

Abstract — With the increasing scale and complexity of data

centers, detecting and localizing performance faults in real-time
has become both a pressing need and a challenge. While several
approaches for performance debugging in data centers have been
proposed, these techniques do not assume any constraints on the
availability of operational data needed to detect and localize
faults. We argue that collecting such operational data often
requires significant instrumentation or intrusiveness, which is
difficult to realize in production data centers. Such constraints
complicate the deployment of existing techniques or limit their
effectiveness in practice. In this paper, we argue that for
performance debugging to become practical and effective in real-
world systems, one needs to develop techniques that are “more
effective” with “less instrumentation and intrusiveness”. We raise
several issues and challenges in realizing this vision and present
some initial ideas on addressing these challenges.

Index Terms—data centers, performance debugging, fault
detection and localization, operating and distributed systems.

I. INTRODUCTION

defining characteristic of the information age is our
reliance on data centers—consisting of large numbers
of computing, communication, and storage systems as
well as wide-range of applications and services. The

scale and complexity of these data centers, however, have been
increasing rapidly. This, in turn, is limiting our ability to
understand and control the operations of such data centers.

Consider, for instance, an equity trading plant operated by a
top-tier investment bank in the US. This data center receives
and processes 4-6 millions of requests for equity trades
(referred to as orders) and 10-100 million market updates
(news, stock-tick updates, etc.) each day. Upon its arrival, each
order goes through several processing steps prior to being
dispatched to a stock exchange (e.g., New York Stock
Exchange (NYSE)) for execution. Similarly, market updates

1 This research was supported in part by NSF grants CNS-0720271 and

CNS-0720616. Authors are listed in alphabetical order and can be contacted at
{cecchet,shenoy}@cs.umass.edu and {maitreya.natu,vaishali.sadaphal, harrick
.vin}@tcs.com

are processed, enriched, aggregated and then transmitted to
thousands of program trading engines as well as traders’
workstations. The IT infrastructure for processing these orders
and market updates consists of thousands of application
components running on several hundred servers. Orders and
market updates hop from one component/server to another
prior to reaching their destination. Figure 1 depicts a portion of
the data center operated by this investment bank for processing
trading orders; each node in this graph represents an
application process and edges indicate the flow of requests
from one process to next.

A critical business requirement in this environment is that
the end-to-end latency for processing each request should not
exceed 7-10ms. In the event that end-to-end delay starts to
exceed this threshold consistently, one needs to detect, localize
and correct the “fault” rapidly (near-real-time). Note that end-
to-end delay may increase because of dynamic changes in
workload (leading to congestion at a processing node) or
slowing down of a processing node because of hardware or
software errors (e.g., memory leak). The longer it takes to
detect and localize faults, the greater is the business impact.
Today, unfortunately, because of the scale and complexity of
data centers, the volume of requests, and the manual analysis
processes, localizing performance faults often takes hours (and
at times, even days).

Detecting and localizing performance faults2—referred to as

performance debugging—in such data centers involve four key
steps:

1. Build a model of normal operations of a system

(generally through off-line analysis of data obtained
by instrumenting the system);

2. Place probes to monitor the operational system;
3. Detect performance faults in near-real-time; and
4. Localize faults by combining the knowledge (model

and monitored data) derived in previous steps.

2 In this paper, we only consider faults that impact performance (e.g., end-

to-end latency or throughput) of the system, and not fail-stop faults.

Performance Debugging in Data Centers:
Doing More with Less1

Emmanuel Cecchet†, Maitreya Natu‡, Vaishali Sadaphal‡, Prashant Shenoy†, Harrick Vin‡

†Computer Science Department, University of Massachusetts at Amherst, USA

‡Tata Research Development and Design Centre (TRDDC), Tata Consultancy Services, Pune, India

A

Figure 1. Structure of an Equity Trading Application at a Top-tier Investment Bank. Circled nodes are the top-k
application components in terms of the workload processed by each node in the system.

The effectiveness of the above steps depends on the number
and the type of data collection probes available in the system.
Retrofitting an operational system with the instrumentation
required to facilitate performance debugging, however, is
always a challenge. System operators and administrators are
reluctant to introduce probes into the production environment,
especially if the probes are intrusive (and can modify the
system behavior). Thus, a key practical requirement is that a
performance debugging solution should minimize the amount
of instrumentation needed to gather real-time operational
statistics and the intrusiveness of these data gathering
methods.

