
 

 

  
Abstract — With the increasing scale and complexity of data 

centers, detecting and localizing performance faults in real-time 
has become both a pressing need and a challenge. While several 
approaches for performance debugging in data centers have been 
proposed, these techniques do not assume any constraints on the 
availability of operational data needed to detect and localize 
faults. We argue that collecting such operational data often 
requires significant instrumentation or intrusiveness, which is 
difficult to realize in production data centers.  Such constraints 
complicate the deployment of existing techniques or limit their 
effectiveness in practice. In this paper, we argue that for 
performance debugging to become practical and effective in real-
world systems, one needs to develop techniques that are “more 
effective” with “less instrumentation and intrusiveness”. We raise 
several issues and challenges in realizing this vision and present 
some initial ideas on addressing these challenges. 
 

Index Terms—data centers, performance debugging, fault 
detection and localization, operating and distributed systems. 
 

I.  INTRODUCTION 

defining characteristic of the information age is our 
reliance on data centers—consisting of large numbers 
of computing, communication, and storage systems as 
well as wide-range of applications and services. The 

scale and complexity of these data centers, however, have been 
increasing rapidly. This, in turn, is limiting our ability to 
understand and control the operations of such data centers.  

Consider, for instance, an equity trading plant operated by a 
top-tier investment bank in the US. This data center receives 
and processes 4-6 millions of requests for equity trades 
(referred to as orders) and 10-100 million market updates 
(news, stock-tick updates, etc.) each day. Upon its arrival, each 
order goes through several processing steps prior to being 
dispatched to a stock exchange (e.g., New York Stock 
Exchange (NYSE)) for execution. Similarly, market updates 
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are processed, enriched, aggregated and then transmitted to 
thousands of program trading engines as well as traders’ 
workstations. The IT infrastructure for processing these orders 
and market updates consists of thousands of application 
components running on several hundred servers. Orders and 
market updates hop from one component/server to another 
prior to reaching their destination. Figure 1 depicts a portion of 
the data center operated by this investment bank for processing 
trading orders; each node in this graph represents an 
application process and edges indicate the flow of requests 
from one process to next.  

A critical business requirement in this environment is that 
the end-to-end latency for processing each request should not 
exceed 7-10ms. In the event that end-to-end delay starts to 
exceed this threshold consistently, one needs to detect, localize 
and correct the “fault” rapidly (near-real-time). Note that end-
to-end delay may increase because of dynamic changes in 
workload (leading to congestion at a processing node) or 
slowing down of a processing node because of hardware or 
software errors (e.g., memory leak). The longer it takes to 
detect and localize faults, the greater is the business impact. 
Today, unfortunately, because of the scale and complexity of 
data centers, the volume of requests, and the manual analysis 
processes, localizing performance faults often takes hours (and 
at times, even days). 

 
Detecting and localizing performance faults2—referred to as 

performance debugging—in such data centers involve four key 
steps:  

 
1. Build a model of normal operations of a system 

(generally through off-line analysis of data obtained 
by instrumenting the system);  

2. Place probes to monitor the operational system; 
3. Detect performance faults in near-real-time; and  
4. Localize faults by combining the knowledge (model 

and monitored data) derived in previous steps. 

 

 
2 In this paper, we only consider faults that impact performance (e.g., end-

to-end latency or throughput) of the system, and not fail-stop faults. 
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Figure 1. Structure of an Equity Trading Application at a Top-tier Investment Bank. Circled nodes are the top-k 
application components in terms of the workload processed by each node in the system.  
 
The effectiveness of the above steps depends on the number 
and the type of data collection probes available in the system. 
Retrofitting an operational system with the instrumentation 
required to facilitate performance debugging, however, is 
always a challenge. System operators and administrators are 
reluctant to introduce probes into the production environment, 
especially if the probes are intrusive (and can modify the 
system behavior). Thus, a key practical requirement is that a 
performance debugging solution should minimize the amount 
of instrumentation needed to gather real-time operational 
statistics and the intrusiveness of these data gathering 
methods.  

