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Abstract— With the increasing scale and complexity of data
centers, detecting and localizing performance faudt in real-time
has become both a pressing need and a challenge. Whieveral
approaches for performance debugging in data centerhave been
proposed, these techniques do not assume any comstts on the
availability of operational data needed to detect rad localize
faults. We argue that collecting such operational da often
requires significant instrumentation or intrusiveness, which is
difficult to realize in production data centers. Sich constraints
complicate the deployment of existing techniques olimit their
effectiveness in practice. In this paper, we arguehat for
performance debugging to become practical and efféee in real-
world systems, one needs to develop techniques thate “more
effective” with “less instrumentation and intrusiveness”. We raise
several issues and challenges in realizing this \oa and present
some initial ideas on addressing these challenges.

Index Terms—data centers, performance debugging, fault
detection and localization, operating and distribued systems.

A

I. INTRODUCTION

defining characteristic of the information age isr o Today

reliance on data centers—consisting of large numbeggta centers, the volume of requests, and the rhamadysis
of computing, communication, and storage systems @gocesses, localizing performance faults oftenddi@urs (and

are processed, enriched, aggregated and then itststo
thousands of program trading engines as well adetsa
workstations. The IT infrastructure for processihgse orders
and market updates consists of thousands of apiplica
components running on several hundred servers. r©raled
market updates hop from one component/server tdhano
prior to reaching their destination. Figure 1 dépi portion of
the data center operated by this investment bangricessing
trading orders; each node in this graph represeaurts
application process and edges indicate the flowegfuests
from one process to next.

A critical business requirement in this environmenthat
the end-to-end latency for processing eesuestshould not
exceed 7-1Ms In the event that end-to-end delay starts
exceed this threshold consistently, one needstectjdocalize
and correct thefault’ rapidly (near-real-timg. Note that end-
to-end delay may increase because of dynamic ckaige
workload (leading to congestion at a processingehoor
slowing down of a processing node because of haslwa
software errors (e.g., memory leak). The longetakes to
detect and localize faults, the greater is thertmss impact.
unfortunately, because of the scale and toaty of

well as wide-range of applications and servicese That times, even days).

scale and complexity of these data centers, howaese been
increasing rapidly. This, in turn, is limiting ouwability to
understandandcontrol the operations of such data centers.

Consider, for instance, an equity trading plantrajss by a
top-tier investment bank in the US. This data cengeeives
and processes 4-6 millions of requests for equigdds

(referred to asorder§ and 10-100 millionmarket updates

(news, stock-tick updates, etc.) each day. Upoariigal, each
order goes through several processing steps poiobeing

dispatched to a stock exchange (e.g., New York kStoc

Exchange (NYSE)) for execution. Similarly, markgidates
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Detecting and localizing performance fatitgeferred to as

to

performance debuggingin such data centers involve four key

steps:

1. Build a model of normal operations of a system
(generally through off-line analysis of data obéain
by instrumenting the system);

2. Place probes to monitor the operational system;

3. Detect performance faults in near-real-time; and

and monitored data) derived in previous steps.

2 In this paper, we only consider faults that impaetformance (e.g., end-
to-end latency or throughput) of the system, andaibstop faults.

4. Localize faults by combining the knowledge (model
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Figure 1. Structure of an Equity Trading Application at a Top-tier Investment Bank. Circled nodes ar¢he top-k
application components in terms of the workload preessed by each node in the system.

The effectiveness of the above steps depends onuhwber
and the type of data collectigmobesavailable in the system.
Retrofitting an operational system with the instamation
required to facilitate performance debugging, haoavevis
always a challenge. System operators and admitustrare
reluctant to introduce probes into the productiomi®nment,
especially if the probes are intrusive (and can ifgothe
system behavior). Thus, a key practical requirenerhata
performance debugging solution should minimize gheunt

achieved by usingeither significant instrumentationor
intrusiveness but is challenging when constrairespdaced on
both. We then raise thémore with less” question: Is it
possible to achieve effective performance debuggsigg low
instrumentationand low intrusiveness? In Section Ill, we
discuss an example scenario with low instrumentagod
intrusiveness, and describe a straw man approach fo
performance debugging in this environment. Thewstnaan
approach appears promising; however, it has several

of instrumentationneeded to gather real-time operationallimitations. We use this discussion to derive, gti®n IV, a

statistics and theintrusiveness of these data gathering
methods

set of research challenges for developing practiaad
effective performance debugging solutions. FinaBgction V