Much of the prior research in the area of performance
debugging has ignored this very basic practical requirement.
Further, much of the prior work has focused on algorithms for
fault localization, while assuming that all of the data required
by the algorithm for its decision making can be easily gathered.
Unfortunately, in most cases, collecting such data either
requires significant instrumentation (e.g., requiring a probe to
be placed at each process or server) or intrusiveness (e.g.,
requiring that each request carries a request-ID end-to-end
such that the debugging system can track flow of requests).
This makes these techniques difficult to deploy in real-world
operational systems.

In this paper, we argue that for automated performance
debugging to become practical and effective in real-world
systems, one needs to develop techniques that are more
effective even with less instrumentation and intrusiveness. Our
goal here is to raise several issues and challenges in designing
these techniques – rather than propose solutions for specific
settings.

The rest of the paper is organized as follows. In Section II,
we first argue that effective performance debugging can be

achieved by using either significant instrumentation or
intrusiveness but is challenging when constraints are placed on
both. We then raise the “more with less” question: Is it
possible to achieve effective performance debugging using low
instrumentation and low intrusiveness? In Section III, we
discuss an example scenario with low instrumentation and
intrusiveness, and describe a straw man approach for
performance debugging in this environment. The straw man
approach appears promising; however, it has several
limitations. We use this discussion to derive, in Section IV, a
set of research challenges for developing practical and
effective performance debugging solutions. Finally, Section V
concludes our paper.

II. INSTRUMENTATION AND INTRUSIVENESS

Performance debugging in data center requires two different
types of instrumentation: (1) to detect faults in near real-time;
and (2) to build an operational model of the system for
subsequent fault localization. Interestingly, the amount of
instrumentation and intrusiveness required for one task is
generally quite different from what is needed for the other.

A. Instrumentation for Fault Detection

The instrumentation required for fault detection depends on
the primary performance metric of the application (e.g., end-to-
end latency or throughput). For instance, if the primary
performance metric is end-to-end latency, then the
instrumentation must timestamp each request upon arrival into
and departure from the system, and take the difference between
the two timestamps. Since each request must carry the arrival
timestamp with it, the required instrumentation is inherently
intrusive.

If, on the other hand, throughput is the primary performance
metric for an application, then the instrumentation for fault

detection simply needs to compute the number of requests
departing the system within a defined interval. This can be
done with very little intrusiveness. These insights yield our
first observation:

Observation 1: The instrumentation intrusiveness is a direct
function of the performance metric of interest.

B. Instrumentation for Fault Localization

The goal of fault localization is to identify the component
(process, server, or workload) that is the root-cause for the
performance fault.

A simple solution consists of measuring performance
metrics of interest as well as resource utilization levels at all
servers in a data center. A fault can be then be localized by
detecting significant changes in the measured values at servers.
An example of this approach is the work by Cohen et al. [8]
that involves monitoring resource usage of all servers, and then
correlating SLA violations to resource usage on individual
servers.

However, this simple approach requires a large amount of
instrumentation and incurs significant overhead—both in terms
of monitoring data volume and run-time overhead.
Additionally, if the instrumentation yields per-server
measurements, as opposed to end-to-end measurements, then
we may see several false positives with respect to fault
detection since a significant change in performance metrics at a
node (e.g., per-hop delay) may not lead to significant changes
in end-to-end performance metrics (e.g., relationship between
end-to-end delay and SLA).

More sophisticated solutions, on the other hand, involve
collecting information about the operational semantics of the
system, such as the interactions between different components
of the system (referred to as the per-hop dependencies) or the
flow of requests through the system components (namely, the
identification of end-to-end paths for each request). This type
of inter-component dependency information allows a
performance debugging system to localize faults without
requiring each node to be instrumented. Note, however, that
extraction of such operational semantics and dependencies
require much greater level of “intrusiveness” because such
monitors require modifications at the system, middleware, or
application levels. Further, different types of monitors require
different levels of intrusiveness. For instance, the per-hop
graph indicating which application components communicate
with which others can be obtained by simply sniffing the
network traffic [1][14]. On the other hand, derivation of flows
or end-to-end dependencies requires the monitor to become
application-aware [4][8], for instance by requiring the insertion
of a transaction-id in the requests flowing through the system.
This level of intrusiveness can be prohibitive in production
systems.

C. Characterizing State-of-the-art

The research literature contains several techniques for
debugging performance faults in data centers. These

techniques require different levels of instrumentation and
intrusiveness. Figure 2 classifies these approaches along these
two dimensions.

