
Hierarchical Scheduling for
Symmetric Multiprocessors

Abhishek Chandra, Member, IEEE, and Prashant Shenoy, Senior Member, IEEE

Abstract—Hierarchical scheduling has been proposed as a scheduling technique to achieve aggregate resource partitioning among

related groups of threads and applications in uniprocessor and packet scheduling environments. Existing hierarchical schedulers are

not easily extensible to multiprocessor environments because 1) they do not incorporate the inherent parallelism of a multiprocessor

system while resource partitioning and 2) they can result in unbounded unfairness or starvation if applied to a multiprocessor system in

a naive manner. In this paper, we present hierarchical multiprocessor scheduling (H-SMP), a novel hierarchical CPU scheduling

algorithm designed for a symmetric multiprocessor (SMP) platform. The novelty of this algorithm lies in its combination of space and

time multiplexing to achieve the desired bandwidth partition among the nodes of the hierarchical scheduling tree. This algorithm is also

characterized by its ability to incorporate existing proportional-share algorithms as auxiliary schedulers to achieve efficient hierarchical

CPU partitioning. In addition, we present a generalized weight feasibility constraint that specifies the limit on the achievable CPU

bandwidth partitioning in a multiprocessor hierarchical framework and propose a hierarchical weight readjustment algorithm designed

to transparently satisfy this feasibility constraint. We evaluate the properties of H-SMP using hierarchical surplus fair scheduling

(H-SFS), an instantiation of H-SMP that employs surplus fair scheduling (SFS) as an auxiliary algorithm. This evaluation is carried out

through a simulation study that shows that H-SFS provides better fairness properties in multiprocessor environments as compared to

existing algorithms and their naive extensions.

Index Terms—Multiprocessor, hierarchical, scheduling, proportional share.

Ç

1 INTRODUCTION

1.1 Motivation

RECENT advances in computing have seen the emergence
of a wide diversity of computing environments,

including servers (for example, Web servers and multi-
media servers), versatile desktop environments (running
compilers, browsers, and multiplayer games), and parallel
computing and scientific applications. These environments
comprise collections of interacting threads, processes, and
applications. Such applications often have aggregate per-
formance requirements, imposing the need to provide
collective resource allocation to their constituent entities.
In general, the notion of collective resource allocation arises
in several contexts:

. Resource sharing. Applications such as Web servers
and FTP servers that partition resources such as CPU
and network bandwidth and disk space between
different (unrelated) concurrent client connections
can benefit from the consolidation of their overall
resource allocation.

. Physical resource partitioning. Multiple applications
and threads may be grouped together as part of a

physically partitioned runtime environment. A
common example of such an environment is a
virtual-machine monitor [1], [2], where each virtual
machine may have certain resource requirements.

. Aggregate performance requirements. An application
may have collective performance requirements
from its components. For example, all threads of
a parallel application should be proceeding at the
same rate to minimize its “makespan” or comple-
tion time.

. Scheduling criteria. Many applications can be
grouped together into service classes to be sched-
uled by a common scheduler specific to their
requirements. For instance, different multimedia
applications such as audio and video servers may
require soft real-time (SRT) guarantees and hence
may be scheduled together by a SRT scheduler
instead of the default operating system scheduler.
QLinux [3] is an operating system that provides
class-specific schedulers for the CPU, network
interface, and the disk.

Such aggregation-based resource allocation is particu-

larly desirable in multiprocessor and multicore environ-

ments due to several reasons. First, resource partitioning

can help in making large multiprocessor systems scalable

by reducing excessive interprocessor communication, bus

contention, and cost of synchronization. Cellular Disco [4] is

an example of a virtual-machine-based system designed to

achieve resource partitioning in a large multiprocessor

environment. Moreover, a multiprocessor system provides

inherent opportunities for parallelism, which can be

exploited better by an application employing multiple

418 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

. A. Chandra is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455.
E-mail: chandra@cs.umn.edu.

. P. Shenoy is with the Department of Computer Science, University of
Massachusetts, Amherst, MA 01003. E-mail: shenoy@cs.umass.edu.

Manuscript received 20 Apr. 2006; revised 12 Feb. 2007; accepted 6 July 2007;
published online 26 July 2007.
Recommended for acceptance by D. Trystram.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0103-0406.
Digital Object Identifier no. 10.1109/TPDS.2007.70755.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

threads, requiring the system to provide some notion of
aggregate resource allocation to the application. Support for
such applications in multiprocessor environments is be-
coming critical as more systems move to multicore
technology [5], [6].1 Dual-core machines are already
common, and uniprocessors are expected to become the
exception rather than the rule, particularly in server
environments.

