Chameleon: Application Controlled Power Management with
Performance Isolation

Xiaotao Liu Prashant Shenoy
xiaotaol@cs.umass.edu shenoy@cs.umass.edu

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Abstract

In this paper, we present Chameleon—an application controlled dynaiégye and frequency scaling approach for reduc-
ing energy consumption in mobile processors that see multimedia woskldadr approach exports the entire responsibility
of power management to the application level. Since multimedia applicatiorssérgoft real-time constraints, a key goal of
our approach is to reduce energy consumption of such applicationsuvidegrading performance. We propose an operating
system interface that can be used by Chameleon-aware applicatiorseeeaenergy savings and demonstrate its effectiveness
for three common applications—a video decoder, a video conferetadhgand a web browser. We implement our approach in
the Linux kernel running on a Sony Transmeta laptop. Our experimbats that, compared to the traditional system-wide CPU
voltage scaling approaches, our technique can achieve 8¢ t050% energy savings while delivering comparable or better
performance to applications, and Chameleon is also more effectighedsling a mix of concurrent applications with diverse
energy needs.

1 Introduction

Recent technological advances have led to a proliferationabile devices such as laptops, personal digital asss{®DAS),
and cellular telephones with rich audio, video, and imagiagabilities. While the processing, storage, and commtiaita
capabilities of these devices have improved as predictelldigre’s law, these advances have significantly outpacedhthe
provements in battery capabilities. Consequently, eneggytinues to be a scarce resource in such devices. Theiitust
exacerbated by the resource-hungry nature of multimedgiicapions—such applications consume energy by accesging,
cessing, and rendering large amounts of multimedia data.

Modern mobile devices attempt to use energy judiciouslyrimpiporating a number of power management features. For
instance, modern processors such as Intel's XScale anduRekt and Transmeta’s Crusoe incorporate dynamic voltagk a
frequency scaling (DVFS) capabilities. DVFS enables th&J@GPBeed to be varied dynamically based on the workload and
reduces energy consumption during periods of low util@a{il2, 13, 21]. Since multimedia applications impose seé-r
time constraints, voltage and frequency scaling techrsiquast be carefully designed to prevent the processor slowdmm
interfering with the timeliness constraints of the appima.

A number of hardware and software power management techsitave been developed to take advantage of DVFS-capable
processors. For instance, Transmeta’s LongRun is a haediwaehnique that measures processor utilization at thenaaed
level and varies the CPU speed based on the measured sysderotilization [10]. Software approaches for DVFS haverbee
implemented either in the operating system or at the agfitéevel. Operating system implementations of DVFS téghes
determine a system-wide CPU setting based on the processtardis of the currently active tasks [8, 9, 14, 15]. In this
approach, individual applications do not have any directtrmd over the CPU power settings. A single system-wide CPU
setting is determined, typically based on the needs of th& mesource-hungry application, even when a mix of apptinat
is executing on the processor. Furthermore, the operayistgs needs tinfer the processing needs of the applications using
online measurements and can incur estimation errors. égtpn-level DVFS techniques have been studied in the camtiag
[5, 16, 17, 19, 29] . These techniques consider a single @jdn such as a video player and grant complete controleof th
processor frequency and voltage settings to the applitafibe power-aware application can choose a voltage anddray

setting based on its needs and typically ignores othereatjins in the system. As a result, the performance of ofp@ications
can be significantly impacted when the settings chosen bgdiver-aware application do not satisfy their CPU needs.

A hybrid approach for DVFS was proposed in [22]. In this agotg periodic multimedia applications convey their pesiod
and the amount of work in each period to the operating sys&ngisystem calls. The technique integrates DVFS with a real
time CPU scheduling algorithm such as Earliest Deadlingt fifDF) and makes scheduling and voltage scaling decisising
(i) application supplied information and (ii) probabilitijstributions of measured application demands. Thus,endpblications
do not directly control their CPU power settings, they pdavuseful information to the OS kernel, and thereby influghese
settings.

In this work, we argue that applications know best what trespurce and energy needs are, and consequently, we eaplore
approach where applications have complete control over@RU power settings. Unlike prior approaches, howevenseOS
mechanisms to isolate applications from one another. T#agh) application can specify its CPU power settings indegetty
of other applications, and an application is completeliaitgnl from the settings used by other applications. Appboaspecific
power settings enables a mix of diverse applications tolflgxdptimize their energy needs. Our approach resembles the
philosophy of theExokernel, where the OS grants complete control of various resouésetapplications and only enforces
protection to prevent applications from harming one andifie

Our current work differs from past work on DVFS in many di#fat respects.

e Many existing OS-based DVFS approaches specifically asgpemedic and/or interactive applications and do not work
for other types of applications. Similarly, much of the wark application-based DVFS approaches has only considered
a single application such as a video player. By exportinggrawanagement to the application-level, our approach can
be used by any application, regardless of its nature. We dstrade the benefits of our approach for periodic applioatio
such as video players and video conferencing as well asaaferapplications such as web browsers. We are also
developing a power-aware version of an open-source Offipkcagion suite.

e Many OS-based DVFS approaches employ a single system-efiiiegsfor all applications. Such an approach can be sub-
optimal when scheduling a mix of applications, since lesssurce intensive applications waste energy by using ahigh
setting that is necessary, and more-resource intensiveeajgns see degraded performance when a lower settirngeid u
than is necessary. Our approach uses a different powengétti each application, and we experimentally demonstrate
its flexibility when scheduling a mix of concurrent appliceis with different resource needs. We note that per-psces
power settings are also used in [22], although the apprasthats itself to a mix of periodic applications.

e OS-based approaches can incur estimation errors sincertfegythe resource usage of an application by treating it as
black-box. Since applications are responsible for margtieir power settings in our approach, they can employ demai
specific knowledge to better infer their resource needs. ifgiance, a power-aware video player can employ video-
specific information such as the frame size and the frame ttygietermine frame decoding times (and an appropriate
CPU power setting). Such information is typically hard téemwithin the operating system kernel. An intermediate
approach is to enable an application to provide useful tintee OS kernel (such as their periods [22]); our approach is
more radical since it puts the entire burden of power managéon the application.

This paper presents Chameleon, our approach for applicatatrolled DVFS with performance isolation. Chameleon
consists of three components: (irammon OS interface that can be used by power-aware applications to measureGRé&l
demands and adjust their CPU speed settings, (ii) a modiéietekCPU scheduler that supports per-process CPU speed settings
and ensures performance isolation among tasks (the terplisatpns, tasks and processes are used interchangeatilisi
paper), and (iii) aspeed adapter that maps these CPU speed settings to the nearest speellyaatpported by the hardware.

In Chameleon, each power-aware application needs to engplopdel of its resource usage. The model is parameterized
by online measurements of the resource usage to determiappaopriate power setting at run-time. We present apjiicat
models for three open-source applications: (i) an MPEG«€MREG-4 video decoder that is representative of DVD players
and commercial streaming systems, (ii) a H.261 and H.2&&daideo conferencing tool, and (iii) a web browser.

We have implemented Chameleon in the Linux kernel 2.4.20ehave evaluated its energy efficiency on a Sony Vaio laptop
equipped with Transmeta’s Crusoe TM5600-667 processdr [@ur experiments compare Chameleon with three existing
OS-level DVFS approaches, namely PAST [21], PEAK [13] atidG,, [12] and with LongRun, a hardware-based DVFS
approach. Our experiments with the above power-aware agtighs show that Chameleon can extract up to a 35% energy
savings when compared to LongRun and up to 50% savings whapared to OS-based DVFS approaches, without any
performance degradation to time-sensitive multimediaiatedactive applications. In case of the web browser, fetance, the
average power consumption of Chameleon is orgW higher than the lowest power setting of Transmeta’s Cri$d8600-

667 processor. Chameleon is also more effective at scimgdalimix of applications, since each application can use ticus

power setting that is most appropriate to its needs—our @xpeats show that per-process power settings in Chameleabd yi
31-50% energy savings over LongRun and OS approaches thatsisgle power setting for all applications.

The rest of this paper is organized as follows. Section 2gmtssthe design of Chameleon. Section 3 presents the design
of Chameleon-aware applications. Section 4 discussegimitation issues. Section 5 presents our experimentdisesnd
finally, Section 7 presents our conclusions.