Many of these techniques require information about per-hop
resource consumption and thus require instrumentation over all
nodes. [8] and [11] propose to use Tree Augmented Bayesian
Network (TAN) [9], [10] models to identify correlations
between resource usage of individual components and end-to-
end SLO violation. [6] builds a decision tree in which nodes
represent resources or their properties and leaves represent
failed or successful requests. Nodes on the paths from root to
the leaves that represent failure are diagnosed as potential root-
causes of the failure. Bahl et. al. [3] propose a more intrusive
technique and require information about the

Figure 2: Instrumentation and Intrusiveness of existing
performance debugging techniques

presence of load-balancers, fail-over mechanisms, etc. in the
system. [3], [5] constructs a dependency graph and then use
graph traversal techniques to infer root-cause nodes that best
explain performance degradation. Pinpoint [7] and Magpie [4]
demand information about the request-component
dependencies and the request flow respectively. Collection of
this information demands intrusion at the middleware or the
application level. Pinpoint [7] uses data clustering techniques
to discover root-cause nodes of performance degradation while
Magpie [4] uses a stochastic context-free grammar (SCFG) to
identify root causes of anomalies. IronModel [12] proposes an
even more intrusive technique by using the per-hop data and
control flow information to build a queuing model of the
system. We note, however, that Magpie [4] and IronModel
[12]can also be utilized for tasks beyond just performance
debugging (e.g., for tasks such as capacity planning, workload
analysis, and what-if analysis).The most intrusive technique is
the rule-based approach proposed in Yemanja [2]. Yemanja
uses expert knowledge of system behaviour to identify the
root-cause(s) of the observed failures. Based on this
discussion, and as visually depicted in Figure 2, we observe
that:

Observation 2: Most techniques require high

instrumentation or high intrusiveness, or both.

Based on the above discussions, it appears that the extent of

instrumentation and amount of intrusiveness of monitors
complement each other. Techniques demanding heavy
instrumentation use less intrusive monitors, while techniques
requiring smaller amount of instrumentation generally rely
upon intrusive monitoring. For instance, Pinpoint requires
request-component dependency. This information can be
obtained in a high instrumentation-low intrusive manner by
making each node monitor the event of request arrival.
Instrumentation is required at each node but each node requires
a middleware level intrusiveness to capture the information
about the arriving requests. On the other hand, the request-
component dependency information can also be obtained in a
low instrumentation-high intrusive manner by making each
request store the information of the component it passes
through. Each request thus performs an intrusive operation of
modifying the application content to contain the component
information. The request-component dependencies can thus be
obtained from the requests without instrumentation of any of
the system components. We can summarize this insight as
follows:

Observation 3: It is possible to tradeoff the level of

instrumentation against the level of intrusiveness needed for a
technique.

While existing techniques enable effective performance

debugging by using either significant instrumentation or
intrusiveness, production systems can place significant
restrictions on which nodes can be instrumented as well as the
level of intrusiveness that is permitted. This can complicate the
deployment of existing performance debugging techniques in
production systems or limit their effectiveness. This limitation
leads us to pose our “more with less” question:

Is it possible to achieve effective performance debugging

using low instrumentation and low intrusiveness?

In what follows we consider the production system depicted

in Figure 1 as well as the constraints imposed in this system to
propose a straw man approach for addressing the above
question.

III. DOING MORE WITH LESS : AN EXAMPLE

In this section, we consider the problem of localizing
violations in the end-to-end latency requirements of requests to
the node (a server or a process) that is primarily responsible for
the violations. For this exposition, we make the following
simplifying assumption: End-to-end latency violation is caused

by only one faulty node3. We will consider the equity trade
plant application (Figure 1), along with the constraints imposed
by the production environment on the permitted
instrumentation and intrusiveness, for our discussion. We will
discuss a straw man approach for fault localization in this
environment, with the main goal of articulating the challenges
in doing more with less.

A. A Production Data Center: Characteristics and
Constraints

The equity trade plant, a subset of which was depicted in
Figure 1, is shown in full detail in Figure 3. This environment
consists of 469 nodes, 2,072 links, and 39,567 unique paths.
There are 121 source nodes, 112 exit nodes, and 236
intermediate nodes in the graph. Each node in the graph
represents an application component that processes the trading
orders and forwards them to the downstream node or the
exchange. Each server may host one or more application
components. Requests enter the system from any one of the
source nodes, flow through a number of intermediate nodes,
and exit from any one of the exit nodes.