Much of the prior research in the area of perforoean concludes our paper.

debugging has ignored this very bapiactical requirement.
Further, much of the prior work has focusedatgorithmsfor
fault localization, while assuming that all of tHata required
by the algorithm for its decision making can beilgamthered.
Unfortunately, in most cases, collecting such datther

Il. INSTRUMENTATION AND |INTRUSIVENESS
Performance debugging in data center requires tfferent

types of instrumentation: (1) to detect faults eanreal-time;

and (2) to build an operational model of the systémn

requires significaninstrumentation(e.g., requiring a probe 0 g psequent fault localization. Interestingly, theoant of

be placed at each process or server)ntnusiveness(e.g.,
requiring that each request carries a request-IB-tevend
such that the debugging system can track flow qliests).
This makes these techniques difficult to deployraal-world
operational systems.

In this paper, we argue that for automated perfooea
debugging to become practical and effective in -veaild
systems, one needs to develop techniques thatmeme

instrumentation and intrusiveness required for d¢ask is
generally quite different from what is needed fo dther.

A. Instrumentation for Fault Detection
The instrumentation required for fault detectiopeieds on

the primary performance metric of the applicatiery(, end-to-

end latency or throughput). For instance, if thempry
performance metric is end-to-end latency, then
instrumentation must timestamp each request updrahinto

the

effective everwith lessinstrumentation and intrusiveness. Ourand departure from the system, and take the difteréetween

goal here is to raise several issues and challeingdssigning
these techniques — rather than propose solutionsgecific
settings.

The rest of the paper is organized as follows. éotisn I,
we first argue that effective performance debuggiag be

the two timestamps. Since each request must caerarrival
timestamp with it, the required instrumentationinkerently

intrusive.
If, on the other hand, throughput is the primaryfgrenance
metric for an application, then the instrumentation fault



detection simply needs to compute the number ofigs
departing the system within a defined interval. sThan be
done with very little intrusiveness. These insighislid our
first observation:

techniques require different levels of instrumentatand
intrusiveness. Figure 2 classifies these appraaalmng these
two dimensions.

Many of these techniques require information alpmwthop

Observation 1 The instrumentation intrusiveness is a directesource consumption and thus require instrumemntatverall

function of the performance metric of interest.

B. Instrumentation for Fault Localization

The goal of fault localization is to identify th@rmponent
(process, server, or workload) that is the rootseator the
performance fault.

nodes. [8] and [11] propose to use Tree AugmentaeykBian
Network (TAN) [9], [10] models to identify correlahs
between resource usage of individual componentseadeto-
end SLO violation. [6] builds a decision tree inigfh nodes
represent resources or their properties and leaspesent
failed or successful requests. Nodes on the patims foot to

A simple solution consists of measuring performancge |eaves that represent failure are diagnosgdw@stial root-

metrics of interest as well as resource utilizatievels atall
servers in a data center. A fault can be then beliled by
detecting significant changes in the measured sadtiservers.
An example of this approach is the work by Coheiale{8]

causes of the failure. Bahl et. al. [3] proposeaanrintrusive
technique and require information about the

. . . o N i ® omaniz
that involves monitoring resource usage of all sesyand then s | E’F’te”"g“"“'e,dge o Temania
. . . - m system behavior
correlating SLA violations to resource usage onividdal §;| - ———————— E
servers 2 3| Dataand control flow fronModel
' . . i 7o " /queuinginformation
However, this simple approach requires a large amobl &5 ;.. q0 vading | ® Magpie
instrumentation and incurs significant overhead—botterms @5 _ () |
H . . Ge = G ool | i i
of monitoring data volume and run-time overheac = & E’:rﬂor tracking | &:Rinpoint
Additionally, if the instrumentation yields per-ser Z& ‘_:E;;Oi:zgt?beha_ioJ —
=) Ll ¥ i
measurements, as opposed to end-to-end measuretfEms 25 | ynowledge |
" ) 28 | Mowledge
we may see several false positives with respectatdt 5 £ 2| Perhopresource @ Cohenet.al,
. . L . . =5 utilization Kumaret. al.,
detection since a significant change in performane&ics ata =27V s Chaaipl
node (e.g., per-hop delay) may not lead to sigmifichanges = £ 5 "eterkenifing
in end-to-end performance metrics (e.g., relatignsetween 2. B
Onenede  Somenodes Allnodes

end-to-end delay and SLA).