2 Chameleon Design

The architecture of Chameleon consists of three key compsrisee Figure 1). The Chamelecommon interface is used

by power-aware applications to query the kernel for siasbn resource usage. These OS-level statistics can beiroeinb
with application domain knowledge to determine a desirdliRt) power setting, which is then conveyed to the OS kernel
via the common interface. Second, Chameleon implementsdifisth CPU scheduler that supports per-process CPU power
settings and application isolation. The modified schedcbeveys an application’s power settings to the underlyifiJGit
context switch time. Further, an application can modifypitsver settings at any time during its quantum via systens.cai
enforce protection, an application is never allowed to ryotlie settings of another application. Since an applicegipower
settings take effeabnly when it is scheduled, applications are isolated from one another and from nmalgior misbehaving
applications. Kernel support for per-process power sgitend application isolation does not require any modibcatito the
CPU scheduling algorithm itself, and as a result, Chameile@ompatible with any scheduling algorithm. Third, Chagosl
implements a speed adaptor that maps application-spepifigdr settings to the nearest CPU speed actually suppoytdab
hardware. In particular, an application specifies the dds€PU speed (and thus, its power setting) as a fragfiosf the
maximum processor speed. The speed adapter maps thisifréztihe nearest supported CPU speed; since different haedw
processors support different speeds, such an approactesmqmrtability across hardware.

While it is desirable for applications to manage their ownrgpeeeds to maximize power savings, it may not be feasible to
modify every single application to make it power-aware. §Hagacy applications will coexist with power-aware apgtions in
Chameleon. For such applications, Chameleon reverts todavhee DVFS technique—whenever a power-unaware applitatio
is scheduled on the CPU, Chameleon dynamically switchesystem-controlled DVFS technique (our current prototygpesu
LongRun [10]). The hardware DVFS technique is disabled wanpower-aware application is scheduled for execution. @uch
policy enables legacy applications to extract some powenga while permitting power-aware applications to maxenihese
savings.

CI unaware applications

C aware applicati ‘

Processor Demands| Speed Monitoring

Chameleon Common Interface } { System—controlled DVFS lechmque}

Speed \ \ Speed

The Modified CPU Scheduler with Per—process Speed Setting]

Chameleon enabled OS

Set Speed\ ‘ Get Speed

[Speed Adaptor]

Figure 1. The Chameleon Architecture.

3 Modeling Energy Usage

Chameleon puts the burden of power management on indivaghications, and consequently, each power-aware agiplica
needs a model of its resource usage to determine its powtargseat run-time. Such a model predicts future resourcesee
and determines a power setting that is sufficient to meetketinegds. In this section, we present models for three differe
applications, namely a video player, a video conferenadady Bnd a web browser.

3.1 MPEG Video Decoder

We considemplayer [18] a software video decoder that supports both MPEG-2 aRE®H4 playback. Note that, MPEG-2

is widely used for DVD playback, while MPEG-4 is used by comered streaming systems such as QuickTime and Windows
Media; a power-aware version afplayer is representative of these applications. In general, viglagback is a periodic
application where frames are decoded and displayed at #lybgtk rate. The playback quality is maximized so long ab eac
frame is decoded and displayed prior to its playback deadiBince the decoding of a frame significantly before its Ipdenk
deadline does not increase the perceived video qualitywepaware version of a video player should vary the CPU sgeed
that each frame is decoded exactly when it deadline expifesllustrate, consider a 30 frames/s video where a framesee

to be decoded every 33 ms. If the decode time of a particudandris estimated to be 16ms at full processor speed, the speed
can be effectively halved (and the decode time doubled)anitmpacting the 33ms deadline. More precisely, in the atsef

other applications, the optimal (slowest) CPU spgggl to decode a frame is given as

Amaz
fopt = 7fma:1: (1)
T

wheref,,.. is the maximum processor spedd,... is the decode time of the frame at full processor speedrasithe playback
interval. While the parameters, ., andr are known for a given processor and a given video, respégtibe frame decode
timed, ., needs to be determined for each individual frame. FurthgaraBon 1 will need to consider the impact of time sharing
due to other applications in the system.

3.1.1 Predicting Frame Decode Times

We encoded a number of MPEG-2 and MPEG-4 video clips at diffielit rates and different spatial resolutions. Theseovide
clips were decoded by an instrumentaplayer that measured and logged the decode time of each frame ptdakssor speed.
We analyzed the resulting traces by studying the first orddrscond order statistics of the decode times and frame f&ize
each frame type (i.el, P, B) as follows.

Let z andy be two random variables corresponding to the frame sizetamftame decoding time, respectively; and et
ando, be the mean and standard deviation of the frame size, régggrtand also lefu, ando, be the mean and standard
deviation of the frame decoding time, respectively. Thestlieoretical correlation coefficiept, between: andy is given by:

Py = El(z — pa)(y — py)])

Oz0y

Now assume we have obtaindtpairs ofx andy values. The correlation coefficiept, may be estimated from th¥ pairs
data by:

I Y € (75)
= [ZiNzl (4 if)22£\7:1(yi _ y)2]1/2 (3)

For a particular function of,, given by:

1. 1+7r,
w= = [~y 4)
271 —1yy
From [3], the random variable has an approximately normal distribution with a mean anthwae of
1.1+ p,
w = 5 Y (5)
21— pgy
1
2
- 6
UU} N _ 3 ()

As shown in [3], the sampling distribution afgivenp,, = 0is normal with a mean qi,, = 0 and a variance of2, = .
Hence the acceptance region of the hypothesis of zero atimelat the 0.02 level of significance is given by:

o33 < YN, Lo

2 1 =17y

] <233 (7)

If V' N — 3w falls outside the acceptance region of zero correlationcégthere is reason to believe that significant correlation
exists between andy.

| Resolution| Frame Type| Bit-Rate(kbps)] 7., [v/N —3uw |

352x288 I 1120.0 0.8956| 111.7280
352x288 P 1120.0 0.3443| 47.7959
352x288 B 1120.0 0.1808| 39.7774

Table 1: Correlation Coefficients of MPEG 1/2 Standard Videos

| Resolution| Frame Type| Bit-Rate(kbps)] 7., [v'N —3uw |

352x240 I 630.5 0.9045| 42.0324
352x240 P 630.5 0.7664 | 492.1438
512x288 I 705.5 0.8201| 40.9122
512x288 P 705.5 0.8084 | 455.9816
576x256 I 775.4 0.9162| 88.7301
576x256 P 775.4 0.7667| 389.0298
640x272 I 1290.9 0.8824| 48.3261
640x272 P 1290.9 0.6464 | 216.6028
640x352 I 679.7 0.6861| 50.9520
640x352 P 679.7 0.8217| 486.8483

Table 2: Correlation Coefficients of MPEG 4 Standard Videos

Our correlation coefficient results of the above correfaimalysis in Table 1 and 2 show that there is a piece-wisarine
relationship between the decode times and the frame sizeadh frame type. These results corroborate the findingpoba
study on MPEG-2 where an approximate linear relationshipgvéen frame size and decode times was observed [1].

Using these insights, we constructed a predictor that dsesype and size of each frame to compute its decode time. A
key feature of our predictor is that the prediction modelasameterized at run-time to determine the slope and imieofehe
piece-wise linear function. To do so, the video decoderesttiie observed decode times of the previeflames, scales these
values to the full-speed decode time (since the observeddeéetimes may be at slower CPU speeds), and uses these values
to periodically recompute the slopes and the interceptbi@fpiece-wise linear predictor by using linear regressiethod.

This not only enables the predictor to account for diffeemnacross video clips (e.g., different bit rates requirediht linear
predictors), it also accounts for variations within a videa., slow moving scenes versus fast moving scenes in ayvidée
parameterized predictor is then used to estimate the decondef each frame at full processor speed.

For instance, given window size suppose we have the last frame’s size and decoding time, then we start to decode a new
| frame and we already know the size of this new frame. 4;&tndd; denote the frame size and the full-speed decoding time
of theith frame, respectively,, . ; denote the frame size of the new | frame ahql denote the predicted full-speed decoding
time of it. Thus thel,, ., is given by Equation 8:

5 — Di1 Si
n
d = Z?:l di
n
> (si —8)?
a = d—0bs
Cin+1 = a-+ b5n+1

In the predictor shown in Equation 8, the window sizhas great impact on the performance of the predictor, thagssihg
an appropriate: is important issue in the design of such an linear regresgiedictor. To do this, we applied the linear
regression predictor to our collected traces by varyingatmelow sizen from 5 to 50, and then measured the accuracy of the
linear regression predictor with different window sizebeTaccuracy of the linear regression predictor (Equatios &aluated
by the Cumulative Distribution Function (CDF) of its absolute error and the CDF of its relative errdnder the same error
level, the larger the CDF, the more accurate the predictgersiown in Figure 2 to 6, the linear regression predictorenels
the best accuracy in most cases when the windowrsigdess thari0, and the accuracy level has small variation in that area.

Therefore, we choose the window sizéor our predictor since the division operations of Equaocan then transformed to
the shift operations to reduce the cost.

