concurrent trend

has been the dramatic success of video sharing sites such as YouTube and Google Video; these sites allow

individuals to upload personal video content, which can then be streamed to any user on the Internet. At the

same time, major news sites now offer many news stories in video form, while digital cable companies offer

increasingly large repositories of on-demand content. Delivering a significant amount of content to users

requires a significant server infrastructure. It is estimated that YouTube serves 40 million videos to users

each day, which amounts to 200 TB of served data per day [50]. New content appears daily on VOD servers,

on news sites, and on sites such as YouTube. YouTube is an extreme example, where users upload thousands

of videos to the site every day. It is well known that popularities of video files are skewed and unpredictable.

Accesses to streaming media objects follow a Zipf-like distribution [15, 3], while popularities of individual

objects tend to vary over time [3, 13]. In many scenarios, it is not feasible to predict the popularities a priori.

For instance, a news web-site can not predict when a major news event will occur, while YouTube can not

control what content gets uploaded and which subset of it will become popular among users.

As a result, the underlying server infrastructure needs to be extremely flexible and dynamically allocate

resources to meet the needs of dynamic time-varying workloads. One cost-effective approach to flexibly

scale server capacity and dynamically allocate resources is to employ a server cluster. While a clustered

approach is commonly used for designing scalable web servers [1, 40], clustered streaming media servers

impose a different set of requirements. First, clustered web servers replicate content on all replicas, while

doing so is prohibitive for clustered streaming servers due to the large sizes of media objects and the sheer

sizes of video repositories. Thus, clustered media servers need to partition the content and workload among

individual servers. Second, media sessions are long-lived, unlike web requests which have sub-second

service times. Third, as argued above, media workloads are skewed, hard to predict a priori and have time-

varying popularities.

To address these challenges, in this paper, we propose a demand adaptive and locality aware (DALA)

clustered media server architecture that can dynamically allocate resources to adapt to changing demand

and also maximize the number of clients serviced by the server. Although DALA is designed as a clustered

server architecture, it can also be employed as a clustered proxy in a content delivery network; streaming
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CDNs face many of the same issues as servers—content with varying popularity with new content being

cache on a daily basis. As a result, many of the key ideas in DALA can be applied directly for dynamically

managing resources in CDN-based clustered streaming proxies.

Our DALA cluster consists of low cost commodity components that is easily configurable and tremen-

dously flexible for updates – with respect to both content and server hardware. The DALA architecture

is demand adaptive since it can dynamically vary the amount of resources (number of servers, disk space,

disk and network bandwidth on each server) allocated to each content object based on its popularity—more

resources are allocated to objects with increasing popularity and these resources are relinquished as the pop-

ularity wanes. Moreover, the architecture is locality aware since it can dispatch newly arriving requests to

servers that are already servicing prior requests for those objects and thereby extract the benefits of memory

caching. Our resource allocation architecture and request distribution mechanisms attempt to optimize the

utilization of the memory, disk and network resources within the cluster, thereby maximizing overall system

capacity. We present an analysis of the DALA approach and demonstrate its efficacy of the DALA clus-

tered architecture using simulations. Our simulation results show high responsiveness to changing loads,

performance gains due to locality awareness, and low overheads.

The remainder of this paper is organized as follows. Section 2 describes the details of our DALA

clustered server architecture. Section 3 presents an analytical model on evaluating the performance of

DALA. Section 4 presents our experimental results. Section 5 discusses related work, and finally, Section 6

presents our conclusions.

2 DALA Server Cluster Architecture

In this section, we present the details of our demand-adaptive and locality-aware architecture for clustered

streaming servers. We first present the system model assumed in our work and then present the details of

our architecture.

2.1 System Model

Consider a cluster of � servers, denoted by � � , � � , ..., ��� , that are interconnected by a high-speed switch

(see Figure 1). Assume that each server �
	 has a local disk ��	 for storing streaming media content.

Our architecture assumes that each server can serve multiple objects from its local disk and that each

object can be served from multiple servers. The number of servers that can serve a streaming media object
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')(

*,+ -,./10
213 4,576,8

9,:

;)< =>@?
ACBDFE

GFH

IKJ

L@M N,OP,Q
R1ST1U V,W

X,YZ,[
\)] ^

(a) (b)

_)` `
a)b b

c1d e)f g1hjiFk

lFm

nCo
p@q
r@s

tKu

Figure 2: Conceptual DALA Server Cluster Design

depends on its popularity — the more popular the object, the larger is the number of servers allowed to

serve it. We refer to a set of servers that can serve a streaming media object as a group and use vxw to denote

the group that serves object y . Consider the example shown in Figure 2 where each circle denotes a group

and each square denotes a server. The figure illustrates the difference in group sizes, the overlap between

groups, and the variation in group sizes with changing popularities (see Fig 2(a) and (b)). We require that

each group have at least one server in it and that the server be the one holding the primary copy of the object.

The local disk on each server consists of two partitions — one used to store primary copies of objects

and the other used to store dynamically created replicas of objects.

z Primary copy partition: At least one copy of each object is stored permanently on some server in the

cluster. This statically stored file is referred to as the primary copy of the object. Our current design

assumes a single primary copy for each object and we define

{ w : as the server that has the primary copy of object y
4



where |x}~y�}�� , and � is the total number of objects.

z Dynamic service partition: When a group consists of multiple servers, each server (with the exception

of { w ) stores a replica of the object on its local disk. These replicas are stored in the dynamic service

partition. The storage space for a replica is reclaimed when the server leaves the corresponding group.

The relative sizes of the primary copy and the dynamic service partitions depend on the mean group size

across all objects in the system. Assuming a mean group size of � , a good rule of thumb is to assign storage

space in the ratio |����F��| . We assume that primary copies of objects are assigned to servers in a round-robin

manner. Initially, the dynamic service partition is empty (all objects have an initial group size of 1). Our

architecture also assigns a token for each object. The token holder for an object is responsible for accepting

and processing all new requests for that object. We define

� w : as the token holder for object y
Initially we set � w�� { w (the server with the primary copy is assigned to be the initial token holder for the

object).

2.2 DALA Demand Dissemination Protocol

Consider a cluster of � servers as described in Section 2.1. Assume that a new request for a streaming

media object arrives at one of these servers. We assume that each server maintains information about the

token holder � w for all objects stored in the cluster. When a new request arrives, the server determines

the token holder for the object and forwards the request to the token holder for further processing (an

alternate approach is to maintain this knowledge at a layer-7 switch, which then forwards the incoming

request directly to the corresponding token holder).

Upon receiving a new request, the token holder performs admission control to determine whether suffi-

cient resources exist to service the new request locally. Such an admission control algorithm needs to ensure

that sufficient network bandwidth, disk bandwidth and memory buffers exist to service the new request.

A number of admission control algorithms have been proposed recently [22, 12, 49]; any such algorithm

suffices for this purpose. Note that it is desirable to reserve a small fraction of bandwidth resource (e.g.,

that corresponds to one streaming session) for control messages such as for token passes. Depending on

the results of admission control, the token holder either accepts the request or decides to pass the token to

another server in the cluster (which is then responsible for determining how to proceed with the request).
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z If admission control is successful, then the token holder � w accepts the request and services it.

z If admission control fails, then the token holder lacks sufficient resources to service any further requests

for this object. Hence, the token holder invokes the token passing protocol (described in Section 2.3)

to determine a new token holder for the object. The request is then forwarded to the new token holder

for processing (and subsequent requests for the object are also sent to the new token holder).

z If the token passing algorithm is unable to locate a new token holder in the group, then all group

members are overloaded indicating that the group needs to be expanded. In such a scenario, the

token holder invokes the dynamic group membership protocol (described in Section 2.4) to pull a

new member into the group. Both the token and the request are forwarded to this server for further

processing.

z If no suitable servers can be pulled into the group, then cluster lacks resources to service the request

and the request is denied.