Much of the prior research in the area of performance 
debugging has ignored this very basic practical requirement. 
Further, much of the prior work has focused on algorithms for 
fault localization, while assuming that all of the data required 
by the algorithm for its decision making can be easily gathered. 
Unfortunately, in most cases, collecting such data either 
requires significant instrumentation (e.g., requiring a probe to 
be placed at each process or server) or intrusiveness (e.g., 
requiring that each request carries a request-ID end-to-end 
such that the debugging system can track flow of requests). 
This makes these techniques difficult to deploy in real-world 
operational systems. 
 

In this paper, we argue that for automated performance 
debugging to become practical and effective in real-world 
systems, one needs to develop techniques that are more 
effective even with less instrumentation and intrusiveness. Our 
goal here is to raise several issues and challenges in designing 
these techniques – rather than propose solutions for specific 
settings.  

The rest of the paper is organized as follows. In Section II, 
we first argue that effective performance debugging can be 

achieved by using either significant instrumentation or 
intrusiveness but is challenging when constraints are placed on 
both. We then raise the “more with less” question: Is it 
possible to achieve effective performance debugging using low 
instrumentation and low intrusiveness? In Section III, we 
discuss an example scenario with low instrumentation and 
intrusiveness, and describe a straw man approach for 
performance debugging in this environment. The straw man 
approach appears promising; however, it has several 
limitations. We use this discussion to derive, in Section IV, a 
set of research challenges for developing practical and 
effective performance debugging solutions. Finally, Section V 
concludes our paper.  

II.  INSTRUMENTATION AND INTRUSIVENESS 

Performance debugging in data center requires two different 
types of instrumentation: (1) to detect faults in near real-time; 
and (2) to build an operational model of the system for 
subsequent fault localization. Interestingly, the amount of 
instrumentation and intrusiveness required for one task is 
generally quite different from what is needed for the other. 

A. Instrumentation for Fault Detection 

The instrumentation required for fault detection depends on 
the primary performance metric of the application (e.g., end-to-
end latency or throughput). For instance, if the primary 
performance metric is end-to-end latency, then the 
instrumentation must timestamp each request upon arrival into 
and departure from the system, and take the difference between 
the two timestamps. Since each request must carry the arrival 
timestamp with it, the required instrumentation is inherently 
intrusive.  

If, on the other hand, throughput is the primary performance 
metric for an application, then the instrumentation for fault 



 

 

detection simply needs to compute the number of requests 
departing the system within a defined interval. This can be 
done with very little intrusiveness. These insights yield our 
first observation: 

Observation 1: The instrumentation intrusiveness is a direct 
function of the performance metric of interest. 

B. Instrumentation for Fault Localization 

The goal of fault localization is to identify the component 
(process, server, or workload) that is the root-cause for the 
performance fault.  

A simple solution consists of measuring performance 
metrics of interest as well as resource utilization levels at all 
servers in a data center. A fault can be then be localized by 
detecting significant changes in the measured values at servers. 
An example of this approach is the work by Cohen et al. [8] 
that involves monitoring resource usage of all servers, and then 
correlating SLA violations to resource usage on individual 
servers.  

However, this simple approach requires a large amount of 
instrumentation and incurs significant overhead—both in terms 
of monitoring data volume and run-time overhead. 
Additionally, if the instrumentation yields per-server 
measurements, as opposed to end-to-end measurements, then 
we may see several false positives with respect to fault 
detection since a significant change in performance metrics at a 
node (e.g., per-hop delay) may not lead to significant changes 
in end-to-end performance metrics (e.g., relationship between 
end-to-end delay and SLA).  

More sophisticated solutions, on the other hand, involve 
collecting information about the operational semantics of the 
system, such as the interactions between different components 
of the system (referred to as the per-hop dependencies) or the 
flow of requests through the system components (namely, the 
identification of end-to-end paths for each request). This type 
of inter-component dependency information allows a 
performance debugging system to localize faults without 
requiring each node to be instrumented. Note, however, that 
extraction of such operational semantics and dependencies 
require much greater level of “intrusiveness” because such 
monitors require modifications at the system, middleware, or 
application levels. Further, different types of monitors require 
different levels of intrusiveness. For instance, the per-hop 
graph indicating which application components communicate 
with which others can be obtained by simply sniffing the 
network traffic [1][14]. On the other hand, derivation of flows 
or end-to-end dependencies requires the monitor to become 
application-aware [4][8], for instance by requiring the insertion 
of a transaction-id in the requests flowing through the system. 
This level of intrusiveness can be prohibitive in production 
systems. 