As indicated earlier, a critical business requirement in this
environment is that the end-to-end latency for processing each
equity trade should not exceed 7-10ms. In the event this service
level objective (SLO) is violated, we need to detect, localize,
and correct the “fault” in near-real-time. We assume that a
violation of the SLO is caused either by an overload at a node
or due to software or hardware errors (e.g., a memory leak)
that slow down request processing. Our discussion here ignores
fail-stop faults, where a component fails completely and stops
processing requests; such faults are just as critical to correct
but can be easier to localize than SLO violations.

This environment imposes severe restrictions on the
permitted instrumentation and the intrusiveness. Due to the
very stringent end-to-end latency requirements, the
administrators do not allow any intermediate node to be
instrumented purely for performance debugging (to prevent the
instrumentation from impacting the request processing latency
at the node and also to avoid any accidental changes to the
system behavior caused by such instrumentation). To monitor
SLA compliance, the environment timestamps each request
upon arrival at an entry node and just prior to departure at an
exit node. Based on these timestamps, when a request departs
at an exit node, the monitor flags the request as having met or
violated the SLO requirement. If the monitors at one or more
exit nodes begin to observe SLO violations, our goal is to
localize the fault to the node that is the root-cause of the SLO
violation. Beyond the fact that certain monitors are observing
violations, no additional information is available to us other
than the system graph shown in Figure 3.

3 We will describe the challenges in handling multiple simultaneous failures

in Section IV.

Figure 3. Real trade-plant production system graph
overview

We formally state the problem as follows: Given (1) a

system graph of normal operations depicting application
component interactions and (2) instrumentation at the entry
and exit nodes that timestamp requests; determine (localize)
which node in the graph is causing SLO violations whenever
one or more exit nodes observe such violations. Figure 4
depicts an example graph with such a setup. In what follows,
we present two straw man approaches for addressing this
problem.

Figure 4. An example graph with monitoring at entry and
exit nodes.

B. Signature-based Localization

The main insight behind our straw man approach is that the
effect of a faulty (overloaded) node is typically visible at
multiple exit nodes. This is because; once a node is the cause

of a performance fault, then all requests passing through the
node will experience degraded performance, and hence all exit
nodes reachable from the faulty node will experience SLO
violations. By identifying the exit nodes that experience SLO
violations, we can localize the fault to a unique node (or a
small set of nodes).

To formalize this idea, we define the notion of a node
signature. Intuitively, the signature of a node is the set of all
monitors that are reachable from this node (i.e., have a path
from the node to them). Formally, for a given set of k monitors,
a node signature is a k-bit string where each bit represents the
accessibility of the monitor from the node. Each reachable
monitor from a particular node has its bit set to ‘1’ in the node
signature, unreachable egress points have their bits set to ‘0’.

For instance, consider the graph shown in Figure 4 with
nodes 10, 11, 12, and 13 as the monitor nodes. This setup
generates 4-bit node signatures. For example, signature of node
8 is 1000. Based on the graph property and the location of
monitor nodes, some nodes may have the same signature. For
instance, nodes 1, 2, and 5 share the same 1110 signature,
nodes 4 and 7 have 0001 and, nodes 6 and 9 have 0110.

Whenever a node experiences a performance fault, one or
more exit monitors will observe SLO violations within an
observation window. We can compute the violation signature
as a bit string where each monitor observing an SLO violation
sets its bit to 1, while monitors that do not observe SLO
violations set their bits to 0. The fault localization task then
becomes the task of determining which node in the graph could
have generated that violation signature. This can be determined
by matching the violation signature to the node signatures; a
unique match identifies the failed node precisely.

A signature match identifies the failed node because (i) only
that node has a path to all the monitors that observed violations
and no others, and (ii) assuming that the failed node sent at
least one request along each outgoing edge, only that set of
monitors would have all observed violations in that
observation window.

This matching can be performed by a simple off-line
approach that pre-computes the signatures of all nodes in the
graph and performs a table lookup to determine which node(s)
match the violation signature. The effectiveness of the
approach depends critically on the assumption that most nodes
will have unique signature. This depends on the graph structure
and may not always be true. For example, in the graph depicted
in Figure 4, nodes 1, 2, and 5 all have identical signatures of
1110. Thus, if the violation signature is 1110, this approach
can narrow the failure to nodes 1, 2, and 5 but cannot pinpoint
the failure to a particular node in this set. In other words, the
efficacy of this approach depends on the system graph.