Figure 3 illustrates this demand dissemination protocol pictorially. Next we briefly describe the token pass-

ing and dynamic group membership protocols.

2.3 Token Passing Within a Group

The token holder for an object processes and services newly arriving requests until no additional requests

can be accepted. At this point, the token is passed to another server in the group. To do so, the token holder

queries group members for their load information and picks the server with the least load. Assuming that

this server is willing to assume token holder responsibilities, the token is sent to this server and its identity

is broadcast to the entire cluster as the new token holder for the object. If all group members are heavily

loaded (indicating that no group member can assume token holder responsibilities), then the dynamic group

membership protocol is invoked to expand the group (see Section 2.4).

Several design decisions affect the efficiency of the token passing protocol. First, choosing a new token

holder requires knowledge of the load on each server in the group. The load information can be gathered in

an eager or lazy fashion. In the former approach, each server periodically broadcasts its load information to

all other servers. Each server maintains a table of the load on various servers and uses this table to pick a

new token holder when the need arises. Since the recency of the load information determines its accuracy,

such an approach can result in decisions based on inaccurate information. Further, if token passing is not

too frequent, exchanging load information results in wasted messages. The advantage though is that a new
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Figure 3: A Pictorial Representation of the DALA Demand Dissemination Algorithm
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token holder can be chosen quickly, reducing the latency of token passing. The lazy approach, on the other

hand, queries each server for its load information only when necessary (at token passing time). While this

results in up-to-date load information, it can increase the latency of token passing (since the token holder

must wait until all servers in the group have responded before making a decision or time out). A simple

but effective approach to improve the latency of lazy load gathering it to use randomization. Theoretical

studies have shown that picking two (or a constant � , ��ÃÄ| ) servers at random and choosing one of the two

(or � ) servers based on their loads is as effective as querying all servers and picking the one with minimum

load [37]. This is especially true when the group size is large. Such a randomized approach reduces the

complexity of lazy token passing to a constant and makes it independent of group size.

A second design decision is the invocation of the token passing algorithm itself. This can also be done

in a lazy or eager manner. In lazy token passing, a new token holder is chosen only when admission control

for a new request fails. In eager token passing, a new token holder is chosen when the load on the server

exceeds a high threshold. Whereas lazy token passing can increase the latency for servicing new request,

eager token passing can increase the overhead of unnecessary token passes.

In addition, the token passing protocol used in our design is similar to other related standard algorithms.

Thus, to handle failure situations, a variety of standard fault-tolerance techniques can be applied to our

architecture [33]. For instance, if the token for an object is lost, the root server can assume the role of new

token holder (similar to techniques employed in token-based LANs [30]). When the root server fails, a

traditional election algorithm [48] can be applied to select a new root server from those servers who own

mirror copies for the streaming object. Server failures change the membership of all groups to which a server

belongs; such group membership changes have been studied in the context of reliable group communication

and can be employed in our context as well [35].

2.4 Adapting the Group Size to the Load

To accommodate changing workloads, the group size of an object is varied dynamically based on its popu-

larity. The group size is increased when the object popularity increases and is shrunk when the popularity

wanes. This is achieved by two separate procedures that constitute our dynamic group membership protocol

— the group expansion procedure and the group contraction procedure.

A group is expanded when the token passing protocol fails to pick a new token holder from the existing

group. To add a new member to the group, the token holder needs to know the load on each remaining
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server and whether these servers already have a replica of this object (since storage space in the dynamic

service partition is reclaimed in a lazy fashion and only to make room for a new incoming replica, a server

might continue to store a copy of this object from its previous incarnation as a group member for the object).

Given this information, the current token holder picks the server with the least load and preferably one that

has a replica of the object. This server is invited to join the group and also sent a copy of the object if

it doesn’t have one already. The server is then sent the token for the object and the pending request for

further processing. The identity of the new group member is broadcast to the remaining group members

and its identity as the new token holder is sent to the entire cluster. Like the token passing protocol, the

group expansion procedure can be invoked in a lazy or eager manner. This design decision has important

implications on performance and the startup latency for requests, especially since propagation of a replica

to a new group member can involve significant latency (as a reasonably large initial part of the object should

be in place before service starts in order to ensure continuous and smooth playback of the user). On the

other hand, eager group expansion can result in wasted copying effort. A group expansion fails either when

no candidate server is able to join, or when all existing members do not have the resource to replicate the

object onto the new member over an extended period.

The group size for an object shrinks when its popularity decreases. Our architecture uses a timeout

strategy for group contraction — after finishing the service of all the related requests, if a group member

does not receive the token within a timeout interval, it automatically relinquishes group membership (and

announces this to the rest of the group). This allows servers to free up resources and reuse them for objects

with increasing popularities.

2.5 Exploiting Locality Awareness

One possible approach for load balancing within a cluster is to distribute incoming requests evenly among

group members. Such a request distribution policy, however, does not allow the cluster to exploit temporal

locality among requests. The need to exploit locality among requests motivates our decision to use a token

for each object. By employing the concept of a token holder, all incoming requests for an object are sent

to the same server (the token holder), enabling the server to exploit temporal locality relationships among

requests. Each server employs an interval caching policy [21] and sending all request to the token holder

improves the chances of an interval formation, resulting in substantial performance gains for very popular

objects (each interval that is formed allows the server to service one or more streams directly from memory
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buffers, thereby saving precious disk bandwidth).

Similar locality-aware request distribution policies for web requests have been studied in [40] and have

exhibited substantial performance gains. Since web contents are served in best-effort manner, exploiting

locality should be weighed against balancing the load on various servers. Streaming media servers, on the

other hand, provide guaranteed service where the quality of service is ensured through admission control.

Thus, we are able to exploit locality to the maximum extent without worrying about load balancing consid-

eration (so long as QoS requirements are not violated, the distribution of load among various server is of

secondary importance). Given the long-lived nature of streaming sessions, we expect to observe significant

performance gains using locality-aware request distribution policy.

3 An Analytical Model

In this section, we present a simple mathematical model for streaming media server clusters. Using the

model, we study the improvement in the system performance by considering our demand adaptation and

locality-aware request distribution techniques.

We consider a server cluster serving � movie clips. Each movie clip is of length Å and is encoded

at rate Æ bps. The cluster consists of � servers. Each server has Ç bytes of memory that is available

for interval caching. The disk on each server has ÈÉÆ bps sustained bandwidth (data transferred average

over disk seek time, rotational latency and data transfer time). For the simplicity of the model, we do not

consider disk size and network bandwidth as constraints – these factors will be included in our simulation

study in Section 4. We also do not consider server CPU as a bottleneck since we assume the cluster serves

pre-encoded streaming content from disk, hence having no strong computation requirement. We assume the

arrival of client requests is Poisson with rate Ê , and the requests are uniformly distributed among the �
movie clips. Furthermore, all requests sequentially access the media at the playback rate from the start to

the end of the movie.