Traditional operating system schedulers are not suitable
for collective resource allocation for several reasons. First,
they typically perform fine-grained scheduling at the
process or thread level. Moreover, they do not distinguish
threads of different applications from those of the same
application. Second, traditional schedulers are designed to
maximize systemwide metrics such as throughput or
utilization and do not meet application-specific require-
ments. Therefore, the resource allocation achieved by such
schedulers is largely agnostic of aggregate application
requirements or the system’s resource partitioning re-
quirements. Some mechanisms such as scheduler activa-
tions [7] and resource containers [8] can be used to
aggregate resources and exploit parallelism. However,
these mechanisms are mainly accounting and protection
mechanisms, and they require a complementary schedul-
ing framework to exploit their properties.

Hierarchical scheduling is a scheduling framework that
has been proposed to group together processes, threads,
and applications to achieve aggregate resource partition-
ing. Hierarchical scheduling enables the allocation of
resources to collections of schedulable entities and further
perform fine-grained resource partitioning among the
constituent entities. Such a framework meets many of
the requirements for the scenarios presented above.
Hierarchical scheduling algorithms have been developed
for uniprocessors [9] and packet scheduling [10]. How-
ever, as we will show in this paper, these existing
algorithms are not easily extensible to multiprocessor
environments because 1) they do not incorporate the
inherent parallelism of a multiprocessor system while
resource partitioning and 2) they can result in unbounded
unfairness or starvation if applied to a multiprocessor
system in a naive manner. The design of a hierarchical
scheduling algorithm for multiprocessor environments is
the subject of this paper.

1.2 Research Contributions

This paper presents a novel hierarchical scheduling algo-
rithm for multiprocessor environments. The design of this
algorithm is motivated by the limitations of existing
hierarchical algorithms in a multiprocessor environment,
which are clearly identified in this paper. The design of the
algorithm has led to several key contributions.

First, we have designed hierarchical multiprocessor schedul-
ing (H-SMP), a hierarchical scheduling algorithm that is
designed specifically for multiprocessor environments. This
algorithm is based on a novel combination of space and time
multiplexing and explicitly incorporates the parallelism

inherent in a multiprocessor system, unlike existing hier-
archical schedulers. One of its unique features is that it
incorporates an auxiliary scheduler to achieve hierarchical
partitioning in a multiprocessor environment. This auxiliary
scheduler can be selected from among several existing
proportional-share schedulers [11], [12], [13], [14], [15], [16],
[17], [18]. Thus, H-SMP is general in its construction and can

incorporate suitable schedulers based on trade-offs between
efficiency and performance requirements. We show that H-
SMP provides bounds on the achievable CPU partitioning,
independent of the choice of the auxiliary scheduler,
although this choice can affect how close H-SMP is to the
ideal partitioning.

Second, we have derived a generalized weight feasibility

constraint that specifies the limit on the achievable CPU
bandwidth partitioning in a multiprocessor hierarchical

framework. This feasibility constraint is critical to avoid the
problem of unbounded unfairness and starvation faced by
existing uniprocessor schedulers in a multiprocessor en-
vironment. We have developed a hierarchical weight read-

justment algorithm that is designed to transparently adjust
the shares of hierarchical scheduling tree nodes to satisfy
the feasibility constraint. This readjustment algorithm
transforms any given weight assignment of the tree nodes
to the “closest” feasible assignment. Moreover, this algo-
rithm can be used in conjunction with any hierarchical

scheduling algorithm.
Finally, we illustrate H-SMP through hierarchical

surplus fair scheduling (H-SFS), an instantiation of H-SMP
that employs surplus fair scheduling (SFS) [19] as the
auxiliary scheduler, and we evaluate its properties
through a simulation study. The results of this study
show that H-SFS provides better fairness properties in
multiprocessor environments as compared to existing
hierarchical algorithms and their naive extensions.

2 BACKGROUND AND SYSTEM MODEL

2.1 Background

Hierarchical scheduling is a scheduling framework that
enables the grouping together of threads, processes, and
applications into service classes [3], [9], [10]. CPU band-
width is then allocated to these classes based on the
collective requirement of their constituent entities.