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size Under Relative Error 5% with Different Window Size
R LS B i PUUS SUUU UUUS SUUUS SUUS SUUUU SUUUR SURTL SO
c c
9 kel
S 80% 1 S 80% r 1
c c
=))
L L DDDDDDDDDDD
A oo

§ 60% |- | é 60% (4 AAAAAAAAAASiiiiZZDDDDDDDDDDDDDDDDDDDDDDDD{
é § AAAAAAAAAAAAAAAAAAAAAAAA
o o
O 40% - 1 O 40% | 1
o)
= =
s s
=} >
g 20% r b g 20% b
3 | Type Frame —+— 3 | Type Frame —+—

P Type Frame —=— P Type Frame —a—

B Type Frame —— B Type Frame ——

0% 1 1 1 1 1 1 1 0% 1 1 1 1 1 1 1

5 10 15 20 25 30 35 40 45 50 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Window Size Window Size
(a) Absolute Error (b) Relative Error

Figure 2: Variation of the Accuracy of MPEG 1/2 Frame Decode Timesifeter under Resolution 352x288 with the Window
Size

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size Under Relative Error 5% with Different Window Size
100% T + ,L ¥ + + ; T T T T T 100% T T T T T T T T
DDDDDDDDDDDDDDDmmDDDDEEDDDDDDDDDDDDDDDQQDDDD ++++++++++++ R P + e,
c c o4+ +
9 kel
B 80% 1 S 80% r 1
c c
> =}
LIC- LIC- DD
2 60% | 1 S 60% | 1
3 3
Q 2
@ o
O 40% - 1 Q 40% 1
()])]
= =
s s
3 =}
g 20% 1 E 20% 1
3 3
© | Type Frame —— © | Type Frame ——
P Type Frame —=— P Type Frame —a—
0% 1 1 1 1 1 1 1 o% 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Window Size Window Size
(a) Absolute Error (b) Relative Error

Figure 3: Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 352x240 with the Window
Size

Figure 7, 8, 9, 10 and 11 present the accuracy of our prediéborall three different frame types (i.e, 1, P, B) with windo
size8. Our experiments show that our MPEG frame decode times goedian achieve very good prediction accuracy for all
frame types. Figure 7 measures the accuracy of our predarttMPEG 1/2 movie, and Figure 8 to 11 measure the accuracy of
our predictor for MPEG 4 movies. Since MPEG 4 standard ongytive frame types (I and P), Figure 8 to 11 does not have the
results for B type frame present. Our results show that:ofiXtie decode time of | type frame, the absolute error of 6%&%
prediction is less thaihms except that the absolute errordsf% prediction under resolution 640x352 is less thams, and the
relative error of ovep2% prediction is less thad%; (ii) for the decode time of P type frame, the absolute erfaner 92%
prediction is less thatms, and the relative error of ov80% prediction is less thah0%; (iii) for the decode time of B type

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size Under Relative Error 5% with Different Window Size

T T T T 100% T T T T T T T T

T T T T

+ ot R ++ + E ++

nohthbodghd R L g 4+t ++Trret ety A S - sttt

o DHUEEEEEg oliogad s + + Lt N .
poooes B0ppEEEDOOOgg

100%

80% 80% r

60% 60% r

nofoooagg
B0pp
0oEOgg
BB00pgmEogggp
0O0BHgg]
oo

40% 40%

20% 20% r

Cumulative Distribution Function
Cumulative Distribution Function

| Type Frame —— | Type Frame ——

P Type Frame —=— P Type Frame —s—
O% 1 1 1 1 1 1 1 0% 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Window Size Window Size
(a) Absolute Error (b) Relative Error

Figure 4: Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 512x288 with the Window
Size

frame, the absolute error of ov@5% prediction is less thabms, and the relative error of ove8% prediction is less thaih0%.

3.1.2 Speed Setting Strategy

Suppose that predicted decode time of the next frame at fotlgssor speed i%,.... Then the predicted optimal processor
speed for decoding the next frame is given as

Foredict = { mm(%f’"”y» fmaz) if deadline > delay

deadline—dela

fmaz if deadline S delay

9)

wheref,,... denotes the full processor speddqdline is the relative deadline for decoding the frame and is giveRdpuation
10, anddelay is the accumulated slack and is given by Equation 11. Thelideaidr decoding a frame is the actual time left
until its playback instant

deadline = max(T — current, e) (20)

whereT denotes the playback instant,rrent denotes the current time, aad a small positive constant. We take the maximum
of T' — current ande to avoid negative values of the deadline, in which cAsey;.: should be set tg,, ..

Since the predictor is not perfect, the actual decode timebeasmaller or greater than the predicted decode time tirggul
in positive or negative slack for decoding future framese Parametedelay estimates this slack (which is also the error in
the predictions). The computed deadline is then reducetibyamount to correct for the error in Equation 9. The acciatedl
slack is computed as
maz(djqst — deadlineqst, 0) if delay <0

delay + (djqst — deadline)qst) if delay > 0 (11)

delay = {
whered,,s; anddeadline;,s; denote the decoding time and relative deadline of the pueviame, respectively. Note that, the
use of the current time in théeadline computation and the computation of the slack allows theiptedto account for the time
spent on scheduling other processes in a time-shared system
In a real implementation, the Chameleon speed adaptor rhagomputed’,,.q.: to the closest supported CPU speed that
is no less than the requested speed.

3.2 Video Conferencing Tool

Video conferencing has become a popular multimedia agicéor business and personal use. Most instant messaligmjsc
today support some form of “video chats”. Business use afwicbnferencing has increased due to falling network baatttiwi
prices and better provisioned networks. Many video comigrgy applications are based on the H.26x family of comjoess

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size Under Relative Error 5% with Different Window Size

100%

100% T T T T T T P T T T T T T T T Fr+r+ T T
R R A R PO B T Al A e +r+ e

DD

80% 80%

DDEOEE0ggg
afa]
DDDDDDDDDDDDDDDD
ooo
noo@Ogggg
jofao]

60% 60% r

40% 40%

20% 20% r

Cumulative Distribution Function
Cumulative Distribution Function

| Type Frame —— | Type Frame ——

P Type Frame —=— P Type Frame —s—
O% 1 1 1 1 1 1 1 0% 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Window Size Window Size
(a) Absolute Error (b) Relative Error

Figure 5: Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 640x272 with the Window
Size

standards (specifically, H.261, H.263 and H.264). In a gimpplication such agnomemeeting, the sender captures images at a
constant rate using a capture device such as a web cameosdgesrtbese images into frames as specified by the H.26x sthnda
and transmits encoded frames to a receiver over an IP netlark to the limit on the maximum packet size in IP, frames are
partitioned into packets prior to transmission; each pcde be independently decoded at the receiver withoutmegitir other
packets of that frame, thereby reducing latency—an impbféator in conferencing applications.

The H.26x standard differs significantly from MPEG in theheicues used for encoding and transmitting frames. In par-
ticular, although images are captured at a constant rateeaeander, the H.26x standard only requiresdiffference between
successive images to be sent to the receiver. If there isffevatice between successive images (due to lack of motioe),
no data needs to be sent. Consequently, frames (and thiketgearriveaperiodically at the receiver, and the frame sizes can
vary significantly across successive frames dependingeartiount of motion. As a result, the design of a power-awa?éx.
decoder is more complex than a power-aware MPEG video decbrdparticular, a power-aware video conferencing tool wil
need to predict (i) interval between successive framessandifically, the arrival time of the next frame, (ii) theesiaf each
frame in terms of the number of packets, and (iii) the deaptime of each packet. Next, we present techniques to préwise
metrics for the H.261 standard.

3.2.1 Predicting the Frame Interval

As indicated above, the interval between successive frésmes fixed in H.261, and network conditions can further axlthts
variability. Our experiments have shown that the amountatiom of the participants, rather than the network condgids the
dominant factor in the variability of the frame arrival timeeen by the recipient. The greater the amount of motiorgréseger
the difference between successive images, and the larthex imimber of frames actually sent out.

To predict the arrival time of the next frame, we assume tiwtdeo conferencing application maintains a history avar
times of the previous frames, yielding a time series of their values. We can thenausimple time series-based statistical
model to predict the next frame arrival time. We instrumdigigomemeeting to record the arrival times of frames and collected
traces of a number of video conferencing sessions with ngrgmounts of motion. Using these traces, we experimentdd wi
a number of auto-regressive and moving average models suR@), AR(2), AR(3), MA(1), and MA(2) to predict the next
frame arrival time [2]. Except for the above time seriesdubstatistical models, we also experimented with two comynased
models,mean which makes prediction by taking the mean of the values dfilasamples, andiast in which the prediction is
exactly the value of last sample. Similar to Section 3.hé,accuracy of these predictors is also evaluated by the Cifein
absolute error and the CDF of their relative error.