While demand adaptation allows under-utilized system resources associated with infrequently-requested

movies to participate in servicing popular movies, and locality-aware request distribution increases the prob-

ability of requests being serviced directly from memory buffers, both approaches should improve the system

performance. To quantify the effectiveness of these approaches, we compare the following four systems:

(i) Each request is uniformly distributed to one of the � servers and is rejected if it cannot be admitted by

this server. Since an overloaded server in this system cannot utilize its peer server’s remain capacity
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and the request distribution does not consider previous request distribution, this system – non-adaptive

non-locality-aware (NANL) – provides the baseline for our comparison.

(ii) Servers evenly partition the movie collection so that each server is responsible for �ÌË¸� movies. A

request is rejected if the corresponding server is overloaded. Since all requests of the same movie are

directed to one server, this system inherently achieves locality-aware request distribution, however it

is still non-adaptive (NALA).

(iii) Requests are uniformly distributed among � servers. If a request cannot be admitted on one server,

it is forwarded to an under-utilized peer server unless all servers are fully utilized, in which case it is

rejected. This system is adaptive but not locality-aware (DANL).

(iv) One token is created for each movie and is held by one of the servers. A token holder is responsible

for all requests of the corresponding movie. When a server is fully loaded, new requests, along with

the token for the movie being requested, are forwarded to an under-utilized peer server. A request is

rejected only when all servers are fully utilized. This system is demand adaptive and locality-aware

(DALA).

Note that the above systems do not assume disk capacity as a constraint, i.e., all movies can be available at

each server, thus there is no cost to bring in a peer server to serve a request when adapting to demand.

For each of the above systems, we are interested in obtaining the request rejection rate � – the rate that

requests are denied admission due to disk bandwidth constraint. To do that, we first derive the cache hit rate

of a streaming media server that utilizes interval caching scheme.

3.1 Cache Hit Rate

In this subsection, we consider a single streaming media server that serves �ÎÍ movies. Assuming client

requests are Poisson with rate ÊÏÍ (and no requested are rejected), the question of interest is: what is the

fraction of requests that can be served from memory, i.e., the cache hit rate Ð , assuming interval caching

policy? The interval caching cache management policy, in a nutshell, is to keep track of the content buffer

between each pair of consecutive requests on the same streaming object, referred to as an interval, and store

the intervals as basic caching units in memory. To maximize hit rate, caching preference is set such that

smaller intervals are stored first till all allocated memory resource being used. Note that the length (size) of

a cache interval remains constant during the playback of the two streaming requests that form the interval,
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as they are regarding to the same streaming object. The implementation details on keeping track of interval

buffers and smoothly handling new arrivals, departures or interval replacements can be found in [21].

We proceed by deriving the expression for each of the following parameters.

z Expected number of concurrent sessions:

Since the requests for each movie are Poisson with rate Ê Í Ë�� Í , and movie length is Å , the number

of concurrent sessions of each movie, ÑÒ	 where |�}ÔÓÕ}Ô�ÔÍ , is the number of requests (of the same

movie) that arrive within time Å . Thus,

Ö�× ÑØ	
�ÌÙ�ÚÏ� Û Ê�Í®ÅÕË��ÜÍÞÝÂß¼àâá�ãåä®æèç,éêäÙìë í Ù�îðï
The total number of concurrent sessions, Ñ , is é äñ	óò � Ñ 	 with expected value:

ô�× ÑõÚö� é ä÷
	øò �

ô�× ÑØ	ùÚÏ� é ä÷
	øò � Ê Í ÅÕË�� Í �úÊ Í Å

z Expected number of intervals formed by concurrent sessions:

An interval is the time difference between two consecutive requests of the same movie being serviced.

Thus, the number of intervals of movie Ó , ûü	 , is one less than the number of concurrent sessions of

movie Ó , Ñ 	 where |ý}ðÓ@}��ÔÍ . Thus,

Ö�× ûþ	½�Ìÿ$Úö�
��� �� Û |�� Ê�Í Å$Ë��ÜÍùÝ1à á�ãåä®æ�çÂéêä ÿ �úï� ã ä æ�çÂé ä��
	��������� ä������@ä����� � ��� ÿÜîÜ|

Similarly, the expected number of total intervals ô × ûÜÚ , can be obtained as follows, where û �é äñ	øò � û 	 :
ô�× ûÄÚ�� éêä÷

	øò �
ô × ûþ	ÞÚö� éêä÷

	øò �
�÷� ò � ÿ Û Ê Í Å$Ë�� Í Ý � � � à á�ã ä æ�çÂé äÛ ÿ!�ú| Ýjë �úÊ Í Å � � Í Û |$�üà ã ä æ�çÂé ä Ý

z The number of intervals that can fit in cache when û intervals are formed by concurrent sessions

Let "�	 be the length of the Ó -th smallest interval, where | } Ó } û . Considering interval caching

scheme in which preference for memory caching is given to small intervals, the number of intervals

that can fit in cache, # , is determined by

# �%$'&�(*),+*-'.÷ 	øò � "�	 ÆxË0/�}ðÇ21 í
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where the factor of 8 is introduced to convert the unit of bit to byte.

Without the condition that û intervals are formed by concurrent sessions, " 	 would be the Ó -th or-

der statistic of û exponentially distributed random variables (with mean � Í Ë Ê Í ), whose cumulative

distribution function is 35476 Û98 Ý � Û |$�üà á�ã ä�: ç,é ä Ý 	 à á�ã ä;: �=< á 	 � çÂé ä
However, since we know that the û intervals are formed by requests that arrive within Å , the condi-

tional distribution of the length of these û intervals is no longer exponential. Yet, in our model, we

will still approximate them using exponentially distributed random variables. To match the expected

value, we use the mean value æ< ç,é ä � � — there are û Ë�� Í � | arrivals uniformly distributed within

time Å for each movie on average, breaking Å into û Ë�� Í �?> pieces. The exponential approximation

is good when the request rejection rate is low, as the underlying arrival process is indeed Poisson.

However if the rejection rate is high, this approximation overestimates the coefficient of variation of

the interval size distribution, producing a higher cache hit rate following the derivation steps next (we

will see in the validation result that this approximation is close).

Using this approximation, we have3@476 Û98 ÝC� Û |$�üà á ��< çÂé ä � � � : ç1æ Ý 	 à á �=< çÂé ä � � � : ��< á 	 � ç1æ
And the expected value of " 	 is

ô�× "�	ùÚö� 	 á �÷
w¸ò A ÅÛ û � y�Ý Û û Ë�� Í �B>�Ý

To obtain the average number of cached intervals, we use the following approximation:

ô�× #�ÚDC $'&�(*),+*-'.÷ 	øò � ô�× "�	ÞÚ ÆxË0/�}ðÇE1
C $'&�(*),+*-'.÷ 	øò � 	 á

�÷
w¸ò A ÅÛ ô × ûÜÚ � y�Ý Û ô × ûÜÚùË�� Í �B>�Ý ÆxË0/�}ðÇ21

� $'&�(*),+*- .÷ 	øò A Û + �~Ó¿Ý ÅÛ ô�× ûÄÚÏ�~Ó¿Ý Û ô × ûÜÚùË�� Í �B>�Ý ÆxË0/�}�ÇE1
C $'&�(*),+*-GF .A Û +x� 8 Ý ÅÛ ô × ûÜÚ � 8 Ý Û ô × ûÜÚùË�� Í �B>�ÝIH 8 }J/ Ç Ë ÆK1
� $'&�(*),+*-GF .A Û +x� 8 Ý ÅÛ ô × ûÜÚ � 8 Ý Û ô × ûÜÚùË�� Í �B>�Ý H 8 }J/ Ç Ë ÆK1L ô × #ýÚM� Û ô Û × ûÄÚÏ� ô × #ýÚ Ý Û9N
O½Û ô�× ûÜÚ � ô × #ýÚ Ý � NPO�Û ô × ûÜÚ Ý ÝC� / Û ô�× ûÄÚùË�� Í �!>�Ý,ÇÆõÅ
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z The mean cache hit rate