In a hierarchical scheduling framework, the total system

CPU bandwidth is divided proportionately among various
service classes. Proportional-share scheduling algorithms [11],
[12], [13], [14], [15], [16], [17], [18], [20] are a class of
scheduling algorithms that meet this criterion. Another
requirement for hierarchical scheduling is that the
scheduler should be insensitive to fluctuating CPU band-
width available to it. This is because the CPU bandwidth
available to a service class depends on the demand of the
other service classes in the system, which may vary

dynamically. A proportional-share scheduling algorithm
such as start-time fair queuing (SFQ) [14] has been shown to
meet all these requirements in uniprocessor environments
and has been deployed in a hierarchical scheduling
environment [9]. However, SFQ can result in unbounded

CHANDRA AND SHENOY: HIERARCHICAL SCHEDULING FOR SYMMETRIC MULTIPROCESSORS 419

1. In the rest of this paper, we will refer to both multicore and
multiprocessor machines as multiprocessors. The issues raised and the
solutions presented are applicable to both environments.

unfairness and starvation when employed in multiproces-
sor environments, as illustrated in [19].

This unbounded unfairness occurs, because it is not
possible to partition the CPU bandwidth arbitrarily in a
multiprocessor environment, since a thread can utilize at
most one CPU at any given time. This requirement is
formalized as a weight feasibility constraint [19] on the
amount of achievable bandwidth partitioning in a multi-
processor environment. SFS [19] and Group Ratio Round-
Robin [16] achieve proportional-share scheduling in
multiprocessor environments by employing weight read-
justment algorithms to explicitly satisfy the weight
feasibility constraint. However, as we will show in
Section 3.2, this weight feasibility constraint is not
sufficient for a hierarchical scheduling framework, and
hence, these algorithms, by themselves, are inadequate for
direct use in an H-SMP environment.

Aside from the choice of a suitable scheduling algorithm
to be employed within the hierarchical framework, existing
hierarchical schedulers are also limited in that they are
designed to handle only a single resource (such as a
uniprocessor). As we will illustrate in Section 3.1, these
schedulers are unable to exploit the inherent parallelism in
a multiprocessor environment and cannot be extended
easily to run multiple threads or processes belonging to a
service class in parallel.

Lottery scheduling [21] also proposes hierarchical alloca-
tion of resources based on the notion of tickets and lotteries.
Lottery scheduling itself is a randomized algorithm that can
meet resource requirements in a probabilistic manner, and
extending it to multiprocessor environments is nontrivial.
Tickets, by themselves, can be used as an accounting
mechanism in a hierarchical framework and are orthogonal
to our discussion here.

2.2 System Model

Our system model consists of a p-CPU symmetric
multiprocessor (SMP) system with n runnable threads
in the system. The threads are arranged in a hierarchical
scheduling framework consisting of a scheduling hierarchy
(or scheduling tree) of height h. Each node in the
scheduling tree corresponds to a thread2 or an aggrega-
tion of threads such as an application or a service class.
In particular, the leaf nodes of the tree correspond to
threads, whereas each internal (nonleaf) node in the
hierarchy corresponds to either a service class or a
multithreaded application.3 The root of the tree repre-
sents the aggregation of all threads in the system. Fig. 1
illustrates an example scheduling hierarchy.

The goal of hierarchical scheduling is to provide CPU
allocation to each node in the tree according to its
requirement. Every node in the tree is assigned a weight
and receives a fraction of the CPU service allocated to its
parent node. The fraction that it receives is determined by
its weight relative to its siblings. Thus, if P is an internal

node in the tree and CP is the set of its children nodes, then

the CPU service Ai received by a node i 2 CP is given by

Ai ¼
wiP
j2Cp wj

�AP ; ð1Þ

where AP is the CPU service available to the parent node P ,

and wj denotes the weight of a node j. For instance, based on

the node weights shown in Fig. 1, (1) specifies that the BE and

SRT classes should receive 25 percent and 75 percent of the

system CPU service, respectively. The FTP and Web servers

should then share the CPU service allocated to the BE class in

the ratio 1: 4, thus receiving 5 percent and 20 percent of the

system CPU service, respectively.
For each node in the tree, we define two quantities—its

thread parallelism and its processor assignment—to account for

the node’s location in the scheduling tree and its resource

allocation, respectively. These quantities correspond respec-

tively to the total number of threads in a node’s subtree and

the number of CPUs assigned to the node for multiplexing

among threads in its subtree.