More sophisticated solutions, on the other handolire
collecting information about the operational sertanbf the
system, such as the interactions between diffexemponents
of the system (referred to as the per-hop depeme®ner the
flow of requests through the system components éhgrthe
identification of end-to-end paths for each requebhis type
of inter-component dependency information allows
performance debugging system to localize faultshovit
requiring each node to be instrumented. Note, hewethat
extraction of such operational semantics and degrasids
require much greater level of “intrusiveness” besaisuch
monitors require modifications at the system, nmeddire, or
application levels. Further, different types of ntors require
different levels of intrusiveness. For instancee ther-hop
graph indicating which application components comitate
with which others can be obtained by simply snifithe
network traffic [1][14]. On the other hand, derieet of flows
or end-to-end dependencies requires the monitdremome
application-aware [4][8], for instance by requirithg insertion

of atransaction-idin the requests flowing through the system:

This level of intrusiveness can be prohibitive iroguction
systems.
C. Characterizing State-of-the-art

The research literature contains several technigioes
debugging performance faults in data centers.

Increasinginstrumentation level

Figure 2: Instrumentation and Intrusiveness of exisng
performance debugging techniques

presence of load-balancers, fail-over mechanistas, i the
system. [3], [5] constructs a dependency graphthed use
graph traversal techniques to infer root-cause sidbat best
explain performance degradation. Pinpoint [7] anagble [4]
demand information about the
dependencies and the request flow respectivelyle@an of
this information demands intrusion at the middleavar the
application level. Pinpoint [7] uses data clustgrtechniques
to discover root-cause nodes of performance deticadahile
Magpie [4] uses a stochastic context-free gramr8&HG) to
identify root causes of anomalies. IronModel [1Bbgmses an
even more intrusive technique by using the per-ttaa and
control flow information to build a queuing modef the
system. We note, however, that Magpie [4] and Irod®
[12]can also be utilized for tasks beyond just gerfance
debugging (e.g., for tasks such as capacity planniorkload
analysis, and what-if analysis).The most intrugeehnique is
the rule-based approach proposed in Yemanja [2afga
uses expert knowledge of system behaviour to ifjertie
root-cause(s) of the observed failures.
discussion, and as visually depicted in Figure &, olserve

Thetmt:

request-component

Based o th



Observation 2. Most techniques require
instrumentation or high intrusiveness, or both.

high

Based on the above discussions, it appears thaxteat of
instrumentation and amount of intrusiveness of toosi
complement each other.
instrumentation use less intrusive monitors, whdehniques
requiring smaller amount of instrumentation gergrakly

upon intrusive monitoring.For instance, Pinpoint requires

request-component dependency. This information ban
obtained in a high instrumentation-low intrusive rmer by
making each node monitor the event of request alrriv
Instrumentation is required at each node but eade nequires
a middleware level intrusiveness to capture thermtion
about the arriving requests. On the other hand,rélogest-
component dependency information can also be dddaiim a
low instrumentation-high intrusive manner by makiagch
request store the information of the component dsses
through. Each request thus performs an intrusiwerain of
modifying the application content to contain thempmnent
information. The request-component dependenciegtuanbe
obtained from the requests without instrumentattbrany of
the system components. We can summarize this insigh
follows:

Observation 3:1It is possible to tradeoff the level of
instrumentation against the level of intrusivenesseded for a
technique.

While existing techniques enable effective perfanoea
debugging by using either significant instrumetati or
intrusiveness, production systems can place sogmfi
restrictions on which nodes can be instrumentededsas the
level of intrusiveness that is permitted. This camplicate the
deployment of existing performance debugging tempines in
production systems or limit their effectivenessisTiimitation
leads us to pose otmore with less”question:

Is it possible to achieve effective performanceudging
using low instrumentatioand low intrusiveness?