We have applied the signature-based approach to the
production system shown in Figure 3. With the naïve approach
of placing monitors at all the 112 exit nodes, we can generate a
112bit signature for the remaining 357 non-exit nodes. This
naïve approach generates 137 unique signatures for the 357
non-exit nodes, which is 38% of the total number of non-exit

Query exit points
(SLA validation)

Query entry points

1 2 3 4

5 6 7

8 9

10 11 12 13

nodes. Considering only the 121 source nodes, 71 unique
signatures are generated, which is 58% of the total number of
source nodes. Thus, in this production system, between 40-
60% of the node signatures are unique. A failure will cause
multiple node matches, allowing us to narrow the failure to a
subset of the nodes and other techniques will be necessary to
determine the precise cause.

C. Online Signature Matching via Graph Coloring

Pre-computing node signatures offline and using a table
lookup for signature matching is effective only when the
system graph is static. In large data centers, the graph may
change over time due to application or hardware modifications
(which causes nodes and links to be modified). We now
present a graph coloring technique that is equivalent to the
signature matching approach but is more suitable for settings
where changes to the graph structure are frequent. An example
of such a scenario is the dissemination of market updates in the
trade plant, which is done via a publish-subscribe system. As
stock traders change or add subscriptions and as new sources
of market information appear, the graph topology will change.

Our graph coloring-based approach is an on-line technique
that can be used to localize faults on-the-fly when an SLA
violation is detected. This approach does not require pre-
computation of signatures and can therefore accommodate
graph changes easily.

Figure 5. Graph Coloring Algorithm

We first explain the intuition behind this approach. Consider

a faulty node in the graph that causes SLO violations; assume
that these SLO violations are detected at a subset of the exit
monitor nodes. If a monitor observes a violation, it follows that
one of its ancestor nodes in the graph is faulty. Since this is
true for each monitor that observes a violation, and since there

is only one faulty node (based on our assumption), the
intersection of the ancestor nodes of all monitors observing
SLO violations must contain the faulty node (since this faulty
node causes SLO violations at all of these monitors, it must
belong to the ancestors set of all of them). By computing the
intersection of the ancestor set, we can narrow down the choice
to a small set of nodes. Since the intersection may not yield a
unique node, we must prune the graph further.

To do so, we consider monitor nodes that did not observe a
violation. For each such monitor, it follows that all of its
ancestor nodes are operating normally and did not experience a
fault. Hence, we can compute the ancestor set of non-faulty
nodes for each such monitor and then prune the above
intersection set by dropping nodes that belong to both sets (i.e.,
if a node is not faulty, it is dropped from the above intersection
set). By repeating this procedure for each monitor that did not
observe a violation, we can pinpoint the faulty node in the
system. It can be shown that this technique is functionally
equivalent to signature matching---if signature match yields a
unique faulty node, this technique will also pinpoint that node.
If signature matching yields multiple matches, our pruning
process will be left with the same set of nodes.

We can instantiate this idea as a graph coloring problem.
Again we assume that if a node is faulty, at least one request
was sent on each of its outgoing edge in our observation
window. The algorithm can be described using the following 6
steps:

1. Mark red all the monitor nodes where SLO violations
have been detected.

2. Mark green all the remaining monitor nodes where
performance degradation has not been detected.

3. Mark all nodes in the predecessor graph of all the red
exit nodes as red one at a time. Each time a node is
marked red, increment its red count.

4. Drop all red nodes whose red count is smaller than n,
where n the number of monitors observing SLO
violations.

5. Mark all nodes in the predecessor graph of all the green
exit nodes as green, potentially turning red nodes back
to green.

6. Remaining red components are possible root causes for
the observed performance degradation.

Assume that in the graph shown in Figure 5, the monitors

are placed on the exit nodes, i.e., nodes 10, 11, 12, and 13.
Consider a scenario where node 8 fails. As shown in Figure 5,
a failure is detected only at monitor node 10 (step 1). All nodes
leading to node 10 are marked red in step 2. As nodes 11, 12
and 13 did not detect an SLA violation; all nodes leading to
these monitors are marked green. This only leaves node 8 as
the potential root cause node for the failure.