C. Characterizing State-of-the-art 

The research literature contains several techniques for 
debugging performance faults in data centers. These 

techniques require different levels of instrumentation and 
intrusiveness.  Figure 2 classifies these approaches along these 
two dimensions.  

Many of these techniques require information about per-hop 
resource consumption and thus require instrumentation over all 
nodes. [8] and [11] propose to use Tree Augmented Bayesian 
Network (TAN) [9], [10] models to identify correlations 
between resource usage of individual components and end-to-
end SLO violation. [6] builds a decision tree in which nodes 
represent resources or their properties and leaves represent 
failed or successful requests. Nodes on the paths from root to 
the leaves that represent failure are diagnosed as potential root-
causes of the failure. Bahl et. al. [3] propose a more intrusive 
technique and require information about the  
 

 
Figure 2: Instrumentation and Intrusiveness of existing 
performance debugging techniques 
 
presence of load-balancers, fail-over mechanisms, etc. in the 
system. [3], [5] constructs a dependency graph and then use 
graph traversal techniques to infer root-cause nodes that best 
explain performance degradation. Pinpoint [7] and Magpie [4] 
demand information about the request-component 
dependencies and the request flow respectively. Collection of 
this information demands intrusion at the middleware or the 
application level. Pinpoint [7] uses data clustering techniques 
to discover root-cause nodes of performance degradation while 
Magpie [4] uses a stochastic context-free grammar (SCFG) to 
identify root causes of anomalies. IronModel [12] proposes an 
even more intrusive technique by using the per-hop data and 
control flow information to build a queuing model of the 
system. We note, however, that Magpie [4] and IronModel 
[12]can also be utilized for tasks beyond just performance 
debugging (e.g., for tasks such as capacity planning, workload 
analysis, and what-if analysis).The most intrusive technique is 
the rule-based approach proposed in Yemanja [2]. Yemanja 
uses expert knowledge of system behaviour to identify the 
root-cause(s) of the observed failures. Based on this 
discussion, and as visually depicted in Figure 2, we observe 
that: 



 

 

 
Observation 2: Most techniques require high 

instrumentation or high intrusiveness, or both. 
 
Based on the above discussions, it appears that the extent of 

instrumentation and amount of intrusiveness of monitors 
complement each other. Techniques demanding heavy 
instrumentation use less intrusive monitors, while techniques 
requiring smaller amount of instrumentation generally rely 
upon intrusive monitoring. For instance, Pinpoint requires 
request-component dependency. This information can be 
obtained in a high instrumentation-low intrusive manner by 
making each node monitor the event of request arrival. 
Instrumentation is required at each node but each node requires 
a middleware level intrusiveness to capture the information 
about the arriving requests. On the other hand, the request-
component dependency information can also be obtained in a 
low instrumentation-high intrusive manner by making each 
request store the information of the component it passes 
through. Each request thus performs an intrusive operation of 
modifying the application content to contain the component 
information. The request-component dependencies can thus be 
obtained from the requests without instrumentation of any of 
the system components. We can summarize this insight as 
follows: 

 
Observation 3: It is possible to tradeoff the level of 

instrumentation against the level of intrusiveness needed for a 
technique. 

 
While existing techniques enable effective performance 

debugging by using either significant instrumentation or 
intrusiveness, production systems can place significant 
restrictions on which nodes can be instrumented as well as the 
level of intrusiveness that is permitted. This can complicate the 
deployment of existing performance debugging techniques in 
production systems or limit their effectiveness. This limitation 
leads us to pose our “more with less” question:  

 
Is it possible to achieve effective performance debugging 

using low instrumentation and low intrusiveness? 
 
In what follows we consider the production system depicted 

in Figure 1 as well as the constraints imposed in this system to 
propose a straw man approach for addressing the above 
question. 