As shown in Figure 12 and 13, the second-order auto-regeeasddel (AR(2)) and the third-order auto-regressive model
(AR(3)) are the best two models, and they have similar perémice. Figure 12 shows that for video conference with réisolu
176x144: (i) ovel7% predictions of AR(2) and AR(3) have absolute error less &ams; (ii) over90% predictions of AR(2)

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error 1ms with Different Window Size Under Relative Error 5% with Different Window Size

100% T T T T T T T T 100% T T T T T T T T

B e e

BEBEBHALhH Y
80% 1 CLLLRY:] 80% |

o
nooo
noooo
afafafafo]
00000ppEooag

60%

oo
DDDDDDDDDDDDD
04 |- O000Qpno ,
60% DDDDDDDDDDDDD
O0000Bggpg
40% r 40% |

20% 20% r

Cumulative Distribution Function
Cumulative Distribution Function

| Type Frame —— | Type Frame ——

P Type Frame —=— P Type Frame —s—
O% 1 1 1 1 1 1 1 0% 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Window Size Window Size
(a) Absolute Error (b) Relative Error

Figure 6: Variation of the Accuracy of MPEG 4 Frame Decode Times Ritediunder Resolution 640x352 with the Window
Size

and AR(3) have relative error less tha#. Figure 13 shows that for video conference with resolutib2x288: (i) overd0%
predictions of AR(2) and AR(3) have absolute error less &tams; (ii) over95% predictions of AR(2) and AR(3) have relative
error less tharn0%. It means that AR(2) and AR(3) both are good candidates ofidrinterval predictor. Considering the
computational complexity of these two predictors, AR(2his best choice. Consequently, we we devised a predictedias
the AR(2) model to predict frame arrival times.

To understand how the AR(2) predictor works, consider a secgl of observations of the frame intervalgstery, intery,
inters, ..., inter,. Given this time series, we wish to predict the + 1)th frame interval. Letnter,; denote the actual
interval and Ieliniernﬂ denote the predicted interval.

The second-order autoregressive process AR(2) is defined: as

inter, = ¢rinter,_1 + dainters_o + a (12)

wherea; is some random variable with zero mean+ ¢o < 1, ¢o — @1 < 1, and—1 < ¢9 < 1. If inter; has a non-zero mean
I theninter, = inter; — 1L otherwisejnter, = inter;.

Given such a process, #&R(2) predictor estimates the mean ohter;, the parametey,; and ¢, of the model and then
predicts the next value based on these estimategi, gt and¢, denote the estimated mean, the estimated valde ahdgs,
respectively. The predictiomi‘ernH is given by:

interny1 = i + o1 (inter, — ji) + go(intern_, — i) (13)
Thus, estimation of the mean the parametep,, and the parameter, are important issues in the design of an AR(2) predictor.

Our predictor estimates these three parameters dynaynicsatig recent observations. Consider a window that holdrtbst
recentmn observations of frame intervals, < n. The estimate of the meahis given by:

m—1 . t)
2j=o intern—;

fi = (14)
m
The estimate of; and¢- are given by:
~ _ Tl(l — ’I“g)
! 1—r?
G = 1 (15)
2T 12

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8 Under Relative Error with Window Size 8

100% 7 # # # # # 100%

95% [
95% 90% r
85% r
90% 80% r
75% |
85% 70%

| Type Frame ——
P Type Frame —=—
B Type Framg ——

| Type Frame —+— |
P Type Frame —s—
B Type Fﬁame —

Cumulative Distribution Function
Cumulative Distribution Function

65%

80% 1 1 60% 1 1 1 1
0 5 10 15 20 25 30 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error
Figure 7: The Accuracy of MPEG 1/2 Frame Decode Times Predictor uRe@splution 352x288
where

Sy (imtern—; — i) (intern 1 — 1)
E;Z]l (inter,—; — f1)?
X ntera-y — p)(interas-j — i) .
o S linter,; — i)

rn =

3.2.2 Predicting the Number of Packets in a Frame

Our analysis of the gnomemeeting video conferencing tralbewed that the number of packets in a frame, and thus theefram
size, is governed by the amount of human motion in each frémne.to the continuous nature of human motion, we found the
size of the current frame to be the best predictor of the dizeeonext frame (the current frame size was found to be aibette
predictor than other metrics such as the mean size of théopiel frames). As shown in Figure 14 and 15, flast predictor
which uses the number of packets in the current frame as thaumber of packets in the next frame yields a good balance
between prediction accuracy and computational complefikghe absolute error of oveéd5% prediction for QCIF is less than

1; (i) the absolute error of oved0% prediction for QCIF is less than Consequently, we use a simple predictor that sets the
estimated number of packets in the next frame to that in threctframe.

3.2.3 Predicting the Packet Decode Time

The low level compression mechanisms in H.261 share manynmmnideas with MPEG. Therefore, we applied the same
correlation coefficients analysis as we did in Section 3ielcollected traces of the packet size and the packet degtidie of
H.261. Not surprisingly, we observed a similar piece-wigedr relationship between the packet size and the packetidey
time for a given frame type (see Table 3). Consequently, veeausimilar predictor to the one in Section 3.1.1 to estimate t
decoding time of a packet, and the equations of this predigtexactly the equations used in Equation 8 except thatitieeo$
frames is replaced by the size of packets.

| Resolution| r,, | VN —3uw |
176x144 | 0.3774| 36.6280
352x288 | 0.3176| 46.4444

Table 3: Correlation Coefficients of H.261 Standard

10

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8 Under Relative Error with Window Size 8

100% - - - - - 100% : : ——
/ 95% |,

95%

90% r
85% r
90% 80% r

75%

85% 70%

Cumulative Distribution Function
Cumulative Distribution Function

| Type Frame —— 65% 1

P Type Framg —s—

| Type Frame —— |
P Type Fﬁame &

80% 1 1 60% 1 1 1 1
0 5 10 15 20 25 30 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 8: The Accuracy of MPEG 4 Frame Decode Times Predictor undsolRgon 352x240

As we did in Section 3.1.1, we also applied our linear-basediptor (denoted aknear) to the traces of H.261 packets
decoding time and measured its accuracy by evaluating tie @is absolute error and relative error. Our experimehtss
that our linear-based predictor of H.261 packet decodimg ttannot achieve comparable accuracy to the linear-basditior
of MPEG frame decoding time in terms of the CDF of relativ@erTherefore, we additionally applied another predicbean,
which makes prediction by taking the mean of the values dfrilaamples, to our collected traces. Figure 16 and 17 show that:
(i) our linear-based predictdinear outperformsmean predictor in both resolutions; (ii) more th&3% predictions oflinear
have absolute error less thasms.

We notice that both predictors do not perform well in termdhaf CDF of relative error. Observed from Figure 18, the
decoding time of H.261 standard is small in most case, ar®0fidless thar8.0ms. So even absolute errdr5ms means a
relative error larger thab0% in most case, while a prediction with5ms absolute error is a very good prediction to satisfy our
requirement. Therefore, we only evaluated the predictamugacy of both predictors in terms of the CDF of absolutererks
a consequence, we choose our linear-based prediiotar as the H.261 packet decoding time predictor.

3.2.4 Speed Setting Strategy

Let p denote the estimated number of packets in the current franteletinter denote the predicted frame interval. Then the

CPU speed; for decoding of thejith packet in the current frame is determined by scaling ilssfoeed decode timéj by the
inter-packet arrival time. That is,

dj‘f‘ln.a.:): |f jxinfer

; M fmazs i 4 s > clapse; (17)
= ? ! xini
Fonas if XD < elapse;

where f,,,., denotes maximum CPU speed, atldpse; denotes the time elapsed since the arrival of the first pawkéte
current frame.

In the event the actual number of packets in the frame exdbedsstimated valug, the CPU speed setting of subsequent
packets is computed as

inter—elapse;

- dAj'fm,az H -7
min(fmaz, ————rt— if elapse; < inter
fj _ { (f) pse; (18)

fmaz if elapse; > inter

wherej > p.
In a real implementation, the computggdis mapped by the speed adapter to the closest available #pseed no smaller
than the requested speed.

11

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8 Under Relative Error with Window Size 8

100% # # # 100%

95%
95% 90% r
85% r
90% 80% r

75%

85% 70%

Cumulative Distribution Function
Cumulative Distribution Function

| Type Frame —— 65% 1

P Type Frame —=—

| Type Frame —— |
P Type Fﬁame &

80% 1 1 60% 1 1 1 1
0 5 10 15 20 25 30 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 9: The Accuracy of MPEG 4 Frame Decode Times Predictor undsolRgon 512x288

3.3 Web Browser

A web browser is an event-driven interactive applicatiopol)an event such as a mouse click or network data arrivalyie
browser needs to do some work to process the event. For exawiptn the user clicks on a link, the browser needs to caristru
and send out a HTTP request; when data arrives from the resmoter, it needs to parse and display the incoming data;tand i
needs to redraw its window once tHeaw event arrives. Except for the network delay which is out &f tntrol of the web
browser, the speed at which these events are processed byravgker greatly impacts the user’'s experience. The falséer t
speed, the better the user’s experience. However, stuaiesdmown that there exists a human perception threshoket widch
events appear to happen instantaneously [4]. Thus, compliese events any faster would not have any perceptilgadtron

the user. While the exact value of the perception threshaleépendent on the user and the type of task being accompliahed
value of50ms is commonly used [4, 15, 8, 9]. We also use this perceptieshold in our work.