Definition 1: Thread parallelism �i. The thread parallelism of

a node i in a scheduling tree is defined to be the number of

independent schedulable entities (threads) in node i’s subtree,

that is, threads that node i could potentially schedule in

parallel on different CPUs.

The thread parallelism of a node is given by the

following relation:

�i ¼
X
j2Ci

�j; ð2Þ

where Ci is the set of node i’s children nodes. This equation

states that the number of threads schedulable by a node is

the sum of the threads schedulable by its children nodes. By

this definition, �i ¼ 1 if node i corresponds to a thread in the

system.

420 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

2. In the rest of this paper, we will refer to the smallest independently
schedulable entity in the system as a thread. In general, this could
correspond to a kernel thread, process, scheduler activation [7], etc.

3. In general, the leaf node of a tree could also correspond to a class-
specific scheduler that schedules threads on the processors [3], [9].
However, we consider leaf nodes to be threads here for ease of exposition.

Fig. 1. A scheduling hierarchy with two service classes: best effort (BE)
and SRT. The BE class consists of an FTP and a multithreaded Web
server. The SRT class is further subdivided into two classes—video and
audio—that consist of multithreaded applications: MPEG, Quicktime,
and MP3.

Definition 2: Processor assignment �i. Processor assignment
for a node i in a scheduling tree is defined as the CPU
bandwidth, expressed in units of the number of processors,
assigned to node i for running threads in its subtree.

The processor assignment of a node depends on its
weight and the processor assignment of its parent node:

�i ¼
wiP
j2CP wj

� �P ; ð3Þ

where P is the parent node of node i, and CP is the set of
node P ’s children nodes. This equation states that the CPU
bandwidth available to a node for scheduling its threads is
the weighted fraction of the CPU bandwidth available to its
parent node. Since the root of the tree corresponds to an
aggregation of all threads in the system, �root ¼ minðp; nÞ for
the root node in a p-CPU system with n runnable threads.4

Although the thread parallelism of a node is determined
solely based on the structure of its subtree in the scheduling
hierarchy, its processor assignment is dependent on its
weight assignment relative to its siblings and parent in the
hierarchy. These quantities are independent of the schedul-
ing algorithm being used and are useful for accounting
purposes within the hierarchy.

3 LIMITATIONS OF EXISTING HIERARCHICAL

SCHEDULING ALGORITHMS

We begin by describing how hierarchical scheduling is
performed in uniprocessor environments and show the
limitations of such approaches and their naive extensions in
multiprocessor environments. In particular, we present two
problems: 1) that of inherent parallelism due to the presence
of multiple processors and 2) that of infeasible weights due
to the presence of monolithic schedulable entities or threads
at the lowest levels of the scheduling hierarchy.

3.1 Problem of Parallelism

Algorithm 1: hier_sched().

1: node root

2: while node is not a leaf do

3: node gen schedðnodeÞ {gen sched is an

algorithm that selects a child of node for scheduling}

4: end while

Algorithm 1 shows a generic hierarchical scheduling
algorithm that has been used for hierarchical scheduling on
uniprocessors [3], [9]. This algorithm works as follows:
Whenever a CPU needs to be scheduled, the hierarchical
scheduler schedules a “path” from the root of the tree to a
leaf node (or thread). In other words, the algorithm
iteratively “schedules” a node at each level of the tree until
it reaches a thread. This thread is then selected to run on the
CPU. Scheduling an internal node of the tree corresponds to
restricting the choice of the next scheduled thread to those
in the node’s subtree. Fig. 2a illustrates this method of
scheduling by scheduling one node at a time along a path
from the root to a thread. The approach described above

requires certain properties from the algorithm gen_sched
for selecting a node at each level. In uniprocessor environ-

ments, a thread-scheduling5 proportional-share algorithm
can be employed to schedule internal nodes as well. Such
an algorithm runs for each set of sibling nodes (treating

them as threads), scheduling one node at each level to
achieve proportional allocation among them. For instance,

the hierarchical SFQ algorithm [9] employs SFQ [14], a
thread-scheduling proportional-share algorithm.