III.  DOING MORE WITH LESS : AN EXAMPLE   

In this section, we consider the problem of localizing 
violations in the end-to-end latency requirements of requests to 
the node (a server or a process) that is primarily responsible for 
the violations. For this exposition, we make the following 
simplifying assumption: End-to-end latency violation is caused 

by only one faulty node3. We will consider the equity trade 
plant application (Figure 1), along with the constraints imposed 
by the production environment on the permitted 
instrumentation and intrusiveness, for our discussion. We will 
discuss a straw man approach for fault localization in this 
environment, with the main goal of articulating the challenges 
in doing more with less. 

 

A. A Production Data Center: Characteristics and 
Constraints 

The equity trade plant, a subset of which was depicted in 
Figure 1, is shown in full detail in Figure 3. This environment 
consists of 469 nodes, 2,072 links, and 39,567 unique paths. 
There are 121 source nodes, 112 exit nodes, and 236 
intermediate nodes in the graph. Each node in the graph 
represents an application component that processes the trading 
orders and forwards them to the downstream node or the 
exchange. Each server may host one or more application 
components. Requests enter the system from any one of the 
source nodes, flow through a number of intermediate nodes, 
and exit from any one of the exit nodes. 

As indicated earlier, a critical business requirement in this 
environment is that the end-to-end latency for processing each 
equity trade should not exceed 7-10ms. In the event this service 
level objective (SLO) is violated, we need to detect, localize, 
and correct the “fault”  in near-real-time. We assume that a 
violation of the SLO is caused either by an overload at a node 
or due to software or hardware errors (e.g., a memory leak) 
that slow down request processing. Our discussion here ignores 
fail-stop faults, where a component fails completely and stops 
processing requests; such faults are just as critical to correct 
but can be easier to localize than SLO violations.  

This environment imposes severe restrictions on the 
permitted instrumentation and the intrusiveness. Due to the 
very stringent end-to-end latency requirements, the 
administrators do not allow any intermediate node to be 
instrumented purely for performance debugging (to prevent the 
instrumentation from impacting the request processing latency 
at the node and also to avoid any accidental changes to the 
system behavior caused by such instrumentation).  To monitor 
SLA compliance, the environment timestamps each request 
upon arrival at an entry node and just prior to departure at an 
exit node. Based on these timestamps, when a request departs 
at an exit node, the monitor flags the request as having met or 
violated the SLO requirement. If the monitors at one or more 
exit nodes begin to observe SLO violations, our goal is to 
localize the fault to the node that is the root-cause of the SLO 
violation. Beyond the fact that certain monitors are observing 
violations, no additional information is available to us other 
than the system graph shown in Figure 3.  

 
3 We will describe the challenges in handling multiple simultaneous failures 

in Section IV. 



 

 

 

Figure 3. Real trade-plant production system graph 
overview 

 
We formally state the problem as follows: Given (1) a 

system graph of normal operations depicting application 
component interactions and (2) instrumentation at the entry 
and exit nodes that timestamp requests; determine (localize) 
which node in the graph is causing SLO violations whenever 
one or more exit nodes observe such violations. Figure 4 
depicts an example graph with such a setup. In what follows, 
we present two straw man approaches for addressing this 
problem. 

 

 
Figure 4. An example graph with monitoring at entry and 
exit nodes. 
 

B. Signature-based Localization 

The main insight behind our straw man approach is that the 
effect of a faulty (overloaded) node is typically visible at 
multiple exit nodes. This is because; once a node  is the cause 

of a performance fault, then all requests passing through the 
node will experience degraded performance, and hence all exit 
nodes reachable from the faulty node will experience SLO 
violations.  By identifying the exit nodes that experience SLO 
violations, we can localize the fault to a unique node (or a 
small set of nodes).  

To formalize this idea, we define the notion of a node 
signature. Intuitively, the signature of a node is the set of all 
monitors that are reachable from this node (i.e., have a path 
from the node to them). Formally, for a given set of k monitors, 
a node signature is a k-bit string where each bit represents the 
accessibility of the monitor from the node. Each reachable 
monitor from a particular node has its bit set to ‘1’ in the node 
signature, unreachable egress points have their bits set to ‘0’. 