In what follows we consider the production systespidted
in Figure 1 as well as the constraints imposedis $ystem to

by only one faulty node We will consider the equity trade
plant application (Figure 1), along with the coastts imposed
by the production environment on the permitted
instrumentation and intrusiveness, for our disarssie will
discuss a straw man approach for fault localizafiorthis
environment, with the main goal of articulating ttteallenges

Techniques demanding heawydoing more with less.

A. A Production Data Center: Characteristics and
Constraints

The equity trade plant, a subset of which was degidin
Figure 1, is shown in full detail in Figure 3. Thaavironment
consists of 469 nodes, 2,072 links, and 39,567 uaigaths.
There are 121 source nodes, 112 exit nodes, and 236
intermediate nodes in the graph. Each node in ttaphg
represents an application component that procébsetsading
orders and forwards them to the downstream nodé¢her
exchange. Each server may host one or more appficat
components. Requests enter the system from anyobitiee
source nodes, flow through a number of intermedistdes,
and exit from any one of the exit nodes.

As indicated earlier, a critical business requiretria this
environment is that the end-to-end latency for pssing each
equity trade should not exceed 7719 In the event this service
level objective (SLO) is violated, we need to detémcalize,
and correct thefault” in near-real-time. We assume that a
violation of the SLO is caused either by an ovetlaaa node
or due to software or hardware errors (e.g., a mgreak)
that slow down request processing. Our discusséoe tgnores
fail-stop faults, where a component fails completmhd stops
processing requests; such faults are just as alritec correct
but can be easier to localize than SLO violations.

This environment imposes severe restrictions on the
permitted instrumentation and the intrusivenesse fw the
very stringent end-to-end latency requirements,
administrators do not allow any intermediate node be
instrumented purely for performance debugging (event the
instrumentation from impacting the request proces$atency
at the node and also to avoid any accidental clsatmehe
system behavior caused by such instrumentatiow) mdnitor
SLA compliance, the environment timestamps eachuasf
upon arrival at an entry node and just prior toattepe at an
exit node. Based on these timestamps, when a redeparts

the

propose a straw man approach for addressing theeabdt an exit node, the monitor flags the requestaagnig met or

guestion.

Ill.  DOING MORE WITH LESS : AN EXAMPLE

In this section, we consider the problem of lodatiz
violations in the end-to-end latency requiremeritequests to
the node (a server or a process) that is primeg#ponsible for
the violations. For this exposition, we make thdofeing
simplifying assumption: End-to-end latency violatis caused

violated the SLO requirement. If the monitors aé @r more
exit nodes begin to observe SLO violations, ourl geato
localize the fault to the node that is the rootseaof the SLO
violation. Beyond the fact that certain monitors abserving
violations, no additional information is availabléo us other
than the system graph shown in Figure 3.

% We will describe the challenges in handling migtipimultaneous failures
in Section IV.



Figure 3. Real trade-plant production system graph
overview

We formally state the problem as follows: Given @)
system graph of normal operations depicting apfitina
component interactions and (2) instrumentationhat éntry
and exit nodes that timestamp requests; deternhiralize)
which node in the graph is causing SLO violatiorteenever
one or more exit nodes observe such violationsurgigd
depicts an example graph with such a setup. In fdilmiws,
we present two straw man approaches for addregsiisg
problem.

Query entry poin

Query exit points
(SLA validation

Figure 4. An example graph with monitoring at entryand
exit nodes.

B. Signature-based Localization

The main insight behind our straw man approachas the
effect of a faulty (overloaded) node is typicallysible at

of a performance fault, then all requests pasdimgugh the
node will experience degraded performance, andehah@xit
nodes reachable from the faulty node will experer@lO
violations. By identifying the exit nodes that exignce SLO
violations, we can localize the fault to a uniquede (or a
small set of nodes).

To formalize this idea, we define the notion ofnede
signature.Intuitively, the signature of a node is the setatf
monitors that are reachable from this node (i.aveha path
from the node to them). Formally, for a given det monitors,

a node signaturés ak-bit string where each bit represents the
accessibility of the monitor from the node. Eaclacteble
monitor from a particular node has its bit setlbif the node
signature, unreachable egress points have theiséitto ‘0’.