However, using a similar approach, namely, using a

thread-scheduling algorithm to schedule the internal nodes
of the scheduling tree, fails in a multiprocessor environment

because of the following reason. On a uniprocessor, only a
single thread can be scheduled to run on the CPU at any

given time so that only a single path from the root needs to
be scheduled at any instant (Fig. 2a). However, in a

multiprocessor environment, multiple threads can be
scheduled to run on multiple CPUs concurrently. This
corresponds to choosing multiple paths from the root, many

of which could have overlapping internal nodes (Fig. 2b). In
other words, in multiprocessor scheduling, it is possible to

have multiple threads with a common ancestor node
running in parallel on different CPUs. This inherent

CHANDRA AND SHENOY: HIERARCHICAL SCHEDULING FOR SYMMETRIC MULTIPROCESSORS 421

4. Note that min is required in this relation to account for the case
where n < p.

5. By a thread-scheduling algorithm, we mean a scheduling algorithm
that is designed to schedule individual threads or schedulable entities that
do not have parallelism (unlike internal nodes in a scheduling tree that
consist of multiple threads in their subtree, which can be scheduled in
parallel).

Fig. 2. Hierarchical scheduling represented as scheduling of paths from
the root to threads (leaf nodes). (a) A single thread, hence a single path,
is scheduled in a uniprocessor environment. (b) Multiple threads, hence
multiple overlapping paths, in the scheduling tree can be concurrently
scheduled in a multiprocessor environment.

parallelism can be achieved only by scheduling an internal
node multiple times concurrently, that is, by assigning
multiple CPUs to the node simultaneously.

This form of scheduling cannot be performed by a
thread-scheduling algorithm, because it is not designed to
exploit the inherent parallelism of individual schedulable
entities. The key limitation of a thread-scheduling algo-
rithm is that it has no mechanism for assigning multiple
CPUs to the same node concurrently. This limitation
prevents it from scheduling multiple threads from the
same subtree in parallel. Therefore, a thread-scheduling
proportional-share algorithm cannot be used to schedule
the internal nodes in a scheduling hierarchy on a
multiprocessor.

From the discussion above, we see that a multiprocessor
hierarchical algorithm should have the ability to assign
multiple CPUs to the same node concurrently. One way of
designing such an algorithm is to extend a thread-
scheduling algorithm by allowing it to assign multiple
CPUs to each node simultaneously. However, such an
extension raises several questions such as the following:

. Which nodes should we select at a given scheduling
instant?

. How many CPUs should we assign to each node
concurrently?

. How do we ensure that the CPU assignments
achieve fair bandwidth partitioning?

We present H-SMP in Section 4, which answers these
questions and overcomes the problem of parallelism
described here.

3.2 Problem of Infeasible Weights

Aside from the lack of support for inherent parallelism, a
proportional-share algorithm can also suffer from un-
bounded unfairness or starvation problem in multiprocessor
environments [19], as illustrated by the following example.

Example 1. Consider a server that employs the SFQ
algorithm [14] to schedule threads. SFQ is a
proportional-share scheduler that works as follows:
SFQ maintains a counter Si for each thread with weight
wi, which is incremented by q

wi
every time the thread is

scheduled (q is the quantum duration). At each
scheduling instance, SFQ schedules the thread with
the minimum Si on a CPU. Assume that the server has
two CPUs and runs two computationally bound threads
that are assigned weights w1 ¼ 1 and w2 ¼ 10, respec-
tively. In addition, let q ¼ 1 ms. Since both threads are
computationally bound and SFQ is work conserving,6

each thread gets to continuously run on a processor.

After 1,000 quanta, we have S1 ¼ 1;000
1 ¼ 1; 000 and

S2 ¼ 1;000
10 ¼ 100. Assume that a third CPU-bound thread

arrives at this instant, with a weight w3 ¼ 1. The counter

for this thread is initialized to S3 ¼ 100 (newly arriving

threads are assigned the minimum value of Si over all

runnable threads). From this point on, threads 2 and 3

get continuously scheduled until S2 and S3 “catch up”

with S1. Thus, although thread 1 has the same weight as

thread 3, it starves for 900 quanta, leading to unfairness

in the scheduling algorithm.

Although this example uses SFQ as an illustrative
algorithm, this problem is common to most proportional-
share algorithms. To overcome this unfairness problem, [19]
presents a weight feasibility constraint that must be satisfied
by all threads in the system:

wiP
j wj
� 1

p
; ð4Þ

where wi is the weight of a thread i, and p is the number of
CPUs in the system. A weight assignment for a set of
threads is considered infeasible if any thread violates this
constraint. This constraint is based on the observation that
each thread can run on at most one CPU at a time.