SLA violation

Step 1: SLA violation detection Step 2: Mark suspect nodes

Step 3: Clear suspect nodes that lead to a valid request execution

Root cause of the
SLA violation 8

10

5 6

1 4

13

7

11 12

2 3

9

10

Figure 6. An instance of graph coloring with a large
number of potential root causes

However, if we consider the other use case depicted in
Figure 6 where node 9 fails; the failure is detected at monitor
nodes 11 and 12. The algorithm outputs five possibly potential
root cause nodes 2, 3, 5, 6, and 9. Like the signature matching,
this is a limitation of the approach, where the graph structure
prevents unique identification of the faulty nodes and yields
multiple root cause nodes. We discuss further limitations and
challenges in the next section.

IV. OPPORTUNITIES AND CHALLENGES OF PERFORMANCE

DEBUGGING IN REAL PRODUCTION SYSTEMS

The straw man approaches proposed in Section III appear
promising; however, they have several limitations. In this
section, we discuss these limitations and derive a set of
research challenges for developing practical and effective
performance debugging solutions. As discussed in Section II,
operational data centers require techniques that scale with their
size and complexity. Performance debugging must be achieved
with minimal intrusiveness and instrumentation. As mentioned
in Section I, performance debugging can be split into four
tasks: build a model of normal operations of a system, deploy
monitors to probe for operational statistics, detect performance
failures, and localize faults. Next we discuss the challenges
involved in each task.

A. Deriving a System Model

The size and complexity of real production systems are
typically too large for a human to manually derive an accurate
model of the system. Hence, the dependency between
application components, the connection graph and flow-level
information must be determined automatically. This model

must be kept up-to-date with each incremental change in the
hardware and software components. Thus, the objective of the
modeling task is to automatically build a model of normal
system behavior. Keeping the various constraints of
deployment in real production systems in mind, this model
needs to be built with reasonably low instrumentation and low
intrusiveness. Various challenges need to be addressed while
developing a system model.

As discussed in Section II, system models can be built in
various ways using different system information such as
request flows, per node resource utilization, etc. Techniques
demanding high instrumentation and high intrusiveness can
have prohibitive cost in most production systems. Further,
many of these models cannot be derived in production systems
because of unavailability of the required information. For
instance, the production systems do not necessarily have a
transaction-id that is carried throughout the system to capture
end-to-end flow information of each request and must resort to
other methods if such a model is necessary.

Several mechanisms can be employed to derive the system
model at low cost. Low instrumentation techniques such as
network packet sniffing can be employed to derive a graph of
communication patterns. Such models can also be derived by
examining application logs, where available, to determine
which components communicate with what other components.
Models depicting request flows can be derived using inference
methods on application request logs of neighboring nodes—by
determining correlations between certain requests at node i that
trigger certain other request at a neighboring node j (instead of
requiring a unique request or transaction ID that is carried with
the request as it flows through the system).

In all of these cases, the completeness and accuracy of the
system model depends on the accuracy of the available system
information. System logs can contain erroneous entries or
incomplete information, which makes it even harder to infer an
accurate model of the system.

B. Monitor Placement

In order to measure the end-to-end performance metrics
such as latency, throughput, etc., there is a need to place
monitors in the system to gather real-time data. The
deployment of monitors involves instrumentation overhead.
Furthermore, depending on what data needs to be gathered by
each monitor, the level of intrusiveness will vary.

Figure 7. (a) A linear chain (b) An ‘hour-glass’ graph

SLA violations

Step 1: SLA violation detection Step 2: Mark suspect nodes

Step 3: Clear suspect nodes that lead to a valid request execution

Large number of
potential root causes

8

10

5 6

1 4

13

7

11 12

2 3

9 9

2 3

5 6

9

11 12

11 12

1
(a) (b)

Since production systems are loath to incur the extra

overheads of monitoring, there is a need to minimize the
number of monitors placed in the system (while respecting
constraints on where monitors can be placed). As argued
earlier, there is often a tradeoff between instrumentation and
intrusiveness—as the number of monitors is decreased, the
amount of data gathered by each monitor will need to increase
in order to maintain the same level of visibility into the data
center. Thus, a key challenge is to design techniques that
require low instrumentation while requiring low intrusiveness
as well (in terms of data gathered by each node).

The objective of the monitor placement problem is to find
the minimal number of nodes where the monitors should be
placed such that the system can be monitored for detection and
localization of all performance problems of interest. The
problem is somewhat similar to network tomography [13],
where observations at a few edge nodes are used to infer what
is happening inside the network; here we use strategically
placed monitors to infer the state of internal nodes in the data
center.