For instance, consider the graph shown in Figureith
nodes 10, 11, 12, and 13 as the monitor nodes. Jdtigp
generated-bit node signatures. For example, signature of node
8 is 1000. Based on the graph property and thetitotaf
monitor nodes, some nodes may have the same sign&ir
instance, nodes 1, 2, and 5 share the same llh@atuig,
nodes 4 and 7 have 0001 and, nodes 6 and 9 haGe 011

Whenever a node experiences a performance faudt,oon
more exit monitors will observe SLO violations withan
observation window. We can compute thelation signature
as a bit string where each monitor observing an Sioftion
sets its bit to 1, while monitors that do not olbseSLO
violations set their bits to 0. The fault localipat task then
becomes the task of determining which node in thplgcould
have generated that violation signature. This eaddiermined
by matching the violation signature to the nodenafgres; a
unique match identifies the failed node precisely.

A signature match identifies the failed node beegijsonly
that node has a path to all the monitors that elkeseviolations
and no others, and (ii) assuming that the failedensent at
least one request along each outgoing edge, oaly st of
monitors would have all observed violations in that
observation window.

This matching can be performed by a simple off-line
approach that pre-computes the signatures of a@ésan the
graph and performs a table lookup to determine Wwhimde(s)
match the violation signature. The effectiveness thé
approach depends critically on the assumption it nodes
will have unique signature. This depends on thelystructure
and may not always be true. For example, in thplydepicted
in Figure 4, nodes 1, 2, and 5 all have identigghatures of
1110. Thus, if the violation signature is 1110sthpproach
can narrow the failure to nodes 1, 2, and 5 buhatpinpoint
the failure to a particular node in this set. lhestwords, the
efficacy of this approach depends on the systemhgra

We have applied the signature-based approach to
production system shown in Figure 3. With the naipproach
of placing monitors at all the 112 exit nodes, \aa generate a
112bit signature for the remaining 357 non-exit egdThis
naive approach generates 137 unique signaturethéoB57

the

multiple exit nodes. This is because; once a nadthe cause non-exit nodes, which is 38% of the total numbenofi-exit



nodes. Considering only the 121 source nodes, 7fuen
signatures are generated, which is 58% of the tatedber of
source nodes. Thus, in this production system, éetw40-
60% of the node signatures are unique. A failurk e@use
multiple node matches, allowing us to narrow thiufa to a
subset of the nodes and other techniques will loessary to
determine the precise cause.

C. Online Signature Matching via Graph Coloring

Pre-computing node signatures offline and usingalalet
lookup for signature matching is effective only whéhe
system graph is static. In large data centers,gtlaph may
change over time due to application or hardwareifications
(which causes nodes and links to be modified). Véev n
present a graph coloring technique that is equitale the
signature matching approach but is more suitableséttings
where changes to the graph structure are freqdenéxample
of such a scenario is the dissemination of margdates in the
trade plant, which is done via a publish-subscepstem. As
stock traders change or add subscriptions and w&ssoarces
of market information appear, the graph topology e¥iange.

Our graph coloring-based approach is an on-linartiegie
that can be used to localize faults on-the-fly wieen SLA
violation is detected. This approach does not require-
computation of signatures and can therefore accatateo
graph changes easily.

Step 1:SLA violation detection Step Mark suspect nodes

10

SLA violatior

Step 3:Clear suspect nodes that lead to a valid requesuéon

Root cause of the
SLA violation

13
Figure 5. Graph Coloring Algorithm

We first explain the intuition behind this approa€onsider
a faulty node in the graph that causes SLO viatgtiassume
that these SLO violations are detected at a sulfséte exit
monitor nodes. If a monitor observes a violatidfiollows that

is only one faulty node (based on our assumptidhg
intersectionof the ancestor nodes of all monitors observing
SLO violations must contain the faulty node (siticis faulty
node causes SLO violations at all of these monitbreust
belong to the ancestors set of all of them). By jgotimg the
intersection of the ancestor set, we can narrowndibv choice

to a small set of nodes. Since the intersection nwyyield a
unique node, we must prune the graph further.