The cache hit rate Ð with interval caching is the fraction of sessions served by cache over all concurrent

sessions. We further approximate the mean cache hit rate QÐ by ô�× #ýÚùË ô × ÑõÚ .
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To validate our approximation, we compare the result of our analysis by using a simulation. The pa-

rameters that we use in the simulation are: movie encoding rate Æ �kj ïâï Kbps, movie length Å �kl�m ïâï
seconds (90 minutes), and memory buffer size ÇÌ�n> ïâï MB. Figure 4 plots the average hit rate versus the

mean request inter-arrival time
Û | Ë Ê Í Ý for � Í � |åï í j ï and |åïâï respectively. From Figure 4, we observe a

close match between the simulation result and the analytical result.

We now can describe the average cache hit rate as a function of effective arrival rate Ê Í and the number

of movies serviced: QÐ �po Û ÊèÍ í �ÄÍùÝ . Next, we evaluate the request rejection rate of an individual server.

3.2 Request Rejection Rate

In this subsection, we consider a single streaming media server system with Poisson request arrivals at rate

Ê�Í Í . Assuming the server’s sustained disk bandwidth allows È concurrent streams being serviced from disk

and the memory caching achieves an average hit rate QÐ on the workload, we compute the mean request

rejection rate Q� .

If we assume the requests that cannot be serviced from memory caching are still Poisson (with rate
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Û |$� QÐüÝ1Ê Í Í ), by applying Erlang-B formula, we obtain

Q�kqJr Û Ê Í Í í È í QÐüÝF� Û Û |�� QÐ~Ý1Ê Í Í ÇÒÝtsýË È ësñ	øò A Û Û |Õ�uQÐüÝ1Ê Í Í ÇÒÝ 	 Ë Ó ë (1)

where Ç is the length of the movies.

Since the mean cache hit rate QÐ is a function of effective arrival rate Ê Í � Û |�� Q� Ý1Ê Í Í and the number

of movies serviced � Í , i.e., QÐ7�vo Û Û |Ø� Q� Ý1Ê Í Í í � Í Ý , substituting QÐ in (1), we can solve for Q� numerically

through an simple iterative procedure.

3.3 Effect of Demand Adaptation and Locality-aware Distribution

Now we apply our analysis to the four different systems described at the beginning of the section.

(i) NANL: Q� �Jr Û ÊöË¸� í È í QÐ Ý and QÐ �po Û Û |$�wQ� Ý1ÊÏË¸� í � Ý
Since requests are uniformly distributed among servers, the request arrival rate to each server is ÊÏË¸�
and thus the effective arrival rate (for admitted requests) is

Û |Õ�xQ� Ý1ÊöË¸� . The requests to each server

are equal-likely to be for one of the � movies. Thus we can compute the mean cache hit rate byQÐ7�vo Û Û | � Q� Ý1ÊöË¸� í � Ý , and combined with Q� �Jr Û ÊöË¸� í È í QÐ Ý , we can solve for the mean request

rejection rate on one server, which is equivalent to that of the server cluster.

(ii) NALA: Q� �Jr Û ÊöË¸� í È í QÐ Ý and QÐ �po Û Û |$�wQ� Ý1ÊÏË¸� í � Ë¸�üÝ
Since each server service � Ë¸� movies and the request rate for each movie is ÊÏË�� , the request arrival

rate to each server is thus ÊÏË¸� . The above equations determine the mean rejection rate on any one

server and thus on the server cluster.

(iii) DANL: Q� �Jr Û Ê í �ÉÈ í QÐ Ý and QÐ �vo Û Û |Õ�wQ� Ý1ÊöË¸� í � Ý
Since the cluster rejects request only when all servers are fully utilized, we can consider the system

as a single server with disk capacity of �ÉÈ concurrent sessions when computing the mean request

rejection rate: Q� �yr Û Ê í � È í QÐ Ý . Note that memory caches are distributively maintained by each

server, thus the mean cache hit rate is still determined by QÐ7�vo Û Û |Ò� Q� Ý1ÊÏË¸� í � Ý .
(iv) DALA: Q� �Jr Û Ê í �ÉÈ í QÐ Ý and QÐ �vo Û Û |Õ�wQ� Ý1ÊöË¸� í � Ë¸�üÝ

Since no request is rejected until all servers are fully utilized, we can use Q� �zr Û Ê í �ÉÈ í QÐ Ý to

compute the mean request rejection (same as DANL). The token scheme ensures that consecutive

requests regarding to the same movie are forwarded to the same server. If we assume tokens are evenly
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distributed among servers when system is in steady state, then each server should be responsible for

�ÌË¸� movies at one time and the total request arrival rate to each server should be ÊÏË¸� . Thus, we useQÐ7�vo Û Û |$�wQ� Ý1ÊÏË¸� í �ÌË¸�~Ý to capture the memory caching behavior.

Note that in the above, we have focused on any one of the servers in the cluster for the expected system

performance. Since random (in uniform) split of Poisson arrivals remains Poisson, the base assumption of

the single server system analysis in the previous subsections still applies, whereas we leave the validation of

the model for the cluster to the comprehensive simulation study in Section 4.
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Figure 5: Request rejection rate versus request arrival rate

Figure 5 shows the request rejection rate as the function of the request arrival rate for the four systems.

The parameters are � �Î|åïâï , � �{l , Çð�|> ïâï � , È �|l ï , ÅÄ�{l�m ïâï�} and Æ �{j ïâïâÈ�~t�*} . From Figure

5, we observe that all four systems have virtually zero request rejection when request arrival rate is low; as

request rate increases above a certain level, the request rejection rate starts to climb. Compared to NANL,

both DANL and NALA can support a much higher ( Cpj ï�� larger) request rate before rejecting requests. As

request rate increases, the advantage of DANL over NANL decreases. Meanwhile the differences between

DANL and NALA increases. This is because, at a high request arrival rate, all system resources can be fully

utilized, leaving little room for improvement by demand-adaptation. On the other hand, utilizing memory

caching more effectively significantly increases system capacity. Therefore NALA produces a lower re-

quest rejection rate in comparison to DANL. Furthermore, DALA architecture achieves the highest request

rate ( C�� ï�� more than that of NANL) before denying requests, demonstrating the combined performance

enhancement due to both locality-aware request distribution and demand adaptive resource allocation.
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4 Experimental Results

Our model in Section 3 has evaluated the system performance of DALA architecture in terms of its stationary

behavior when system is in steady state. We now evaluate the system behavior when the request demand is

dynamic, i.e., the popularity of streaming objects changes over time. We do so through simulation. In our

simulation, we have implemented the protocol as described in Section 2 with the lazy options. We include

detailed factors that are ignored in the analytical model, such as the constraints due to network bandwidth

and disk space, and system overhead caused by replicating objects to peer servers. To demonstrate the

general applicability of our design and analysis, we purposely vary the system settings such as the encoding

rate, the data repository size, the number of servers in the cluster, and the disk and network bandwidth. We

next present our experimental settings and the corresponding evaluation results.