Our strategy for achieving energy savings while still maiiming good interactive performance relies on a technigierred
to asgradual processor acceleration (GPA). Our gradual processor acceleration technique works ksl

On the arrival of an event, the web browser is configured touncher at a low CPU frequency, and a timer is set. If the
processing of the event finishes before the timer expires tmowser simply waits for the next event. Otherwise, itéases
the CPU speed by some amount and sets another timer. Thysdatessor is gradually accelerated until either the event i
processed or the maximum CPU speed is reached. In orderuceagsod interactive performance, the maximum CPU speed is
always used when the event processing time exceeds thefiercthreshold.

Suppose we have timers, which have values, ts, ..., t,, and>_ ", t; = 50ms. At theith step, the processor runs at
speedf;, which is expressed as a percentage of the maximum avaspkled. Therefore, the full speed execution time over
the interval[t,, ¢,]—the time it would have taken to process this work at full peste speed—is given gs.-_, f;t;. If the
actual full-speed processing time of the event is smalken this value, the event finishes before $hens perception threshold,
and thus the user does not perceive any performance deigradabr any event requiring more than this amount of fullespe
execution time, the maximum possible performance deg@adahder our strategy is given by:

degrade = 50 — Z fiti (19)

i=1

since the processor will run at full speed once the exectitina exceeds the perception threshold.

Given this expression, the maximum possible performanggadation can be bound by any specific value by carefully
choosing the CPU frequencies and timer values. For exarappgpose that we have five timers with vald@ss, 5ms, 5ms,
5ms, andbms. Suppose the processor speeds during these timer istisrigat5%, 60%, 80%, 90%, and100% of the maximum
speed, from the first timer to the last timer respectivelyef,irom Equation 19, the maximum possible performanceadizgion
for an event i20ms. This is the maximum user-perceived slowdown for any tethet requires more thasms of processing

12

The Accuracy of Frame Decode Times Predictor The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8 Under Relative Error with Window Size 8

100% t # # # 100%

95% r
95% 90% r
85% r

90% 80% r

75%

85% 70% r

Cumulative Distribution Function
Cumulative Distribution Function

| Type Frame —— 65% 1

P Type Framg —s—

| Type Frame —— |
P Type Fﬁame &

80% 1 1 60% 1 1 1 1
0 5 10 15 20 25 30 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error
Figure 10: The Accuracy of MPEG 4 Frame Decode Times Predictor undeolRgon 640x272
time.

4 Implementation of Chameleon

We have implemented Chameleon in the Linux kernel and hapemmented three power-aware applications to demonstgate i
effectiveness. Our implementation of Chameleon runs onny $aio PCG-V1CPK laptop with Transmeta Crusoe TM5600-
667 processor [20]. The Transmeta TM5600 processor supfieet discrete frequency and voltage levels (see Table 4) and
implements thed.ongRun [10] technology in hardware to dynamically vary the CPU freqcy based on the observed system-
wide CPU utilization. LongRun varies the CPU frequency lesw a user-specified maximum and minimum values—these
values can be set by users by writing to two machine speajdters (MSR). By default, these values are seto MHZ

and 677 MHz, enabling the full range of voltage scaling. LongRun t&ndisabled by setting the minimum and maximum
register values to the same frequency (e.g., setting bdiB3tdIHz does not allow any leeway in changing the CPU frequency,
effectively disabling LongRun). This feature can be usddigement voltage scaling software—the power-aware application
can determine the desired frequency and set the two regjistéhnis value.

Freg. (MHz) | Voltage (V) | Power (W)
300 1.2 1.30
400 1.225 1.90
533 1.35 3.00
600 15 4.20
667 1.6 5.30

Table 4: Characteristics of the TM5600-667 processor

Our prototype of Chameleon is implemented as a set of moduldgatches in the Linux kernel 2.4.20-9. Our prototype
includes the following components:

1. New system calls. We added two new system calls to implement the Chameleomooninterface: (i)get-speed which
returns the current CPU speed, €&-speed that sets the CPU speed of the calling process. We also nobttiie prroc
interface in Linux to report the full speed execution time &me per-process utilization in each quantum.

2. Per-Process CPU Speed Settings. We modified the Linux CPU scheduler to support per-procd®d Speed settings.
The scheduler maintains the current CPU speed settingsufbr active process and conveys these settings to the CPU at
context switch time. Protection is enforced by allowing agass to only modify its own power settings and never those
of other processes.

13

100%

95%

90%

85%

Cumulative Distribution Function

80%
0

The Accuracy of Frame Decode Times Predictor
Under Absolute Error with Window Size 8

T o o o

| Type Frame ——
P Type Framg —s—

! !

5 10 15 20 25 30
Absolute Error (ms)

(a) CDF of Absolute Error

Cumulative Distribution Function

100%

95%

90% F

85%

80% r

75%

70%

65%

60%

5%

The Accuracy of Frame Decode Times Predictor
Under Relative Error with Window Size 8

!

| Type Frame —— |
P Type Fﬁame &

! ! !

10%

15% 20% 25% 30% 35% 40% 45% 50%
Relative Error

(b) CDF of Relative Error

Figure 11: The Accuracy of MPEG 4 Frame Decode Times Predictor undeolRRgon 640x352

3. Speed Adapter. We derived a hardware-specific conversion table (see Blii@m off-line empirical experiments to
map CPU speed percentages to a corresponding CPU frequency.

CPU Speed PercentadeFreq. (MHz)
[0%, 45%) 300
[45%, 60%) 400
[60%, 80%] 533
(80%, 90%] 600

(90%, 100%] 667

Table 5: Speed adapter mappings from the percentage CPU Speed 10 Rréguency for the Transmeta TM5600.

4. Power-aware Applications: We extended thenplayer [18] movie player, thggnomemeeting video conference suite [11],
and thedillo web browser [6] with the models presented in Sections 34, &d 3.3, respectively. Power-unaware
applications are handled by dynamically reverting to LongRvhenever such applications are scheduled; LongRun is
disabled whenever a power-aware application is scheduled.

5 Experimental Evaluation

We evaluated Chameleon on a Sony Vaio PCG-V1CPK laptop pgdiiith a Transmeta Crusoe processor and 128MB RAM.
The operating system is Red Hat Linux 9.0 with a modified wersif Linux kernel 2.4.20-9. This section presents a summary

of our

results.

To compare Chameleon with other DVFS approaches, we impltrdahree OS-based DVFS techniques proposed in the
literature: (i) PAST [21], (i) PEAK [13], and (iii)AV G,, [12], all of which are interval-based system-wide DVFS td@ques.
Our experiments involve running applications under sifedént configurations: (i) with DVFS disabled—the CPU alwayss
at the maximum speed (denoted as FULL), (ii) using the hambiviongRun technology, (iii) using PAST, (iv) using PEAK,
(v) using AV G,,, and (vi) using Chameleon (where LongRun is disabled forgyemware applications but enabled for legacy

applic

The energy consumption of the processor during an intéfyalcomputed as

ations).

n
energy = Zpiti
i=1

14

(20)

Compasion among the Frame Interval Predictor Compasion among the Frame Interval Predictors
under Window Size 15 under Window Size 15

100% T + - 100%

* * *

L]

80% 80% r

60% 60%

40% 40% T

Cumulative Distribution Function
Cumulative Distribution Function

AR(l) —— AR(1) ——
AR(2) —x— AR(2) —x—

20% AR(3) —*— 20% AR(3) —>— |
MA(1) —e— MA(1) —e—
mean —e— mean —e—

O% 1 1 1 IlaSt 0% 1 1 1 1 1 1 |aSt 1

0 20 40 60 80 100 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 12: The Comparisons among Frame Interval Predictors for Q€8x144 with Window Size 15

wheren is the number of available frequency/voltage combinatimmshe processop; denotes the power consumption of the
processor when running at thil frequency/voltage combination, ahdrepresents the time spent at tile frequency/voltage
combination during the intervdl. We modify the Linux kernel to record the energy consumptiihe TM5600 processor using
Equation 20 and Table 4. Given the energy consumption of theggsor during an intervdl, the average power consumption
of the processor during this interval is computed as

energy
T

(21)

POWET gpg =

5.1 Video Decoder

We encoded ten DVD movies at different bit-rates and resmiatusing Divk MPEG2/MPEG4 video codec and MP3 audio
codec The characteristics of these movies are listed ireTabT he bit-rates are depicted in the fofa b)Kbps, wherea is

the video ana is the audio bit-rate. We recorded the energy consumed hyrtieessor during playback of these movies at full
speed, with LongRun, with Chameleon, with PAST, with PEAKd avith AV G,,.