To do so, we consider monitor nodes ttiigt notobserve a
violation. For each such monitor, it follows that af its
ancestor nodes are operating normally and did xmeréence a
fault. Hence, we can compute the ancestor set pffaualty
nodes for each such monitor and then prune the eabov
intersection set by dropping nodes that belongotb bkets (i.e.,
if a node is not faulty, it is dropped from the abadntersection
set). By repeating this procedure for each moritat did not
observe a violation, we can pinpoint the faulty @ad the
system. It can be shown that this technique istfanally
equivalent to signature matching---if signature chayields a
unique faulty node, this technique will also pingdihat node.

If signature matching yields multiple matches, quiuning
process will be left with the same set of nodes.

We can instantiate this idea as a graph colorirablpm.
Again we assume that if a node is faulty, at les request
was sent on each of its outgoing edge in our obsierv
window. The algorithm can be described using thievieng 6
steps:

1. Mark red all the monitor nodes where SLO violations
have been detected.

2. Mark green all the remaining monitor nodes where
performance degradation has not been detected.

3. Mark all nodes in the predecessor graph of allréte
exit nodes as red one at a time. Each time a rode i
marked red, increment its red count.

4. Drop all red nodes whose red count is smaller than
where n the number of monitors observing SLO
violations.

5. Mark all nodes in the predecessor graph of allgiteen
exit nodes as green, potentially turning red ndmbek
to green.

6. Remaining red components are possible root caoses f
the observed performance degradation.

Assume that in the graph shown in Figure 5, the itomn
are placed on the exit nodes, i.e., nodes 10, 21 add 13.
Consider a scenario where node 8 fails. As showrigare 5,
a failure is detected only at monitor node 10 (stepAll nodes
leading to node 10 are marked red in step 2. Aesdd, 12
and 13 did not detect an SLA violation; all nodeading to
these monitors are marked green. This only leavee 18 as
the potential root cause node for the failure.

one of itsancestornodes in the graph is faulty. Since this is

true for each monitor that observes a violatiord simce there



Step 1:SLA violation detection

Step Mark suspect nodes

1
SLA violatiors

12

Step 3:Clear suspect nodes that lead to a valid requesué&on

Large number of
potential root causes

Figure 6. An instance of graph coloring with a lar@
number of potential root causes

However, if we consider the other use case depiated
Figure 6 where node 9 fails; the failure is detéae monitor
nodes 11 and 12. The algorithm outputs five poggibtential
root cause nodes 2, 3, 5, 6, and 9. Like the sigeahatching,
this is a limitation of the approach, where thepgratructure
prevents unique identification of the faulty nodew yields
multiple root cause nodes. We discuss further ditiahs and
challenges in the next section.

IV. OPPORTUNITIES AND CHALLENGES OF PERFORMANCE
DEBUGGING IN REAL PRODUCTION SYSTEMS

The straw man approaches proposed in Section peap
promising; however, they have several limitatiohs. this
section, we discuss these limitations and deriveset of
research challenges for developing practical anféctye
performance debugging solutions. As discussed sti@ell,
operational data centers require techniques tlzd¢ sath their
size and complexity. Performance debugging mustdhéeved
with minimal intrusiveness and instrumentation. rAsntioned
in Section |, performance debugging can be splb ifour
tasks: build a model of normal operations of aeystdeploy
monitors to probe for operational statistics, depssformance
failures, and localize faults. Next we discuss thallenges
involved in each task.

A. Deriving a System Model

The size and complexity of real production systesns
typically too large for a human to manually derame accurate
model of the system. Hence,
application components, the connection graph aod-fevel
information must be determined automatically. Thiedel

the dependency between

must be kept up-to-date with each incremental changhe
hardware and software components. Thus, the obgeofi the
modeling task is to automatically build a model rafrmal
system behavior. Keeping the various constraints
deployment in real production systems in mind, timedel
needs to be built with reasonably low instrumentatind low
intrusiveness. Various challenges need to be aselewhile
developing a system model.

As discussed in Section Il, system models can bk ibu
various ways using different system information hsuas
request flows, per node resource utilization, @echniques
demanding high instrumentation and high intrusigsnean
have prohibitive cost in most production systemartlter,
many of these models cannot be derived in producjstems
because of unavailability of the required inforroati For
instance, the production systems do not necesshale a
transaction-id that is carried throughout the syste capture
end-to-end flow information of each request and tmesort to
other methods if such a model is necessary.