4.1 Effect of Demand Adaptation

Our first experiment simulates a flash crowd scenario where the popularity (and request frequency) of an

object increases suddenly, stays at that level for a certain period, and then drops gradually. The objective of

the experiment is to examine how the DALA architecture adjusts to unpredictable workload changes.

Our simulation setup assumes a cluster of 10 low-end commodity PCs that constitute the DALA cluster.

Each server is assumed to have 128 MB of memory, a 20 GB hard disk with a maximum throughput of 40

Mbps, and a 100 Mbps Ethernet card. We assume that the cluster serves 100 streaming media objects and

that the length of these objects is uniformly distributed between 60 and 120 minutes. Each object is assumed

to be MPEG-1 encoded with a maximum bit rate of 1.5 Mbps.

Figure 6 depicts the workload seen by the cluster over a 12 hour period. Request arrivals are assumed to

be Poisson. The top solid curve shows the total number of request arrivals over 5 minute intervals, while the

dashed curve below it plots the number of requests for the most popular object in the cluster. The two flat

lines represent the total network bandwidth capacity and the total disk bandwidth available in the cluster.

We show how DALA adapts to workload changes by examining how the group size v � varies over time

( v � is represented by the bottom curve in the figure). As shown, as the workload increases, v � increases

in steps until the group spans all 10 servers in the cluster. When the workload starts decreases after the first

six hours, we see that v � contracts gradually as well. Observe that there is a time lag between the decrease

in workload and the corresponding decrease in v � . This is because, the a server drops out of a group only

after it has finished servicing all ongoing requests for the object plus a timeout duration.
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Figure 6: Effect of dynamically changing workloads.

The set of crosses in the figure represents the number of requests that are denied. Observe that the most

of denied requests appears after the group size v � reaches its maximum possible value of 10 servers. This

indicates that DALA makes a very good use of system resources. Further, observe that requests are dropped

only when the workload approaches (and, in some cases, exceeds) the total disk and network capacities of

the cluster (request drops are inevitable if the total workload exceeds total capacity).

Together these results show that the DALA adapts to changing workload and makes judicious use of

cluster resources.

4.2 Comparison with other Request Distribution Policies

To further evaluate the performance benefits due to demand adaptation, we compare DALA to two other

request distribution policies: static resource allocation (SRA) and static resource allocation with locality

(SRL). In static resource allocation, the number of servers allocated to serve each object is determined based

on long-term popularities for each object. Thus the configuration of the system is done periodically and

manually; between configuration changes, the number of servers assigned to each object (i.e., the group

size) is kept fixed. When a request arrives, it is sent to a randomly chosen server in its group. Static resource

allocation with locality (SRL) is similar to SRA, except that it exploits locality among request arrivals. This

is achieved using the concept of a token holder and token passing. Thus, SRL is like DALA, except that the

group sizes are fixed.

We use the same setup as our previous experiment to evaluate the three policies, SRA, SRL and DALA.

To determine the group sizes for SRA and SRL, we first run the system with DALA for about 2 hours (120
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Figure 7: Comparing Different Request Distribution Policies

minutes) and then use the group sizes chosen by DALA to configure SRA and SRL. The group sizes remain

fixed for the two schemes for the rest of the simulation. Choosing the group size in this manner permits a fair

comparison among the three policies. Using the same workload as our previous experiment, we compute the

number of requests denied by the three policies. Figure 7 plots the cumulative number of dropped requests

for the three policies. The difference between SRA and SRL indicates the benefits of locality awareness,

while that between SRL and DALA indicates the additional benefit due to demand adaptation. The figure

shows DALA significantly outperforms SRA and SRL due to its demand adaptive and locality aware nature.

4.3 Effect of Changing Workloads

Whereas the workload in the previous section was dominated by requests to a single popular object (to better

illustrate some of the key aspects of the DALA architecture), in this section, we evaluate the performance of

DALA over a wide range of workloads.

To do so, we assume a cluster of 20 high-end servers, each with 1GB memory, a high-end 100 GB disk

with a maximum throughput of 400 Mbps and a 1 Gbps Ethernet card. The cluster is assumed to serve 300

high-quality MPEG-2 videos, each ranging from 60 to 120 minutes and with encoding rates ranging from 4

to 8 Mbps.

Like in the previous experiment, request arrivals are assumed to be Poisson and request popularities

follows Zipf’s distribution. To simulate changing popularities, we randomly pick a small fraction (10%)

of the objects after every 100 requests and exchange their ranks. We vary the arrival rate and measure the
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Figure 8: Comparing the Capacity of Server Clusters

corresponding ratio of the dropped request load to the total request load. For each level of request arrival

rate, we generate request traces of 24 hours long and repeat each experiment for DALA, SRA and SRL.

Like in the previous experiment, the group sizes for SRA and SRL are determined using DALA during the

warmup phase, which is set to be the first half (12 hours) of each experiment. The measurement starts when

the warmup phase is over.

Figure 8 plots the observed drop rate for the three policies for different loads (the X axis plots the load as

a percentage of the total network capacity; the total disk capacity is 40% of the network capacity). For each

value of request arrival rate, we run 100 experiments and calculate the mean and 95 percentile confidence

interval of the dropped request load ratio. We are actually showing the confidence intervals in Figure 8.

However, they are too small to be easily distinguished.

Since SRA does not exploit any locality, it gets minimal benefits from memory caching. Hence, as

shown in Figure 8, the capacity of the cluster with SRA is limited by the total disk capacity. Beyond this

point, SRA starts dropping requests and the drop rate increases with increasing arrival rates. SRL has a lower

drop rate than SRA due to benefits from memory caching. DALA yields the best performance. DALA starts

dropping requests only when the load exceeds 60% of the total network capacity; this load is around 150%

of the total disk capacity. Thus, the demand adaptive and locality aware nature allows DALA to support

50% additional clients beyond what the disk can support. At very high arrival rates, all server resources

are almost fully utilized regardless of the policy. This explains the negligible difference between DALA

and SRL; the difference between SRL and SRA in this region shows how much the system capacity can
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be increased by exploiting request locality. Note that this result echos the analytical result from Section 3,

evidenced by the high similarity between the shape of the curves in Figure 8 and in Figure 5. This suggests

suggests that the model in Section 3.3 captures the essence of the system very well.

Finally, Figure 9 depicts the overheads of DALA for different workloads. The figure shows the number

of control operations, namely token passes and group expansions, per minute at different loads. Same as

when studying the dropped workload, we also calculate the mean and 95 percentile confidence interval per

100 sample runs in quantifying the system overhead, and we show the confidence intervals in Figure 9 as

well. We observe a very low control overhead both in token passing and group expansions. Although shown

in the same graph, the two control operations incur different level of system overhead. Token passing is

relatively light-weighted, involving exchanges of signaling messages. Group expansions on the other hand

can be heavy-weighted — unless a copy of the streaming object already exists on the newly included group

member (due to lazy replacement policy), one group expansion induces one object replication. Depending

on a design tradeoff on how much content (the fraction of the streaming object) has to be in place before new

group member starts service, such object replication may increase to different extent the playback initiation

latency experience by the end user. Furthermore, the added replication would take system resource that could

be used to serve user request instead. However, as we will see in the next subsection, the dynamic adjustment

of group memberships, while reducing system capacity with additional replications, in fact improves the

effective service capacity of the system.
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Figure 10: Effective service capacity of the server cluster

4.4 Effective Service Capacity

In many circumstances, we are interested in the maximum workload the system can support without having

to drop request. This workload indicates the effective service capacity of the server cluster. In this section,

we use this metric to evaluate the system performance under different system parameters.