There is also a tradeoff between the number of monitors and
the accuracy of the fault detection and localization. A small
number of monitors will provide less coverage of the data
center nodes for fault detection. Similarly, in our signature-
based fault localization approach, use of a smaller number of
monitors increases the chance of signature collisions (and
yields fewer nodes with unique signatures). Conversely, a
larger number of strategically placed monitors increases the
number of nodes with unique signatures and enhances the
precision of fault localization. In the ideal case, n unique
signatures can be generated with log(n) monitors, but the
structure of the graph affects the distribution of these
signatures across different nodes in the graph. For example, in
case of a linear chain as shown in Figure 7 (a) with the monitor
node placed on the exit node, all the nodes in the linear chain
would have the same signature. Another example is of an
“hour-glass” shaped graph as shown in Figure 7 (b) with the
exit nodes as the monitor nodes. In this case, the signature of
all nodes that are “above” the bottleneck node 1, will have the
same signature.

Thus, monitor placement will need to consider the tradeoffs
between the graph structure, the number of monitors, the
uniqueness of signatures, and the level of intrusiveness needed
to achieve a certain level of visibility into the data center state.

Constraints imposed by production systems further
complicate monitor placement by eliminating certain nodes
from being monitors even if they are strategically important
within the system graph.

C. Real-Time Failure Detection

The failure of a node manifests itself in the form of SLO
violations at monitor nodes (since the performance metric of
interest exceeds the SLO threshold). A quick detection of
failure can lead to timely corrective actions. The objective of

failure detection is to quickly and accurately detect the
presence of failures at internal nodes based on the observation
being made at the monitor nodes. Failure detection becomes a
challenging problem because of various factors such as the
duration failure, nature of failure propagation, etc.

As argued in Section II, point observations at monitors can
sometimes yield false positives in terms of end-to-end
performance metrics. An example of such situation is when the
node specific processing latency increases sharply but still
does not cause the end-to-end latency to exceed the SLO
threshold. Also, in situation where load-balancers shift load
from one node to another, each node will observe a latency
change but the end-to-end performance of the queries might
stay unchanged. Clearly, failure detection should not incur
false positives, or even worse, false negatives. False negatives
can occur if monitor placement does not yield full coverage of
nodes in the data center, and hence monitors are unable to
detect failures at certain nodes.

Failure detection techniques should also be able to
distinguish between effects due to valid changes in the
workload and those caused by node failures. For instance, a
failure of a system component and an increase in the system
workload can both lead to degradation in the end-to-end
performance metric observed at the monitors. Monitors will
need to differentiate between these two effects.

Finally we have implicitly assumed that a faulty node
impacts all requests flowing through it. This may not always
be true in real systems. For example, queries that access very
large tables on a database server may incur long processing
latencies, while those accessing normal-sized tables may not
see any SLO violations. In such scenarios, only a subset of the
requests flowing through a node will see SLO violations. The
monitor must be able to detect failures that affect only portions
of the workload. The uncertainties caused by transient failures
add further challenge to failure detection.

D. Fault Localization

The straw man approach proposed in Section III, while
promising, has several limitations that will need to be
addressed prior to deployment in a real system. We have
already pointed out the limitation of the approach in localizing
faults whenever multiple nodes in the graph have the same
signature. Further, our discussion assumed that only one node
fails at any given time. This assumption will not hold in large
data centers with hundreds or thousands of servers; multiple
node failures will be the common case in such systems. When
multiple nodes fail simultaneously, the monitor nodes will
observe a composite violation signature that is the union of the
signature of the failed nodes. The fault localization technique
will need to identify the failed nodes by “matching” the
composite signature to multiple nodes that collectively
generate this signature—a more challenging matching task.

Another assumption we made is that the failed node sends at
least one request along each outgoing edge within an
observation window. In real systems, edges are likely to be

traversed with non-uniform probability. Infrequently traversed
edges may not see any requests within the observation interval,
resulting in a partial signature. A partial signature results when
certain monitors that are reachable from a failed node do not
see any failed request, causing their bits to be set to zero.
Matching partial signature to node signatures is analogous to
substring matching and can undermine the ability of the
technique to localize failures to a unique node.

Finally, certain failures may be transient where the failure
occurs for a short amount of time, typically when the
component is close to saturation point on one of its resources.
This might cause the violation signature to fluctuate with time,
as the node fluctuates above or below its saturation threshold,
causing some requests to fail the SLO objectives while others
meet the performance objective. The inability of the technique
to obtain a “fix” on the violation signature also complicates
fault localization.