Several mechanisms can be employed to derive thieray
model at low cost. Low instrumentation techniqueshsas
network packet sniffing can be employed to derivgraph of
communication patterns. Such models can also bigedeby
examining application logs, where available, toed®ine
which components communicate with what other corapts
Models depicting request flows can be derived usifgrence
methods on application request logs of neighboniodes—by
determining correlations between certain requdstedei that
trigger certain other request at a neighboring rjq@estead of
requiring a unique request or transaction ID thatarried with
the request as it flows through the system).

In all of these cases, the completeness and agcofathe
system model depends on the accuracy of the alaigistem
information. System logs can contain erroneousientor
incomplete information, which makes it even harngeinfer an
accurate model of the system.

B. Monitor Placement

In order to measure the end-to-end performance icaetr
such as latency, throughput, etc., there is a rieeglace
monitors in the system to gather
deployment of monitors involves instrumentation rinead.
Furthermore, depending on what data needs to et by
each monitor, the level of intrusiveness will vary.
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failure detection is to quickly and accurately déetehe

Since production systems are loath to incur theraextpresence of failures at internal nodes based owltkervation

overheads of monitoring, there is a need to mirgmike
number of monitors placed in the system (while eetpg
constraints on where monitors can be placed). Apieat
earlier, there is often a tradeoff between instmitaigon and
intrusiveness—as the number of monitors is decreatted
amount of data gathered by each monitor will neemh¢rease
in order to maintain the same level w§ibility into the data
center. Thus, a key challenge is to design teclesiginat
require low instrumentation while requiring low rin¢iveness
as well (in terms of data gathered by each node).

The objective of the monitor placement problemoidind
the minimal number of nodes where the monitors Ehbe
placed such that the system can be monitored fectien and
localization of all performance problems of intere$he
problem is somewhat similar to network tomograph]]
where observations at a few edge nodes are useéetovhat
is happening inside the network; here we use sficby
placed monitors to infer the state of internal rodethe data
center.

There is also a tradeoff between the number of tamand
the accuracy of the fault detection and localizatié small
number of monitors will provide lessoverageof the data
center nodes for fault detection. Similarly, in aignature-
based fault localization approach, use of a smallanber of
monitors increases the chance of signature callsiand
yields fewer nodes with unique signatures). Corelgrsa
larger number of strategically placed monitors éases the
number of nodes with unique signatures and enhattoes
precision of fault localization. In the ideal case,unique
signatures can be generated with tjgMmonitors, but the
structure of the graph affects the distribution thfese
signatures across different nodes in the graphekample, in
case of a linear chain as shown in Figure 7 (&) thié monitor
node placed on the exit node, all the nodes ifitigar chain
would have the same signature. Another examplefisno

being made at the monitor nodes. Failure detediemomes a
challenging problem because of various factors sashhe
duration failure, nature of failure propagatiorg. et

As argued in Section llpoint observations at monitors can
sometimes vyield false positives in terms of endito-
performance metrics. An example of such situatsowlien the
node specific processing latency increases shawpty still
does not cause the end-to-end latency to exceedStH
threshold. Also, in situation where load-balancehét load
from one node to another, each node will obsenlatency
change but the end-to-end performance of the cgienight
stay unchanged. Clearly, failure detection shoubd imcur
false positives, or even worse, false negativelseRaegatives
can occur if monitor placement does not yield édVverage of
nodes in the data center, and hence monitors aableirto
detect failures at certain nodes.

Failure detection techniques should also be able
distinguish between effects due to valid changestha
workload and those caused by node failures. Fdarce, a
failure of a system component and an increase ansttstem
workload can both lead to degradation in the endrid
performance metric observed at the monitors. Mositwill
need to differentiate between these two effects.

Finally we have implicitly assumed that a faulty deo

to

impactsall requests flowing through it. This may not always

be true in real systems. For example, queriesabegss very
large tables on a database server may incur loogepsing
latencies, while those accessing normal-sized sablay not
see any SLO violations. In such scenarios, onlylsat of the
requests flowing through a node will see SLO violas. The
monitor must be able to detect failures that aféedy portions
of the workload. The uncertainties caused by tertdiailures
add further challenge to failure detection.