For instance, consider the graph shown in Figure 4 with 
nodes 10, 11, 12, and 13 as the monitor nodes. This setup 
generates 4-bit node signatures. For example, signature of node 
8 is 1000. Based on the graph property and the location of 
monitor nodes, some nodes may have the same signature. For 
instance, nodes 1, 2, and 5 share the same 1110 signature, 
nodes 4 and 7 have 0001 and, nodes 6 and 9 have 0110.  

Whenever a node experiences a performance fault, one or 
more exit monitors will observe SLO violations within an 
observation window. We can compute the violation signature 
as a bit string where each monitor observing an SLO violation 
sets its bit to 1, while monitors that do not observe SLO 
violations set their bits to 0. The fault localization task then 
becomes the task of determining which node in the graph could 
have generated that violation signature. This can be determined 
by matching the violation signature to the node signatures; a 
unique match identifies the failed node precisely.  

A signature match identifies the failed node because (i) only 
that node has a path to all the monitors that observed violations 
and no others, and (ii) assuming that the failed node sent at 
least one request along each outgoing edge, only that set of 
monitors would have all observed violations in that 
observation window.  

This matching can be performed by a simple off-line 
approach that pre-computes the signatures of all nodes in the 
graph and performs a table lookup to determine which node(s) 
match the violation signature. The effectiveness of the 
approach depends critically on the assumption that most nodes 
will have unique signature. This depends on the graph structure 
and may not always be true. For example, in the graph depicted 
in Figure 4, nodes 1, 2, and 5 all have identical signatures of 
1110. Thus, if the violation signature is 1110, this approach 
can narrow the failure to nodes 1, 2, and 5 but cannot pinpoint 
the failure to a particular node in this set. In other words, the 
efficacy of this approach depends on the system graph.  

We have applied the signature-based approach to the 
production system shown in Figure 3. With the naïve approach 
of placing monitors at all the 112 exit nodes, we can generate a 
112bit signature for the remaining 357 non-exit nodes. This 
naïve approach generates 137 unique signatures for the 357 
non-exit nodes, which is 38% of the total number of non-exit 
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nodes. Considering only the 121 source nodes, 71 unique 
signatures are generated, which is 58% of the total number of 
source nodes. Thus, in this production system, between 40-
60% of the node signatures are unique. A failure will cause 
multiple node matches, allowing us to narrow the failure to a 
subset of the nodes and other techniques will be necessary to 
determine the precise cause. 
 

C. Online Signature Matching via Graph Coloring  

Pre-computing node signatures offline and using a table 
lookup for signature matching is effective only when the 
system graph is static. In large data centers, the graph may 
change over time due to application or hardware modifications 
(which causes nodes and links to be modified). We now 
present a graph coloring technique that is equivalent to the 
signature matching approach but is more suitable for settings 
where changes to the graph structure are frequent. An example 
of such a scenario is the dissemination of market updates in the 
trade plant, which is done via a publish-subscribe system. As 
stock traders change or add subscriptions and as new sources 
of market information appear, the graph topology will change.  

Our graph coloring-based approach is an on-line technique 
that can be used to localize faults on-the-fly when an SLA 
violation is detected. This approach does not require pre-
computation of signatures and can therefore accommodate 
graph changes easily.  

 

  
Figure 5. Graph Coloring Algorithm 

 
We first explain the intuition behind this approach. Consider 

a faulty node in the graph that causes SLO violations; assume 
that these SLO violations are detected at a subset of the exit 
monitor nodes. If a monitor observes a violation, it follows that 
one of its ancestor nodes in the graph is faulty. Since this is 
true for each monitor that observes a violation, and since there 

is only one faulty node (based on our assumption), the 
intersection of the ancestor nodes of all monitors observing 
SLO violations must contain the faulty node (since this faulty 
node causes SLO violations at all of these monitors, it must 
belong to the ancestors set of all of them). By computing the 
intersection of the ancestor set, we can narrow down the choice 
to a small set of nodes. Since the intersection may not yield a 
unique node, we must prune the graph further.  