To obtain effective service capacity, in our simulation, we gradually increase the request arrival rate,

thus increase the workload, by 0.5% each time from 0 to 100% comparing to the network bandwidth. On

each workload level, we conduct 30 experiments and test the hypothesis that the denied workload is zero. If

the denied workload is significantly different than zero (reject the hypothesis with 95 percentile confidence),

we stop and take the last successful workload level as the effective service capacity of the server cluster.

In the first set of simulations, we use the same video repository as described in Section 4.3 and also

use the same server cluster configuration except that we vary the size of memory on each server. Figure 10

compares the effective service capacity of different architectures when memory sizes on each server are 256

MB, 512 MB, 1 GB and 2 GB respectively. In all cases, DALA shows a significant higher effective service

capacity than SRL or SRA. However, SRL and SRA do not show much differences on effective service

capacity, especially when memory size is sufficiently large. This can also be inferred from Figure 8 since

exploiting memory caching mainly improves the system performance on high-load or overload situation.

For all mechanisms, the effective service capacity increases sub-linearly with more memory added on each

server.

Figure 11 shows another set of experiments where each server in the cluster has 1GB memory while
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Figure 11: Effective service capacity of the server cluster

we change the disk throughput on each server. Consistent with previous experiment, DALA shows substan-

tial performance gain over SRL or SRA. We also observe that when the disk throughput is low (less than

600Mbps), the disk is the bottleneck device. The system can benefit from using a better disk with higher

throughput. Once the disk throughput reaches 600Mbps (comparing to 1Gbps of network bandwidth), due

to effects of memory caching, improve disks throughput can no longer help the system achieving higher ef-

fective capacity. Note that even when disk throughput is as high as network bandwidth, the effective service

capacity of DALA does not reach 100% of network capacity. This is due to two factors: (a) dynamic repli-

cation itself consumes system resource in achieving better load-balancing among servers of different groups

(b) bursty request arrivals, captured by the Poisson arrival process, lead to temporary system overload and

request rejections even when the sustained workload is less than system capacity.

5 Related Work

Today’s media delivery architectures consist of three tiers: server, proxy and end-client. Not surprisingly,

researchers have focused on scaling system capacity by designing adaptive techniques at all three tiers. At

the server tier, research has focused on design of distributed, clustered servers. At the proxy tier, researchers

have proposed clustered proxies and content delivery systems, while at the client tier, peer-to-peer architec-

tures have been proposed as a method for scaling system capacity and handling workload dynamics. Our

related work is grouped into these categories, which we review below.
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Distributed and Clustered Servers: Early work on video on demand systems focused primarily on

single node servers. This work targeted a variety of topics such as admission control [22, 12], scheduling

[49], striping [47, 31, 28] and caching [21].

Since the capacity of a single server is limited despite these optimizations, researchers began focusing

on distributed and clustered server design [8, 45, 6, 32, 14, 51]. Some representative examples include the

Tiger server from Microsoft [8], Exedra from U. Toronto [6], Rio from UCLA [32], FlexSplit from HP [14]

and Yima from USC [46].

The Tiger distributed video server employs network striping across a cluster of nodes and uses a cen-

tralized controller to coordinate these nodes [8, 9]. Network striping allows the load on various nodes to be

balanced. In contrast, DALA stores each object on a single node and uses dynamic replication, token pass-

ing and changes to group membership to accommodate changing workloads. Further, unlike the centralized

controller in Tiger, DALA uses a fully distributed architecture and has no single point of failure.

The Exedra distributed media server also employs distributed striping across disks connected to a storage

area network [6, 5, 7]. A set of transfer nodes access data from disks and transmit them to clients. Some

of these techniques are orthogonal to our work and can be employed in DALA as well. For instance, use

of a storage area network instead of local disks in DALA can reduce the overheads of tasks such as object

replication.

The FlexSplit architecture [13, 52].assumes media content is fully replicated by all servers and designs a

request distribution and server load balancing strategy such that requests for different parts of a media stream

are directed to different server nodes. The split points are dynamically determined by keeping track of the

histogram of request distribution. DALA however divides requests in the temporal domain by utilizing a

token passing scheme, which fully exploits the locality of demands. Another key advantage of DALA over

the above systems is its easiness for configuration – new servers or new media contents can be added into an

active server cluster directly with almost no configuration overhead or disturbance to the on-going services.

This is particularly important in realistic server systems where content updates are frequent and requests

toward newly introduced files are found dominant [13].

The RIO server [32, 31] employs a novel randomized data allocation strategy to alleviate hotspots in

the storage system; they show via analysis that such a strategy is superior to striping-based placement in

terms of spreading the workload across multiple storage entities. DALA employs a dynamic replication as

a strategy for achieving the same objective.
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Dynamic replication strategies have also been studied by other researchers [17, 16]. These studies

have shown that dynamically varying the degree of striping and the degree of replication can significantly

enhance the ability of a server to deal with load hotspots. DALA directly builds on these results via its

ability to dynamically replicate content based on user demand.

Yima is a second generation streaming server from USC that employs a fully distributed architecture

with multiple nodes [46, 53]. Yima has no single point of failure, allows disks to be added or removed

without system disruption, and employs sophisticated buffering flow-control mechanisms for VBR media.

At an architecture level, DALA has similarities with Yima since both employ multiple server nodes and

have fail-over strategies. The specific focus of this paper, however, is on dynamic replication and exploiting

locality to handle time-varying workloads.

A decentralized algorithm that allocates server resources to replicated servers was studied in [34]. The

focus of the work is on reducing the network distance between each client and a nearby replicated server

that has the requested content. In this sense, the effort is related to work on content delivery networks where

content is placed on proxies that are closest to end-clients that request such content. Since DALA nodes

are part of a server cluster, all server nodes are at the same distance from a particular end-client; thus, such

optimizations are not directly applicable to server clusters such as DALA.

Clustered Proxies and Content Distribution Networks: A complementary technique to scale system

capacity is to employ streaming proxies or a streaming content distribution network. Proxies cache content

and can deliver popular content from the cache and alleviate server load. By dynamically varying the set

of cached objects, proxies or CDNs can adapt to varying workloads. Consequently, there have been several

studies on on distributed caching of streaming media content in the Internet [11, 20].

In SILO [11], objects are partitioned into smaller segments that are replicated across different caches

for load balancing. The focus of the work is primarily on placement and caching and is orthogonal to our

effort. Moreover, some of the techniques in SILO require long-term popularity statistics, which is not a

requirement in DALA.

A Spectrum architecture that partitions distributed content management system into three functional

components, namely content manager, policy manager and storage manager has also been proposed [20]

. The focus of this work is on providing flexibility for content sharing as opposed to on performance

optimization as studied in DALA.

A cluster-based streaming proxy that uses popularity statistics to dynamically decide what set of objects
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to cache and on which node of the cluster has also been proposed [26, 27]. Such a cache replacement policy

in a distributed cluster of proxies has similar goals to our DALA work; however, DALA can additionally

employ locality-aware techniques to further optimize system performance.

Middleman is a cooperative set of video proxy servers that coordinate with one another to service stream-

ing requests [2]. Cooperative caching of streaming content is a key focus of Middleman, where requests

received by one proxy are handed over to another one that caches the requested content. Such handoffs

are similar to the token passing techniques employed by DALA. However, DALA additionally employs

dynamic replication techniques to scale system capacity.