Res. Length | Frames| Bit-Rate(Kbps)
Movie 1 || 640x272| 3360s | 80387 | 1290.9 +179.2
Movie 2 || 640x272| 612s 14577 757.2+128.0
Movie 3 || 720x448| 1742s | 43500 1272.1+96.0
Movie 4 || 640x352| 602s 15003| 861.9+128.0
Movie 5 || 640x352| 1755s | 42040| 2456.9 + 192.0
Movie 6 | 640x480| 2394s | 57355| 1674.6 + 384.0
Movie 7 || 640x352| 7168s | 179168 | 679.7 +128.0
Movie 8 | 640x480| 2368s | 56733 | 1877.6 + 384.0
Movie 9 | 640x280| 5523s | 132375 911.1+128.0
Movie 10 || 720x448| 1722s | 43004| 1250.6+96.0

Table 6: Characteristics of MPEG 4 Videos

As shown in Figure 19, PEAK always consumes the least procesgergy among all the DVFS techniques. However,
it trades its energy savings with an unacceptably high pexdioce degradation for time-sensitive multimedia andrauiive
applications. For example, the results of the normalizextetion time (normalized according to the length of movik#ing
videos playback in Figure 20 show that the video decodingsi>ofmovies (Movie 3, 4, 5, 6, 8, 10) take extta% to 53%
execution time, resulting in poor performance. Therefarepmit PEAK in the rest of experimental evaluation.

15

Compasion among the Frame Interval Predictor Compasion among the Frame Interval Predictors
under Window Size 15 under Window Size 15

100% 100% T

80% 80%

60% 60% r

40% 40% T

Cumulative Distribution Function
Cumulative Distribution Function

AR(1) ——
AR(2) —x—

20% | 20% AR(3) —>— |
MA(1) —e—
mean —e—

O% 1 1 1 1 0% 1 1 1 1 1 1 |aSt 1

0 20 40 60 80 100 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 13: The Comparisons among Frame Interval Predictors for CEx288 with Window Size 15

Our results in Figure 20 show that all the other five configaret, Chameleon, LongRun, PASAY G,,, and Full, handle
movie playback very well. The same playback quality is obs@runder these five configurations: identical executioresim
which equal the length of the movies, identical frame rat@sdropped frames, and no user-noticeable delays. Howieer,
average CPU power consumption differs significantly actbessarious configurations (see Figure 19). Figure 19 shbets t
(i) LongRun outperforms PAST andV G,, in most cases; (ii) LongRun can achieve significant energinga (from11.76%
to 62.19%) when compared to FULL; (iii) the Chameleon-awamglayer can achieve an addition&9.92% to 34.79% energy
savings when compared to LongRun.

Although there are no user-perceived playback problemse(ims of dropped frames or playback freezes) under the five
configurations, we do observe variations in playback gyalitthe frame-levelmplayer provides statistical measurements of
late frames—the number of frames that are behind their deadly more thar20% of the frame interval (this small inter-
frame jitter is typically not perceptible at the user-lgveAs shown in Figure 21, the number of late frames in Chanmeiso
mostly comparable to PAST amdll’ G,, and typically better than LongRun (while consuming the lea®rgy). FULL has the
least—although not zero—late frames at the expense of théghest energy consumption. The number of late frames islsmal
(0.2 — 5.3%) in all the five configurations. We also notice that the défeze between the late frames percentages of Chameleon
and Full is less thaf.5% in all cases, therefore Chameleon has almost the same pearioe as FULL while consuming much
less energy41.71% to 71.46% less).

5.2 Video Conference Tool

To ensure repeatable and comparable experiments withdkee ebnferencing tool, we encoded several video clips veétking
degrees of motion. We played these clips on a PC, with theovidenera of the sender PC pointing to this video playback. The
sender encodes these images and transmits them to the @oaarreceiver over a lightly loaded network. This ensuraéra
comparison across the various DVFS techniques and enabtescarefully control the amount of motion in each session.

We ran our video conference experiments under two resostiQCIF (176x144) and CIF (352x288), for all five configura-
tions. In our experiments, all five configuration handle tidew conference very well. The same quality is observed ualde
configurations: identical execution times and no deadlirsses (i.e., the decoding of each packet completes beferartival
of the next packet). Our results, shown in Figure 22, show ltbagRun achieves significant energy savings (fr2itr5%
t0 69.25%) when compared to FULL. Chameleon-awgr®memeeting achieves an additionall — 34% energy savings when
compared to LongRun, while PAST ard/ G,, are worse than LongRun.

5.3 Web Browser

To eliminate the impact of variable network delays, our expents with the web browser consisted of a client requgstin
sequence of web pages from a web server over a local arearketive requested web pages consist of actual web content tha

16

100%

80%

60%

40%

Cumulative Distribution Function

20%

Compasion among the Packets per Frame Predictor
under Window Size 15

100%

b 80%

60%

40%

Cumulative Distribution Function

b 20%

Compasion among the Packets per Frame Predictors
under Window Size 15

0% . . . h 0%
o 2 4 6 8 10 5%
Absolute Error

(a) CDF of Absolute Error

. . .
25% 30% 35%

Relative Error

(b) CDF of Relative Error

. . .
10% 15% 20% 40% 45% 50%

Figure 14: The Accuracy of H.261 Packets per Frame Predictor undeolRien 176x144

was saved from a variety of popular web sites. Each expetic@msists of a sequence of requests to these web pages with
a uniformly distributed “think-time” between successieguests. The experiments differ in the requested web pagktha
chosen think times; each experiment is repeated under thednfigurations, and we measure the mean power consumption
for each experiment. Our results, depicted in Table 7, sthawltongRun consumes a factor of three less power than FULL.
Chameleon-awardillo andAV G,, are able to extract addition#l.27% and5.41% energy savings when compared to LongRun,
respectively, while PAST are worse than LongRun. We alse ttwit the average power consumption under Chameleon is only
0.03W higher than the power consumption at the slowest CPU spg#8iM{Hz). Further, most events finish in Chameleon
without any performance degradation, and a few long evertslawed down by at most 20ms.

PAST
1.88W

FULL
5.30W

Chameleon
1.33W

AV G,
1.40W

LongRun
1.48W

AVG. Power

Table 7: Average Power Consumption for Web Browsing.

5.4 Concurrent Applications

In Section 1, we hypothesized that the use of per-procesemsettings is better than a single system-wide settingesiin
allows each application to flexibly optimize their energypsomption. To experimentally verify this hypothesis, weaswre the
power usage when running concurrent applications undefivbeconfigurations. We first run the video decoder and the web
browser concurrently and then the video conferencing taibl the browser.

Table 8 shows the average CPU power consumption when rutiréengdeo decoder and the web browser concurrently. Note
that, LongRun, PAST andV G,, determine a single system-wide setting, which is typicalffuenced by the most compute-
intensive application in the system (in this case, the vidlsmder). Chameleon uses different application-compaetithgs for
the two applications, and consequently, incurs the leasepoonsumption of the five configurations. The energy saiagge
from 25-31% when compared to LongRun, which itself extradiactor of 1.6-2 reduction when compared to FULL.

Chameleon| LongRun| PAST | AVG,, | FULL
Movie 2 1.75W 2.33W 3.32W | 3.52W | 5.3W
Movie 4 2.25W 3.27TW | 3.98W | 4.42W | 5.3W

Table 8: Average CPU Power Consumption during Video Decoding and Bfewsing.

Table 9 shows the average CPU power consumption when rutimingdeo conferencing tool and the web browser concur-
rently. Like in the previous scenario, Chameleon is ablexteaet the maximum energy savings, which is 15-31% lowen tha

17

Compasion among the Packets per Frame Predictor Compasion among the Packets per Frame Predictors
under Window Size 15 under Window Size 15

100% T 100%

80% b 80%

60% | B 60%

40% q 40%

Cumulative Distribution Function
Cumulative Distribution Function

20% AR(L) ——] 20% - AR(1) ——]
AR(2) —=— AR(2)
AR(3) —*— AR(3) —*—
MA(L) —=— MA(1) —=—
mean —e— mean —&—

last —a— last
0% . . . ; 0%
o 2 4 6 8 10 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 15: The Accuracy of H.261 Packets per Frame Predictor undeolRissn 352x288

QCIF CIF
Chameleon| LongRun| PAST | AVG,, | FULL || Chameleon LongRun| PAST | AV(G, | FULL
Conference 1 1.51W 1.79W 2.58W | 2.67TW | 5.30W 2.91W 4.39W 4.31W | 4.53W | 5.30W
Conference 2| 1.53W 1.80W | 2.60W | 2.71W | 5.30W 2.93W 4.31W | 4.24W | 4.55W | 5.30W

Table 9: Average CPU Power Consumption during Video Conferencirdy\&eb Browsing.

than LongRun. PAST yields worse performance than LongRUN¢,, yields worse performance than LongRun under QCIF,
while it yields at mosi.82% better performance than LongRun under CIF.

5.5 Overhead

We evaluate Chameleon’s overhead by measuring the costddiction methods and DVFS. We measure cost in CPU cycles,
rather than time, since the elapsed time for an operatign, @n invocation of frame decode time predictor) dependthen
speed, while the number of consumed cycles does not chabgtastially with the speed. We get the number of CPU cycles
by reading the special time-stamp register of the procdsefore and after these operations, prediction methods atSDand
count the elapsed CPU cycles during them.