To do so, we consider monitor nodes that did not observe a 
violation. For each such monitor, it follows that all of its 
ancestor nodes are operating normally and did not experience a 
fault. Hence, we can compute the ancestor set of non-faulty 
nodes for each such monitor and then prune the above 
intersection set by dropping nodes that belong to both sets (i.e., 
if a node is not faulty, it is dropped from the above intersection 
set). By repeating this procedure for each monitor that did not 
observe a violation, we can pinpoint the faulty node in the 
system.  It can be shown that this technique is functionally 
equivalent to signature matching---if signature match yields a 
unique faulty node, this technique will also pinpoint that node. 
If signature matching yields multiple matches, our pruning 
process will be left with the same set of nodes.  

We can instantiate this idea as a graph coloring problem. 
Again we assume that if a node is faulty, at least one request 
was sent on each of its outgoing edge in our observation 
window. The algorithm can be described using the following 6 
steps: 

1. Mark red all the monitor nodes where SLO violations 
have been detected. 

2. Mark green all the remaining monitor nodes where 
performance degradation has not been detected. 

3. Mark all nodes in the predecessor graph of all the red 
exit nodes as red one at a time. Each time a node is 
marked red, increment its red count. 

4. Drop all red nodes whose red count is smaller than n, 
where n the number of monitors observing SLO 
violations. 

5. Mark all nodes in the predecessor graph of all the green 
exit nodes as green, potentially turning red nodes back 
to green. 

6. Remaining red components are possible root causes for 
the observed performance degradation. 

 
Assume that in the graph shown in Figure 5, the monitors 

are placed on the exit nodes, i.e., nodes 10, 11, 12, and 13. 
Consider a scenario where node 8 fails. As shown in Figure 5, 
a failure is detected only at monitor node 10 (step 1). All nodes 
leading to node 10 are marked red in step 2. As nodes 11, 12 
and 13 did not detect an SLA violation; all nodes leading to 
these monitors are marked green. This only leaves node 8 as 
the potential root cause node for the failure. 
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Figure 6. An instance of graph coloring with a large 
number of potential root causes 
 

However, if we consider the other use case depicted in 
Figure 6 where node 9 fails; the failure is detected at monitor 
nodes 11 and 12. The algorithm outputs five possibly potential 
root cause nodes 2, 3, 5, 6, and 9. Like the signature matching, 
this is a limitation of the approach, where the graph structure 
prevents unique identification of the faulty nodes and yields 
multiple root cause nodes. We discuss further limitations and 
challenges in the next section. 

IV.  OPPORTUNITIES AND CHALLENGES OF PERFORMANCE 

DEBUGGING IN REAL PRODUCTION SYSTEMS  

The straw man approaches proposed in Section III appear 
promising; however, they have several limitations. In this 
section, we discuss these limitations and derive a set of 
research challenges for developing practical and effective 
performance debugging solutions. As discussed in Section II, 
operational data centers require techniques that scale with their 
size and complexity. Performance debugging must be achieved 
with minimal intrusiveness and instrumentation. As mentioned 
in Section I, performance debugging can be split into four 
tasks: build a model of normal operations of a system, deploy 
monitors to probe for operational statistics, detect performance 
failures, and localize faults. Next we discuss the challenges 
involved in each task. 

A.  Deriving a System Model 

The size and complexity of real production systems are 
typically too large for a human to manually derive an accurate 
model of the system. Hence, the dependency between 
application components, the connection graph and flow-level 
information must be determined automatically. This model 

must be kept up-to-date with each incremental change in the 
hardware and software components. Thus, the objective of the 
modeling task is to automatically build a model of normal 
system behavior. Keeping the various constraints of 
deployment in real production systems in mind, this model 
needs to be built with reasonably low instrumentation and low 
intrusiveness. Various challenges need to be addressed while 
developing a system model.  

As discussed in Section II, system models can be built in 
various ways using different system information such as 
request flows, per node resource utilization, etc. Techniques 
demanding high instrumentation and high intrusiveness can 
have prohibitive cost in most production systems. Further, 
many of these models cannot be derived in production systems 
because of unavailability of the required information. For 
instance, the production systems do not necessarily have a 
transaction-id that is carried throughout the system to capture 
end-to-end flow information of each request and must resort to 
other methods if such a model is necessary. 