However, in the case of hierarchical scheduling, since a
node in the scheduling tree divides its CPU bandwidth
among the threads in its subtree, it is possible for a node to
have multiple threads running in parallel. Thus, with
multiple threads in its subtree, a node in the scheduling
tree can utilize more than one CPU in parallel. For instance,
a node with three threads in a four-CPU system can utilize
3/4 of the total CPU bandwidth and is thus not constrained
by the weight feasibility constraint (4). However, the
number of CPUs that a node can utilize is still constrained
by the number of threads that it has in its subtree: for the
above example, the node cannot utilize more than 3/4 of the
total CPU bandwidth. In particular, the number of
processors assigned to a node should not exceed the
number of threads in its subtree. In other words

�i � �i ð5Þ

for any node i in the tree. Using the definition of processor
assignment (3), (5) can be written as

wiP
j2CP wj

� �i
�P

; ð6Þ

where P is the parent node of node i, and CP is the set of
P ’s children nodes.

We refer to (6) as the generalized weight feasibility constraint.
Intuitively, this constraint specifies that a node cannot be
assigned more CPU capacity than what it can utilize through
its parallelism. Note that (6) reduces to the weight feasibility
constraint (4) in a single-level scheduling hierarchy consist-
ing only of threads. The generalized weight feasibility
constraint is a necessary condition for any work-conserving
algorithm to achieve hierarchical proportional-share sche-
duling in a multiprocessor system, as it satisfies the following
property (proved in Appendix B, which can be found on the
Computer Society Digital Library at www.computer.org/
tpds/archives.htm):

Theorem 1. No work-conserving scheduler can divide the CPU
bandwidth among a set of nodes in proportion to their weights
if any node violates the generalized weight feasibility
constraint.

In Section 5, we present a hierarchical weight readjustment
algorithm designed to transparently satisfy this constraint.

422 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

6. A scheduling algorithm is said to be work conserving if it never lets a
processor idle, so long as there are runnable threads in the system.

In the next section, we assume that the weights assigned to
the nodes in our scheduling tree satisfy this constraint.

4 HIERARCHICAL MULTIPROCESSOR SCHEDULING

In this section, we present H-SMP, a scheduling algorithm
designed to achieve hierarchical scheduling in a multi-
processor environment.

4.1 Hierarchical Multiprocessor Scheduling

H-SMP uses a combination of space and time multiplexing
to achieve the desired partitioning of CPU bandwidth
within the scheduling tree. H-SMP has the following salient
features. First, it is designed to assign multiple CPUs to a
tree node concurrently so that multiple threads from a
node’s subtree can be run in parallel. Second, it employs an
auxiliary thread-scheduling proportional-share algorithm
to perform this CPU assignment in order to achieve the
desired CPU service for the tree nodes.

Intuitively, H-SMP consists of two components: a space
scheduler and an auxiliary scheduler. The space scheduler is a
scheduler that statically partitions the CPU bandwidth in an
integral number of CPUs to assign to each node in the
hierarchy. The auxiliary scheduler is a thread-scheduling
proportional-share algorithm (such as SFQ [14], SFS [19],
etc.) that is used to partition the residual CPU bandwidth
among the tree nodes proportional to their weights. These
components work together as follows at each level of the
scheduling tree: If the processor assignment of a node is �i,
then the node should ideally be assigned �i CPUs at all
times. However, since a node can be assigned only an
integral number of CPUs at each scheduling instant, H-SMP
ensures that the number of CPUs assigned to the node is
within one CPU of its requirement. The space scheduler
ensures this property by first assigning b�ic number of
CPUs to the node at each scheduling instant. Thus, the
residual processor requirement of the node becomes
�0i ¼ �i � b�ic. Meeting this requirement for the node is
equivalent to meeting the processor requirement for a
virtual node with processor assignment �0i. Since 0 � �0i < 1,
this residual processor requirement can be achieved by
employing the auxiliary scheduler that time multiplexes the
remaining CPU bandwidth among the virtual nodes to
satisfy their requirements �0i. Overall, H-SMP ensures that
each node is assigned either b�ic or d�ie number of CPUs at
each scheduling instant, thus providing lower and upper
bounds on the CPU service received by the node.