First, we evaluate the cost for the prediction methods in€rdb. To do this, we ran the prediction methods proposed in
Section 3, and measure the elapsed CPU cycles for each fpraditethod. Table 10 shows that these predictor methods tak
less thar2800 CPU cycles (abou®.3 s under300 MHz and4.2 us under667 MHz). This overhead is low and negligible
relative to multimedia execution, since the decode timengf MIPEG frame is aboudims to40ms and the decode time of one
H.26x packet is aboutms to7ms undei667 MHz. It means that these prediction methods only incur abdlit05% to 0.42%
overhead.

MPEG Frame Decode Time Predictor 2738

Video Conferencing Frame Interval Predictor 2560
Video Conferencing The Number of Packets in a Framess

Video Conferencing Packet Decode Time Predictor 2731

Table 10: Cost of Prediction Methods (in CPU cycles).

Finally, we measure the cost of voltage and frequency sgalib do this, we adjusted the processor from one frequency to
another frequency, and measure the number of cycles foradasige. The results in Table 11 show that the CPU can change
speed withinl 125 cycles (abou8.75 ps under300 MHz and1.69 ps under667 MHz). It means that the voltage and frequency

18

The Accuracy of H.261 Packet Decode Times Predictor The Accuracy of H.261 Packet Decode Times Predictor
Under Absolute Error with Window Size 10 Under Relative Error with Window Size 10

100% T T T 100% T T T T T T T T

80% 80% r

60% 60% r
40% 40%

20% 20% r

Cumulative Distribution Function
Cumulative Distribution Function

linear ——

linear ——

mean —e— mean —&—
O% 1 1 1 1 0% 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 16: The Accuracy of H.261 Packet Decode Times Predictor undspRtion 176x144

to frequency (MHz)
300 | 400 | 533 | 600 | 667
300 1101 | 1099 | 1086 | 1066
from 400 || 1125 1095 | 1086 | 1066
frequency| 533 || 1117 | 1104 1073 | 1066
(MHz) | 600 || 1125 | 1101 | 1092 1066
667 | 1117 | 1101 | 1088 | 1077

Table 11: Cost of Voltage and Frequency Scaling (in CPU cycles).

scaling only incurs tiny overhead.

6 Related Work

Recently, application aware/directed/controlled powanagement for processors has received increasing resgtection and

a variety of technigues have been proposed. Most of thebaitpes [5, 16, 22, 19, 17, 29] utilize the dynamic voltagd an
frequency scaling technique (DVFS) of processors for gneayings, while several other techniques [26, 25, 28]agtithe
application/middleware based adaptation for energy gaviri processors.

For instance, at the application/middleware based adapighenoy [28] and Tamai [25] both suggest performing powe
friendly proxy based video transformations to reduce vigeality (i.e. bit-rate, resolution, fps) for energy sa\8n§linn [26]
utilizes Puppeteer [27], a component-based adaptionraystereduce document quality (i.e. picture resolutionpcalepth,
animation) for energy savings of office applications. Thewown features of these application/middleware based atilapt
techniques are: (i) the amount of to-do work of applicatimseduced, for example, the video quality in [28, 25] and the
document quality in [26] are reduced; (ii) all of them utdia remote proxy to reduce the amount of to-do work of apjdinat
(iii) all of them are designed to handle applications whieguest their data (i.e. video stream, audio stream) fronoteservers
via network, therefore they are not suitable for appliaaiavhich only use local data.

In contrast, the application aware/directed/controllegvg@r management techniques [5, 16, 22, 19, 17, 29] whiclzaitil
DVFS technique: (i) do not reduce the amount of to-do workpglizations; (ii) do not require a remote proxy to transcode
data; (iii) not only handle applications which use remotéadaut also handle applications which only use local data[5)n
16, 19, 17, 29], researchers proposed several differeficafipn-controlled DVFS techniques for video decoden iRstance,
Mesarina [17] proposed a offline algorithm to compute theepahd voltage settings at which the appliance’s CPU decodes
the frames, reducing energy consumption without violatimgng for buffering constraints. This technique requieash video
being preprocessed offline by some server ahead of its ea#figjgnt playback. While in [5, 16, 19, 29], several tech@gwere

19

The Accuracy of H.261 Packet Decode Times Predictor The Accuracy of H.261 Packet Decode Times Predictor
Under Absolute Error with Window Size 10 Under Relative Error with Window Size 10

100% T T T T T | 100% T T T T T T T T

80% 80% r

60% 60% r
40% 40%

20% 20% r

Cumulative Distribution Function
Cumulative Distribution Function

linear —— linear ——

mean —e— mean —&—
O% 1 1 1 1 0% 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Absolute Error (ms) Relative Error
(a) CDF of Absolute Error (b) CDF of Relative Error

Figure 17: The Accuracy of H.261 Packet Decode Times Predictor undspRtion 352x288

proposed to online estimate the CPU demand of video decptting eliminated the need of preprocessing videos offlile. A
these techniques [5, 16, 19, 17, 29] only consider a singiéagion, video decoder, and grant complete control ofiteeessor
frequency and voltage settings to the video decoder. Theepaware video decoder can choose a system-wide voltage and
frequency setting based on its needs and typically igndhes applications in the system. As a result, the perforrmafiother
applications can be significantly impacted when settingsseh by the power-aware video decoder do not satisfy thek CP
needs. The GRACE-OS project [22] proposed an applicatiBrd@perative approaches to achieve energy savings faderi
multimedia applications via DVFS technique, and they mtedi performance isolation among applications. GRACE-Q®is

a general purpose approach, they can only handle periodiomadia applications but not aperiodic applications saslweb
browser.

An integrated power management approach was proposed]ito[R28ify low level architectural optimizations (CPU, mem-
ory, register), OS power-saving mechanisms (Dynamic Yeltand Frequency Scaling) and adaptive middle techniqdesiga
sion control, optimal transcoding, network traffic regida}. In this technique, interaction parameters betweendifferent
levels are identified and optimized to significantly reduoe/@r consumption.

7 Summary and Conclusions

This paper proposed Chameleon, a new approach for powemgmianest in mobile processors. We argued that applicatiowkno
best what their energy needs are and propose an approaghutbdhe entire burden of power management on individudl-app
cations. The operating system only enforces protectionsuldtes applications from the power settings of otheriappbns.
Chameleon consists of three components: ipmmon interface that power-aware applications can use to measure their CPU
demands and adjust their CPU speed settings correspopdiiigh modified kernel CPU scheduler that supports pecess
CPU speed setting to ensure performance isolation amongains, and (iii) aspeed adapter that maps these CPU speed
settings to the nearest speed actually supported by thevased

We implemented Chameleon in the Linux kernel and evaludtednrergy efficiency for three time-sensitive applications
namely a video decoder, a video conferencing tool and a weldar. Our results show that Chameleon can extract up to
34% energy savings when compared to LongRun and up to 50%gsawinen compared to recently proposed OS-based DVFS
techniques, while delivering comparable or better peroroe to time-sensitive applications. Chameleon is als@rafiective
at scheduling a mix of concurrent application with diversergy needs. As part of future work, we are developing a power
aware version of an Office application suite for Chameleon.

20

The Cumulative Distribution Function of Decoding Time The Cumulative Distribution Function of Decoding Time

1 1
5 5
3 08t g 3 08 g
T T
c c
£ 06t] S 06} |
2 2
S o4y . S o4 .
2 2
s s
=} =}
E o2t 1 E o2t 1
0 0
O 1 1 1 1 0 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5
Decoding Time (ms) Decoding Time (ms)
(a) 176x144 (b) 352x288
Figure 18: The CDF of Decoding Time for H.261 Standard
References

[1] A. Bavier, A. Montz, and L. Peterson. Predicting MPEG Extton Times. InProceedings of ACM Sgmetrics 98, Madison,
WI, pages 131-140, June 1998.

[2] G. P. Box, G. M. Jenkins, and G. C. Reinsd@lme Series Analysis Forecasting and Control Third Edition. Prentice Hall,
1994,

[3] J. Bendat and A. PiersoRandom Data Analysis and Measurement Procedures Second Edition. John Willey & Sons, 1985.

[4] S. K. Card, T. P. Moran, and A. Newellhe Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates,
1983.

[5] K. Choi, K. Dantu, W. Cheng, and M. Pedram. Frame-baseddnyic Voltage and Frequency Scaling for a MPEG Decoder.
In Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design (CAD’ 02), San Jose, CA, pages
732—-737, November 2002.

[6] Dillo 0.7.3. Dillo Org., http://www.dillo.org.

[7] D. R. Engler, M. Kaashoek, and J. O. Jr. Exokernel: An @firg System Architecture for Application-level Resource
management. IRroceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP95), Copper Mountain,
CO, pages 251-266, December 1995.