Several mechanisms can be employed to derive the system 
model at low cost. Low instrumentation techniques such as 
network packet sniffing can be employed to derive a graph of 
communication patterns. Such models can also be derived by 
examining application logs, where available, to determine 
which components communicate with what other components. 
Models depicting request flows can be derived using inference 
methods on application request logs of neighboring nodes—by 
determining correlations between certain requests at node i that 
trigger certain other request at a neighboring node j (instead of 
requiring a unique request or transaction ID that is carried with 
the request as it flows through the system). 

In all of these cases, the completeness and accuracy of the 
system model depends on the accuracy of the available system 
information. System logs can contain erroneous entries or 
incomplete information, which makes it even harder to infer an 
accurate model of the system. 

B. Monitor Placement 

In order to measure the end-to-end performance metrics 
such as latency, throughput, etc., there is a need to place 
monitors in the system to gather real-time data. The 
deployment of monitors involves instrumentation overhead. 
Furthermore, depending on what data needs to be gathered by 
each monitor, the level of intrusiveness will vary.  

 
 

 
 
Figure 7. (a) A linear chain (b) An ‘hour-glass’ graph 
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Since production systems are loath to incur the extra 

overheads of monitoring, there is a need to minimize the 
number of monitors placed in the system (while respecting 
constraints on where monitors can be placed). As argued 
earlier, there is often a tradeoff between instrumentation and 
intrusiveness—as the number of monitors is decreased, the 
amount of data gathered by each monitor will need to increase 
in order to maintain the same level of visibility into the data 
center. Thus, a key challenge is to design techniques that 
require low instrumentation while requiring low intrusiveness 
as well (in terms of data gathered by each node). 

The objective of the monitor placement problem is to find 
the minimal number of nodes where the monitors should be 
placed such that the system can be monitored for detection and 
localization of all performance problems of interest. The 
problem is somewhat similar to network tomography [13], 
where observations at a few edge nodes are used to infer what 
is happening inside the network; here we use strategically 
placed monitors to infer the state of internal nodes in the data 
center.  

There is also a tradeoff between the number of monitors and 
the accuracy of the fault detection and localization. A small 
number of monitors will provide less coverage of the data 
center nodes for fault detection. Similarly, in our signature-
based fault localization approach, use of a smaller number of 
monitors increases the chance of signature collisions (and 
yields fewer nodes with unique signatures). Conversely, a 
larger number of strategically placed monitors increases the 
number of nodes with unique signatures and enhances the 
precision of fault localization. In the ideal case, n unique 
signatures can be generated with log(n) monitors, but the 
structure of the graph affects the distribution of these 
signatures across different nodes in the graph. For example, in 
case of a linear chain as shown in Figure 7 (a) with the monitor 
node placed on the exit node, all the nodes in the linear chain 
would have the same signature. Another example is of an 
“hour-glass” shaped graph as shown in Figure 7 (b) with the 
exit nodes as the monitor nodes. In this case, the signature of 
all nodes that are “above” the bottleneck node 1, will have the 
same signature.  

Thus, monitor placement will need to consider the tradeoffs 
between the graph structure, the number of monitors, the 
uniqueness of signatures, and the level of intrusiveness needed 
to achieve a certain level of visibility into the data center state. 

Constraints imposed by production systems further 
complicate monitor placement by eliminating certain nodes 
from being monitors even if they are strategically important 
within the system graph. 

C. Real-Time Failure Detection 

The failure of a node manifests itself in the form of SLO 
violations at monitor nodes (since the performance metric of 
interest exceeds the SLO threshold). A quick detection of 
failure can lead to timely corrective actions. The objective of 

failure detection is to quickly and accurately detect the 
presence of failures at internal nodes based on the observation 
being made at the monitor nodes. Failure detection becomes a 
challenging problem because of various factors such as the 
duration failure, nature of failure propagation, etc. 

As argued in Section II, point observations at monitors can 
sometimes yield false positives in terms of end-to-end 
performance metrics. An example of such situation is when the 
node specific processing latency increases sharply but still 
does not cause the end-to-end latency to exceed the SLO 
threshold. Also, in situation where load-balancers shift load 
from one node to another, each node will observe a latency 
change but the end-to-end performance of the queries might 
stay unchanged. Clearly, failure detection should not incur 
false positives, or even worse, false negatives. False negatives 
can occur if monitor placement does not yield full coverage of 
nodes in the data center, and hence monitors are unable to 
detect failures at certain nodes. 