Mocha is a cluster of proxies that employ replication and caching to improve the quality of content seen

by end-users [42, 43], They employ fine-grain prefetching and fine-grain replacement to deliver layered con-

tent to end-users. Such techniques for replicating and scaling layered video are complementary to dynamic

replication in DALA.

In the context of scalable network delivery, several recent efforts have investigated techniques such as

periodic broadcast and patching to scale the network capacity of the server to a large number of users using

multicast [4, 41, 29, 19, 10]. These techniques complement our work, since all of them can be employed by

DALA as well.

Peer-to-peer streaming: Recently several efforts have focused on leveraging end-client resources to

scale system capacity. Such systems are based on a peer-to-peer architecture where clients can serve locally

stored content to other peer clients and thereby alleviate load on servers and proxies. They can also mask

server or network failures, since a peer can continue to stream content even when an origin server becomes

available. Such P2P systems can be adaptive, since the initial set of clients that fetch a new popular video

clip can immediately start serving it to other clients. Peer-to-peer streaming is an active area of ongoing

research and we only present a brief overview of recent work.

Cooperative Networking (CoopNet) project from Microsoft investigates how end-peers can improve the

performance of end-servers [39, 38]. This is a hybrid approach where cooperation from peers complements

traditional client-server communication rather than replacing it. The basic idea is to leverage client resources

to alleviate the impact of sudden flash-crowds. In DALA, servers cooperate with one another to dynamically

replicate content and handle workload spikes; further, DALA can fully leverage ideas from CoopNet to also

employ end-clients to serve popular content and reduce load on servers. Since CoopNet is inherently de-

signed to supplement servers, both DALA and CoopNet architectures can coexist and leverage one another’s
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dynamic workload handling capabilities.

Placement and dynamic replication of streaming objects in wireless peer-to-peer networks has been

studied in [23, 25]. The C2P2 system replicates streaming content dynamically in a P2P system of mobile

vehicular nodes [24]. Dynamic replication and placement on peer nodes is similar to dynamic caching,

where new content is fetched or replicated as it becomes popular and less popular old content is removed.

DALA also employs dynamic replication and deletion of old replicas, although on a cluster of server nodes

as opposed to end-clients. Second, these efforts have focus on wireless environments or on handling node

mobility, neither of which is an issue in DALA.

Finally, mesh-based P2P streaming and the use of receiver-driven overlays for P2P streaming have been

studied in [36, 44]. The focus of these efforts is on network topologies for delivering content in a peer-to-

peer fashion and is complementary to the issues studied in DALA. Altruism issues in peer-to-peer streaming

systems has also been studied [18]; these issues are also orthogonal to the ones considered in DALA.

At a high-level, both peer-to-peer systems and CDN proxies complement a server architecture; both

can absorb some of the client workload but do not completely eliminate load at the server. Thus, a server

architecture still needs to be scalable and adaptive to respond to dynamic workloads. Finally, as indicated

earlier, a DALA cluster can be employed as a proxy cluster in a CDN to handle workload dynamics, when

enhanced with suitable cache replacement policies.

6 Conclusions

In this paper, we proposed a demand adaptive and locality aware (DALA) architecture for clustered media

servers. DALA employs a fully distributed architecture and requires no priori knowledge of the workload

or object popularities. The resource allocation scheme and request distribution mechanism in DALA op-

timize the utilization of the memory, disk and network resources within the cluster, thereby maximizing

overall system capacity. We developed both analytical models and simulations to examine the performance

of DALA. Our evaluation and simulation results showed that DALA is highly adaptive, exhibits significant

performance gains when compared to static schemes, and has a low system overhead. Our results demon-

strated that DALA is a simple, yet effective approach for designing clustered media servers. As part our

future work, we would like to extend DALA to a distributed server architecture over the Internet.

27



References

[1] Nortel alteon web switching. http://www.nortelnetworks.com/products/01/alteon/, 2001.

[2] Soam Acharya and Brian Smith. MiddleMan: A Video Caching Proxy Server. In Proceedings of

NOSSDAV 2000, Chapel Hill, NC, USA, June 2000.

[3] J. Almeida, J. Krueger, D. Eager, and M. Vernon. Analysis of educational media server workloads. In

NOSSDAV’01., June 2001.

[4] Kevin C. Almeroth and Mostafa H. Ammar. The use of multicast delivery to provide a scalable and

interactive video-on-demand service. IEEE Journal of Selected Areas in Communications, 14(6):1110–

1122, 1996.

[5] S V. Anastasiadis, K. Sevcik, and M. Stumm. Disk-striping scalability in the exedra media server.

In Proceedings of ACM/SPIE Multimedia Computing and networking 2001, pages 175–189, January

2001.

[6] Stergios V. Anastasiadis, Kenneth C. Sevcik, and Michael Stumm. Modular and efficient resource

management in the exedra media server. In 3rd USNIX Symposium on Internet Technologies and

Systems, San Francisco, California, March 2001.

[7] Stergios V. Anastasiadis, Kenneth C. Sevcik, and Michael Stumm. Scalable and fault-tolerant support

for variable bit-rate data in the Exedra streaming server. ACM Transactions on Storage, 1(4):419–456,

November 2005.

[8] W. Bolosky, J. Draves, R. Fitzgerald, G. Gibson, M. Jones, S. Levi, N. Myhrvold, and R. Rashid. The

tiger video fileserver. In NOSSDAV’96, Apr 1996.

[9] W J. Bolosky, R P. Fitzgerald, and J R. Douceur. Distributed schedule management in the tiger

video fileserver. In Proceedings of the sixteenth ACM symposium on Operating Systems Principles

(SOSP’97), Saint-Malo, France, pages 212–223, December 1997.

[10] M. Bradshaw, B. Wang, S. Sen, L. Gao, J. Kurose, P. Shenoy, and D. Towsley. Periodic broadcast and

patching services: Implementation, measurement and analysis in an internet streaming media testbed.

In Proceedings of the Ninth ACM Conference on Multimedia, Ottawa, Canada, October 2001.

[11] Youngsu Chae, Katherine Guo, Milind M. Buddhilot, Subbash Suri, and Ellen W. Zegura. Silo, rain-

bow, and caching token: Schemes for scalable, fault tolerant stream caching. IEEE Journal on Selected

Areas in Communications (JSAC), September 2002.

28



[12] E. Chang and A. Zakhor. Cost analyses for vbr video servers. In Proceedings of Multimedia Computing

and Networking (MMCN) Conference, pages 381–397, 1996.

[13] L. Cherkasova and M. Gupta. Analysis of enterprise media server workloads: Access patterns, locality,

content evolution, and rates of change. ACM/IEEE J. Transactions on Networking, (TON), 12:781–794,

Oct. 2004.

[14] L. Cherkasova and W. Tang. Sizing the streaming media cluster solution for a given workload.

http://www.hpl.hp.com/techreports/2004/HPL-2004-65.html.

[15] Maureen Chesire, Alec Wolman, Geoffrey M. Voelker, and Henry M. Levy. Measurement and analysis

of a streaming-media workload. In USITS, 2001.

[16] C.F. Chou, L. Golubchik, and J.C.S. Lui. A performance study of dynamic replication techniques

in continuous media servers. In Proceedings of the International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems (IEEE MASCOTS), San Francisco, CA,

August 2000.

[17] C.F. Chou, L. Golubchik, and J.C.S. Lui. Striping doesn’t scale: How to achieve scalability for con-

tinuous media servers with replication. In Proceedings of the International Conference on Distributed

Computing Systems (ICDCS), Taipai, Taiwan, pages 64–71, April 2000.