[8] K. Flautner, S. Reinhardt, and T. Mudge. Automatic Parfance-setting for Dynamic Voltage Scaling. Rroceedings of
the 7th ACM International Conference on Mobile Computing and Networking (MobiCom'01), Rome, Italy, pages 260-271,
July 2001.

[9] K. Flautner and T. Mudge. Vertigo: Automatic Performarsetting for Linux. InProceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI’ 02), Boston, MA, pages 105-116, December 2002.

[10] M. Fleischmann. Longrun Power Management - Dynamic &dwanagement for Crusoe Processors. Technical report,
Transmeta Corporation, 2001.

[11] Gnomemeeting 0.96.1. Ghomemeeeting Org., http://vgnamemeeting.org.

[12] D. Grunwald, P. Levis, K. Farkas, C. M. lll, and M. NewalPolicies for Dynamic Clock Scheduling. Rroceedings of
the 4th USENIX Symposium on Operating Systems Design and Implementation (OSDI’00), San Diego, CA, pages 73-86,
October 2000.

21

Average Power Consumption in Watts

Average Power Consumption of Movies Playback Average Power Consumption of Movies Playback

8 T T T 8 T T T
El Chameleon

Hl Chameleon
Il LongRun
I PAST

[AVGn

[PEAK

[FULL

5.30
5.30
3.00
461
452
5.10
5.30
2.86
3.75
4.24
5.30
3.38
4.01
| 4.62
5.30
5.30
352
13.86
5.30
2.97
4.13
4.43
4.90
5.30
5.30
3.09
468
456
5.14

231
Average Power Consumption in Watts

1.90
1.95

]1.35
]1.33

135

> 1.36
11.34

1.70

2.51

]1.36
1.34

1.60

2.00
[3.32

© 1.34
1.33
L

! !
Movie 1 Movie 2 Movie 3 Movie Movie 5 Movie 6 Movie 7 Movie 8 Movie Movie 10

Movies Movies

(a) (b)
Figure 19: Average CPU Power Consumption during Video Playback

[13] K.Govil, E.Chan, and H. Wasserman. Comparing Alganghfor Dynamic Speed-setting of a Low-power CPU.Pho-
ceedings of the 1st Mobile ACM/IEEE International Conference on Computing and Networking Conference (MobiCom' 95),
Berkeley, CA, pages 13-25, November 1995.

[14] J.R. Lorch and A. J. Smith. Improving Dynamic Voltageafhog Algorithms with PACE. IrProceedings of the 2001 ACM
SIGMETRICS Conference, Cambridge, MA, pages 50-61, June 2001.

[15] J. R. Lorch and A. J. Smith. Operating System Modificagifor Task-based Speed and Voltage schedulindprdoeed-
ings of the 1st ACM/USENIX International Conference on Mobile Systems, Applications, and Services (MobiSys 03), San
Francisco, CA, pages 215-229, May 2003.

[16] Z.Lu, J.Hein, M. Humphrey, M. Stan, J. Lach, and K. SkadrControl-theoretic Dynamic Frequency and Voltage $&gali
for Multimedia Workloads. IiProceedings of the 3rd ACM/IEEE International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASE’01), Greenoble, France, pages 156-163, October 2002.

[17] M. Mesarina and Y. Turner. Reduced Energy Decoding oB@FStreams. IProceedings of the ACM/SPIE Multimedia
Computing and Networking Conference (MMCN), pages 73-84, January 2002.

[18] Mplayer 0.90. http://www.mplayerhq.hu.

[19] J. Pouwelse, K. Langendoen, I. Lagendijk, and H. Sigsvét-aware Video Decoding. FProceedings of the 22nd Picture
Coding Symposium (PCS 01), Seoul, Korea, pages 303-306, April 2001.

[20] Crosoe TM5600 Processor Data Sheet. Transmeta Ig://fww.transmeta.com.

[21] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schadutr Reduced CPU Energy. Rroceedings of the 1st USENIX
Symposium on Operating Systems Design and Implementation (OSDI’ 94), Monterey, CA, pages 13-23, November 1994,

[22] W. Yuan and K. Nahrstedt. Energy-efficient Soft Reatdi CPU Scheduling for Mobile Multimedia Systems. Rro-
ceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’ 03), Bolton Landing, NY, pages 149-163,
October 2003.

[23] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau and N. Vdakabramanian. Integrated Power Management for Video
Streaming for Mobile Handheld Devices. Rroceedings of the 11th ACM Internatioanl Conference on Multimedia
(MM’ 03), Berkeley, CA, pages 582-591, November 2003.

22

Normalized Execution Time of Movies Playback Normalized Execution Time of Movies Playback

3 T T T 3 T T T
El Chameleon

Hl Chameleon
Il LongRun
I PAST

[AVGn

[PEAK

[FULL

N
T
I
N
T
I

]1.50

Normalized Execution Time
— 134
Normalized Execution Time

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

I | o)

[100

L 100
L

od 9
) ©2 S
o

! !
Movie 5 Movie 6 Movie 7 Movie 8 Movie

1.00

o =
T
1100
[oo
[100
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
s 112
[oo
1.00
1.00
1.00
1.00
1.00
1
o -
T
1.00
© 1.00

Movie 1 Movie 2 Movie 3 Movie Movie 10
Movies Movies
(a) (b)

Figure 20: Normalized Execution Time during Video Playback

[24] X. Liu, P. Shenoy and W. Gong. A Time Series-based Apghndar Power Management in Mobile Processors and Disks.
In Proceedings of the 14th ACM Internatioanl Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV’ 04), Cork, Ireland, pages 74—79, June 2004.

[25] M. Tamai, T. Sun, K. Yasumoto, N. Shibata and M. Ito. Hyeaware Video Streaming with QoS Control for Portable
Computing Devices. IiProceedings of the 14th ACM Internatioanl Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV’ 04), Cork, Ireland, pages 68—73, June 2004.

[26] J. Flinn, E. Lara, M. Satyanarayanan, D. Wallach and Wa&nepoel. Reducing the Energy Usage of Office Applica-
tions. InProceedings of the IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001),
Heidelberg, Germany, November 2001.

[27] E. de Lara, D. Wallach and W. Zwaenepoel. Puppeteer: goomant-based Adaptation for Mobile Computing Piroceed-
ings of the 3rd Usenix Symposium on Internet Technologies and Systems (USITS 01), San Francisco, CA, pages 159-170,
March 2001.

[28] P. Shenoy and P. Radkov. Proxy-assisted Power-fryeBtleaming to Mobile Devices. IRroceedings of the 2003
Multimedia Computing and Networking Conference (MMCN' 03), Santa Clara, CA, pages 177-191, Janauary 2003.

[29] D. Son, C. Yu and H. Kim. Dynamic Voltage Scaling on MPE@doding. InProceedings of the 2001 International
Conference of Parallel and Distributed System (ICPADS 01), KyongJu City, Korea, pages 633—640, June 2001.

23

Too Slow Frames Ratio

Performance of Movies Playback Performance of Movies Playback

8% T 8% T
Hl Chameleon Hl Chameleon
Il LongRun I LongRun
I PAST [PAST
[AVGn [AVGn
[FULL 1 FULL
6% - B 6% o © -
5.8 228
NHERX % NNS N
daloS PN &H N
062205 L LSO W
O w0 —) Lol N
8
o4
”
i)
5
4%/ E Za%r E
g
) Lo
8 N <
- °
X [QoS S
4] QS m
d IR
[oo N
X X o
S S oo
04 ©o - % D= X o -
2% < 20 % 83K g S
> S = e —“ MG S i)
= YW | e << =]
° o ¥ Sl S — ° s X
a25ss S WSS s S IS sls2 £Bs3
S d
2255 F£283s% A EEE S H BRES S283 ¢
So®min NN NS Sl O N SEcNc O &N
=N oo g o Oﬂo oﬂ; Slls| |2
o lllmr—\ HE== [l 0 o .I- =
Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 Movie 6 Movie 7 Movie 8 Movie 9 Movie 10
Movies Movies

(@) (b)

Figure 21: Late Frames Percentage during Movie Playback

Average Power Consumption of Video Conferences Average Power Consumption of Video Conferences
8 T 8 T

T T
Il Chameleon Il Chameleon
Bl LongRun Il LongRun
[PAST [PAST

[AVGn [AVGn

CJ FULL [FULL

)
T
L

)
T
L

5.30
]5.30
|5.30
5.30

| 4.35
| 4.41

4.07

4.07
4.20
417

2.67
273

©
N
o

=)
N
o
T}
© 4
to
0

Conference 1 Conference 2 Conference 1 Conference 2
QCIF CIF

Average Power Consumption in Watts
S
T
I

Average Power Consumption in Watts
IS
T
I

N
T
L

o N
T
1.45
1.63
2.47
1.47

Figure 22: Average Power Consumption for Video Conferencing.

24