Failure detection techniques should also be able to 
distinguish between effects due to valid changes in the 
workload and those caused by node failures. For instance, a 
failure of a system component and an increase in the system 
workload can both lead to degradation in the end-to-end 
performance metric observed at the monitors. Monitors will 
need to differentiate between these two effects.  

Finally we have implicitly assumed that a faulty node 
impacts all requests flowing through it. This may not always 
be true in real systems. For example, queries that access very 
large tables on a database server may incur long processing 
latencies, while those accessing normal-sized tables may not 
see any SLO violations. In such scenarios, only a subset of the 
requests flowing through a node will see SLO violations. The 
monitor must be able to detect failures that affect only portions 
of the workload. The uncertainties caused by transient failures 
add further challenge to failure detection. 

D. Fault Localization 

The straw man approach proposed in Section III, while 
promising, has several limitations that will need to be 
addressed prior to deployment in a real system. We have 
already pointed out the limitation of the approach in localizing 
faults whenever multiple nodes in the graph have the same 
signature. Further, our discussion assumed that only one node 
fails at any given time. This assumption will not hold in large 
data centers with hundreds or thousands of servers; multiple 
node failures will be the common case in such systems. When 
multiple nodes fail simultaneously, the monitor nodes will 
observe a composite violation signature that is the union of the 
signature of the failed nodes. The fault localization technique 
will need to identify the failed nodes by “matching” the 
composite signature to multiple nodes that collectively 
generate this signature—a more challenging matching task. 

Another assumption we made is that the failed node sends at 
least one request along each outgoing edge within an 
observation window. In real systems, edges are likely to be 



 

 

traversed with non-uniform probability. Infrequently traversed 
edges may not see any requests within the observation interval, 
resulting in a partial signature. A partial signature results when 
certain monitors that are reachable from a failed node do not 
see any failed request, causing their bits to be set to zero. 
Matching partial signature to node signatures is analogous to 
substring matching and can undermine the ability of the 
technique to localize failures to a unique node.   

Finally, certain failures may be transient where the failure 
occurs for a short amount of time, typically when the 
component is close to saturation point on one of its resources. 
This might cause the violation signature to fluctuate with time, 
as the node fluctuates above or below its saturation threshold, 
causing some requests to fail the SLO objectives while others 
meet the performance objective. The inability of the technique 
to obtain a “fix” on the violation signature also complicates 
fault localization. 

Each monitor must also address the inherent non-
determinism in real systems. For example, load-balancing 
components might dynamically alter the flow of certain 
requests through replicated components. It is challenging to 
address the impact of such non-determinism on the fault 
propagation model. Locating faulty nodes in such context 
might require techniques similar to those employed in network 
tomography. 

Although our discussion has considered the impact of real-
world effects on the signature-based localization technique, the 
impact of multiple failures, non-uniform request flows, 
transient failures, and inherent non-determinism in the system 
will need to be considered by any type of fault localization 
mechanism. 

V. CONCLUSIONS 

With the increasing scale and complexity of information 
technology plants, detecting and localizing performance faults 
in real-time has become both a pressing need and a challenge. 
While several approaches for performance debugging in data 
centers have been proposed, these techniques do not assume 
any constraints on the operational data needed to detect and 
localize faults. We argued that collecting such operational data 
requires significant instrumentation or intrusiveness and that 
production data centers can impose significant restrictions on 
the degree of instrumentation and intrusiveness that is 
permitted in the system. Such constraints complicate the 
deployment of existing techniques in real-world operational 
systems or limit their effectiveness. Based on these insights, 
we indicated that performance debugging can become practical 
and effective in real-world systems only if they require low 
levels of instrumentation and intrusiveness. We then posed our 
“more with less questions” of whether it is possible to develop 
effective fault detection and localization techniques with low 
instrumentation and intrusiveness. We proposed a straw man 
approach for localizing faults by considering constraints 
imposed in a real system. We then presented several issues and 

challenges in making such approaches practical and effective 
in production systems. 
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