Each monitor must also address the inherent non-
determinism in real systems. For example, load-balancing
components might dynamically alter the flow of certain
requests through replicated components. It is challenging to
address the impact of such non-determinism on the fault
propagation model. Locating faulty nodes in such context
might require techniques similar to those employed in network
tomography.

Although our discussion has considered the impact of real-
world effects on the signature-based localization technique, the
impact of multiple failures, non-uniform request flows,
transient failures, and inherent non-determinism in the system
will need to be considered by any type of fault localization
mechanism.

V. CONCLUSIONS

With the increasing scale and complexity of information
technology plants, detecting and localizing performance faults
in real-time has become both a pressing need and a challenge.
While several approaches for performance debugging in data
centers have been proposed, these techniques do not assume
any constraints on the operational data needed to detect and
localize faults. We argued that collecting such operational data
requires significant instrumentation or intrusiveness and that
production data centers can impose significant restrictions on
the degree of instrumentation and intrusiveness that is
permitted in the system. Such constraints complicate the
deployment of existing techniques in real-world operational
systems or limit their effectiveness. Based on these insights,
we indicated that performance debugging can become practical
and effective in real-world systems only if they require low
levels of instrumentation and intrusiveness. We then posed our
“more with less questions” of whether it is possible to develop
effective fault detection and localization techniques with low
instrumentation and intrusiveness. We proposed a straw man
approach for localizing faults by considering constraints
imposed in a real system. We then presented several issues and

challenges in making such approaches practical and effective
in production systems.

REFERENCES
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A.

Muthitacharoen. Performance debugging for distributed systems of black
boxes. in Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, Bolton Landing, NY, USA.

[2] K. Appleby, G. Goldszmidt, and M. Steinder. Yemanja – A layered event
correlation engine for multi-domain server farms. In IM 2001:
Proceedings of the 9th IFIP/IEEE International Symposium on Integrated
Network Management, pages 329–344, May 2001.

[3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, A. D. Maltz, and M.
Zhang. Towards highly reliable enterprise network services via inference
of multi-level dependencies. In Proceedings of the 2007 conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, Kyoto, Japan, pages 13–24. ACM, New York, USA,
Oct. 2007.

[4] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: Online
modeling and performance-aware systems. In HOTOS’03: Proceedings
of the 9th conference on Hot Topics in Operating Systems, Berkeley,
CA, USA, 2003. USENIX Association.

[5] D. Breitgand, E. Henis, E. Ladan-Mozes, O. Shehory, and E. Yerushalmi.
Root-cause analysis of SAN performance problems: an I/O path affine
search approach. In IM 2005: 9th IFIP/IEEE International Symposium on
Integrated Network Management, pages 251–264, May 2005.

[6] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure
diagnosis using decision trees. In International conference on Autonomic
Computing, pages 36–43, May 2004.

[7] M. Y. Chen, E. Kiciman, E. Fratkin, O. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic internet services. In
Proceedings of the International conference on Dependable Systems and
Networks, pages 595–604, 2002.

[8] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase. Correlating
instrumentation data to system states: A building block for automated
diagnosis and control. In Proceedings of the 6th conference on
Symposium on Operating Systems Design and Implementation, San
Francisco, CA, USA. USENIX Association, Berkeley, CA, USA, Dec.
2004.

[9] D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian
networks: The combination of knowledge and statistical data. In Machine
Learning, pages 197–243, 1995.

[10] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian
networks: The combination of knowledge and statistical data. In Machine
Learning, Springer Netherlands, Volume 20, Number 3, pages197–243,
Sep. 1995.

[11] V. Kumar, S. Iyer, Y. Chen, A. Sahai, and K. Schwan. A state space
approach to SLA based management. In NOMS 2008: Proceedings of the
IEEE/IFIP Network Operations and Management Symposium, Salvador,
Brazil, pages 192–199, Apr. 2008.

[12] E. Thereska and G. R. Ganger. Ironmodel: Robust performance models
in the wild. In SIGMETRICS ’08: Proceedings of the 2008 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 253–264, New York, NY, USA, 2008.
ACM.

[13] T. Bu, N. Duffield, F. L. Presti, and D. Towsley. Network Tomography
on General Topology. In Proceedings of ACM SIGMETRICS 2002.

[14] X. Chen, M. Zhang, Z. M. Mao, and V. Bahl, Automating Network
Application Dependency Discovery: Experiences, Limitations, and New
Solutions. In Proceedings of OSDI 2008, San Diego, California, USA,
Dec. 2008.