[18] Y. Chu and H. Zhang. Considering altruism in peer-to-peer internet streaming broadcast. In Proceed-

ings of ACM NOSSDAV, 2004.

[19] Tzi cker Chiueh and Chung ho Lu. A periodic broadcasting approach to video-on-demand service. In

SPIE First International Symposium on Technologies and Systems for Voice, Video, and Data Commu-

nications, volume 2615, Philadelphia PA, Oct. 1995.

[20] Chuck Cranor, Rick Ethington, Amit Sehgal, David Shur, Cormac Sreenan, and Kobus van der Merwe.

Design and implementation of a distributed content management system. In NOSSDAV, 2003.

[21] A. Dan and D. Sitaram. Buffer management policy for a on-demand video server. Technical Report

RC 19347, IBM.

[22] V. Firoiu, J. Kurose, and D. Towsley. Efficient admission control of piecewise linear traffic envelopes

at edf schedulers. IEEE/ACM Transactions on Networking.

29



[23] S. Ghandeharizadeh and T. Helmi. An evaluation of alternative continuous media replication tech-

niques in wireless peer-to-peer networks. In Proc. of Third International ACM Workshop on Data

Engineering for Wireless and Mobile Access (MobiDE), San Diego, CA, September 2003.

[24] S. Ghandeharizadeh and B. Krishnamachari. C2p2:a peer-to-peer network for on-demand automo-

bile information services. In Proceedings of the First International Workshop on Grid and Peer-to-

Peer Computing Impacts on Large Scale Heterogeneous Distributed Database Systems (GLOBE’04),

Zaragoza, Spain, 2004.

[25] S. Ghandeharizadeh, B. Krishnamachari, and S. Song. Placement of continuous media in wireless

peer-to-peer networks. IEEE Transactions on Multimedia, 6(4), April 2004.

[26] Y. Guo, Z. Ge, B. Urgaonkar, P. Shenoy, and D. Towsley. Dynamic cache reconfiguration strategies for

cluster-based streaming proxies. In Proceedings of the Eighth International Workshop on Web Content

Caching and Distribution (WCW 2003), Hawthorne, NY, September 2003.

[27] Y. Guo, Z. Ge, B. Urgaonkar, P. Shenoy, and D. Towsley. Dynamic cache reconfiguration strategies for

cluster-based streaming proxies. Computer Communications, 29(10):1710–1721, June 2006.

[28] John H. Hartman and John K. Ousterhout. The Zebra striped network file system. ACM Transactions

on Computer Systems, 13(3):274–310, 1995.

[29] Kien A. Hua and Simon Sheu. Skyscraper broadcasting: A new broadcasting scheme for metropolitan

video-on-demand systems. In SIGCOMM, pages 89–100, 1997.

[30] J. Kurose and K. Ross. Computer Networking: A Top Down Approach Featuring the Internet. Addison

Wesley Longman, 2001.

[31] J.R.Santos and R. Muntz. Comparing random data allocation and data striping in multimedia servers.

In ACM Sigmetrics, Santa Clara, CA, June 2000.

[32] J.R.Santos and R.Muntz. Performance analysis of the rio multimedia storage system with heteroge-

neous disk configurations. In 6th ACM International Multimedia Conference, Bristol, United King-

dom, Sep. 1998.

[33] K. Birman. Reliable Distributed Systems, Technologies, Web Services, and Applications. Springer

Verlag, 2005.

30



[34] B. Ko and D. Rubenstein. Distributed server replication in large scale networks. In Proceedings of the

14th ACM International Workshop on Network and operating systems support for digital audio and

video (NOSSDAV) Cork, Ireland, pages 127–132, 2004.

[35] K.P.Birman. The process group approach to reliable distributed computing. Communications of the

ACM (Commun.ACM), 36(12):36–53, 1993.

[36] N. Magharei and R. Rejaie. Prime: Peer-to-peer receiver-driven mesh-based streaming. In Proceedings

of IEEE INFOCOM, Anchorage, Alaska, May 2007.

[37] Michael Mitzenmacher, Andra W. Richa, and Ramesh Sitaraman. The power of two random choices:

A survey of the techniques and results. In P. Pardalos, S. Rajasekaran, and J. Rolim, editors, Handbook

of Randomized Computing. Kluwer Press.

[38] V. N. Padmanabhan and K. Sripanidkulchai. The case for cooperative networking. In Proceedings of

the First International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, March 2002.

[39] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai. Distributing streaming media

content using cooperative networking. In Proc. of ACM NOSSDAV, Miami Beach, FL, May 2002.

[40] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel, Willy Zwaenepoel,

and Erich Nahum. Locality-aware request distribution in cluster-based network servers. In ACM

Eighth International conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-VIII), San Jose, CA, Oct 1998.

[41] Jehan-Franois Pris, Darrell D. E. Long, and Patrick E. Mantey. A zero-delay broadcasting protocol for

video on demand. In the Seventh ACM International Multimedia Conference, Orlando, October 1999.

[42] R. Rejaie, H. Yu, M. Handely, and D. Estrin. Multimedia proxy caching mechanism for quality adaptive

streaming applications in the internet, March 2000.

[43] Reza Rejaie and Jussi Kangasharju. Mocha: A Quality Adaptive Multimedia Proxy Cache for Internet

Streaming. In Proceedings of the 11th International Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV’01), Port Jefferson, NY, USA, pages 3–10, June 2001.

[44] Reza Rejaie and Shad Stafford. A framework for architecting peer-to-peer receiver-driven overlays.

In Proceedings of the International Workshop on Network and Operating Systems Support for Digital

Audio and Video Cork, Ireland, June 2004.

31



[45] Olav Sandsta, Stein Langorgen, and Roger Midtstraum. Video server on an ATM connected cluster of

workstations. In International Conference of the Chilean Computer Science Society, pages 207–217,

1997.

[46] C. Shahabi, R. Zimmermann, K. Fu, and S D. Yao. Yima: A second generation continuous media

server. IEEE Computer, pages 56–64, June 2002.

[47] Prashant Shenoy and Harrick M. Vin. Efficient striping techniques for variable bit rate continuous

media file servers. Performance Evaluation, 38(3):175–199, December 1999.

[48] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice Hall, 1995.

[49] Harrick M. Vin, Alok Goyal, and Pawan Goyal. Algorithms for designing multimedia servers. Com-

puter Communications, 18(3):192–203, 1995.

[50] Youtube bandwidth: Terrabytes per day. http://blog.forret.com/2006/05/

youtube-bandwidth-terabytes-per-day/.

[51] Q. Zhang, L. Cherkasova, and E. Smirni. Flexsplit: A workload-aware, adaptive load balancing strat-

egy for media clusters. In Multimedia Computing and Networking.(MMCN’2006), San-Jose, CA, Jan.

2006.

[52] Q. Zhang, L. Cherkasova, and E. Smirni. Flexsplit: A workload-aware, adaptive load balancing strat-

egy for media clusters. In Proc. of Multimedia Computing and Networking.(MMCN’2006), San-Jose,

CA, 2006.

[53] R. Zimmermann, K. Fu, C. Shahabi, D. Yao, and H. Zhu. Yima: Design and evaluation of a streaming

media system for residential broadband services. In Proceedings of the VLDB 2001 Workshop on

Databases in Telecommunications (DBTel 2001), Rome, Italy, September 2001.

32