D. Fault Localization

“hour-glass” shaped graph as shown in Figure 7 (b) with the Th€ straw man approach proposed in Section IIl,lewhi

exit nodes as the monitor nodes. In this casesitp@ature of

promising, has several limitations that will need be

all nodes that areabové the bottleneck node 1, will have the @ddressed prior to deployment in a real system. hafee

same signature.
Thus, monitor placement will need to consider tiaglé¢offs
between the graph structure, the number of monittre

already pointed out the limitation of the approatiocalizing
faults whenever multiple nodes in the graph hawe ghme
signature. Further, our discussion assumed that @mé node

uniqueness of signatures, and the level of intarsées needed fails at any given time. This assumption will naidhin large

to achieve a certain level of visibility into thatd center state.

Constraints imposed by production systems
complicate monitor placement by eliminating certaodes
from being monitors even if they are strategicathportant
within the system graph.

C. Real-Time Failure Detection

The failure of a node manifests itself in the foolh SLO
violations at monitor nodes (since the performamsric of
interest exceeds the SLO threshold). A quick detecof
failure can lead to timely corrective actions. Tdigective of

data centers with hundreds or thousands of servendtiple

furthé}Ode failures will be the common case in such systaVhen

multiple nodes fail simultaneously, the monitor asdwill

observe a&ompositeviolation signature that is the union of the

signature of the failed nodes. The fault localmattechnique
will need to identify the failed nodes by “matchinthe
composite signature to multiple nodes that coNetyi
generate this signature—a more challenging matdhisig
Another assumption we made is that the failed reeaels at
least one request along each outgoing edge within
observation window. In real systems, edges ardylike be

a



traversed with non-uniform probability. Infrequentraversed challenges in making such approaches practicalediedtive

edges may not see any requests within the obsenviatierval,
resulting in goartial signature. A partial signature results when
certain monitors that are reachable from a failedendo not
see any failed request, causing their bits to hetsezero.

Matching partial signature to node signatures igl@ous to
substring matching and can undermine the ability thod

technique to localize failures to a unique node.

Finally, certain failures may be transient where fhilure
occurs for a short amount of time, typically whehe t
component is close to saturation point on onesofesources.
This might cause the violation signature to flutéuaith time,
as the node fluctuates above or below its saturdticeshold,
causing some requests to fail the SLO objectivesevdihers
meet the performance objective. The inability af tachnique
to obtain a “fix” on the violation signature alsonaplicates
fault localization.

Each monitor must also address the inherent
determinism in real systems. For example, loadruahey
components might dynamically alter the flow of aart
requests through replicated components. It is ehgihg to
address the impact of such non-determinism on thdt f
propagation model. Locating faulty nodes in suchntert
might require techniques similar to those emploiyedetwork
tomography.

Although our discussion has considered the impéaceal-
world effects on the signature-based localizatemhnique, the
impact of multiple failures, non-uniform requestowis,
transient failures, and inherent non-determinisnthi system
will need to be considered by any type of faultal@ation
mechanism.
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(3]

(4]
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(8]

V. CONCLUSIONS (]

With the increasing scale and complexity of infotioa
technology plants, detecting and localizing perfanae faults
in real-time has become both a pressing need aléEenge.
While several approaches for performance debugmindata
centers have been proposed, these techniques dassoine
any constraints on the operational data needecetectdand
localize faults. We argued that collecting suchrapienal data
requires significant instrumentation or intrusivesieand that
production data centers can impose significantriotisins on
the degree of instrumentation and intrusivenesst tisa
permitted in the system. Such constraints commictite
deployment of existing techniques in real-world @penal
systems or limit their effectiveness. Based on ghiesights,
we indicated that performance debugging can beqmaical
and effective in real-world systems only if theyquae low
levels of instrumentation and intrusiveness. We thesed our
“more with less questions” of whether it is possibd develop
effective fault detection and localization techréguwith low
instrumentation and intrusiveness. We proposedaavsinan
approach for localizing faults by considering coaistts
imposed in a real system. We then presented segstas and

[10]

[11]

[12]

[13]

[14]

in production systems.
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