In practice, the H-SMP algorithm works as follows on a
set of sibling nodes in the scheduling tree: For each node in
the scheduling tree, the algorithm keeps track of the
number of CPUs currently assigned to the node, a quantity
denoted by ri. Note that assigning a CPU to a node
corresponds to scheduling a thread from its subtree on that
CPU. Therefore, for any node i in the scheduling tree,
ri ¼

P
j2Ci rj, where Ci is the set of node i’s children. Then,

H-SMP partitions each set of sibling nodes in the scheduling
tree into the following subsets based on their current CPU
assignment:

. Deficit set. A node is defined to be in the deficit set if
the number of CPUs currently assigned to the node

ri < b�ic. In other words, the current CPU assign-
ment for a node in the deficit set is below the lower
threshold of its requirement. The scheduler gives
priority to deficit nodes, as scheduling a deficit node
first allows it to reach its lower threshold of b�ic
CPUs. Since the goal of H-SMP is to assign at least
b�ic CPUs to each node at all times, it is not
important to order these nodes in any order for
scheduling, and they can be scheduled in a FIFO
order by the space scheduler.

. Auxiliary set. This set consists of nodes for which
b�ic ¼ ri < d�ie. These are the nodes that are
currently assigned the lower threshold of their
requirement and are scheduled if there are no deficit
nodes to be scheduled. Scheduling these nodes
emulates the scheduling of corresponding virtual
nodes with processor assignment �0i and are sched-
uled by the auxiliary scheduler.

. Ineligible set. This set consists of nodes for which
ri � d�ie, that is, the ones that are currently assigned
at least the upper threshold of their requirement.
These nodes are considered ineligible for scheduling.

A node can move between these sets by being selected by

H-SMP during a scheduling instant, by having one of its
subtree threads finish their quantum, due to the arrival/

departure of threads or due to changes in node weights in

the tree.

Algorithm 2: gen smpðtree node nodeÞ.
1: new node NULL

2: if node:deficit set is nonempty then

3: new node get fromðnode:deficit setÞ
4: rnew node rnew node þ 1

5: if rnew node � d�new nodee then

6: move to ineligible setðnew nodeÞ
7: else if rnew node ¼ b�new nodec then

8: move to auxiliary setðnew nodeÞ
9: end if

10: else if node:auxiliary set is nonempty then

11: new node auxiliary schedðnode:auxiliary setÞ
{auxiliary sched is the auxiliary scheduling

algorithm}

12: rnew node rnew node þ 1

13: move to ineligible setðnew nodeÞ
14: end if

15: returnðnew nodeÞ
Algorithm 2 shows the pseudocode for the node

selection algorithm gen_smp employed by H-SMP at each

level of the tree when it needs to schedule a thread on a
CPU. gen_smp can be thought to replace the gen_sched

algorithm specified in Algorithm 1. We next illustrate a

practical instantiation of H-SMP using SFS [19] as the
auxiliary scheduler.

4.2 Hierarchical Surplus Fair Scheduling: An
Instantiation of Hierarchical Multiprocessor
Scheduling

H-SMP could theoretically employ any thread-scheduling
proportional-share algorithm as its auxiliary scheduler.
However, such an algorithm should be designed to work

CHANDRA AND SHENOY: HIERARCHICAL SCHEDULING FOR SYMMETRIC MULTIPROCESSORS 423

on an SMP system and should reduce the discrepancy
between the ideal CPU service and the actual CPU service
received by the tree nodes as much as possible. We present
an instantiation of H-SMP using SFS [19], a multiprocessor
proportional-share scheduling algorithm, as an auxiliary
scheduler. SFS maintains a quantity called surplus for each
thread that measures the excess CPU service that it has
received over its ideal service based on its weight. At each
scheduling instant, SFS schedules threads in the increasing
order of their surplus values. The intuition behind this
scheduling policy is to allow threads that lag behind their
ideal share to catch up while restraining threads that
already exceed their ideal share. Formally, the surplus �i for
a thread i at time T is defined to be [19]

�i ¼ Aið0; T Þ �Aideal
i ð0; T Þ; ð7Þ

where Aið0; T Þ and Aideal
i ð0; T Þ are respectively the actual

and the ideal CPU service for thread i by time T .
The choice of SFS as an auxiliary scheduler for H-SMP is

based on the following intuition. As described in the
previous section, a node with processor assignment �i can
be represented as a virtual node with processor assignment
�0i ¼ �i � b�ic under H-SMP for the purpose of satisfying its
residual service requirement. Then, it can be shown that the
surplus for the virtual node is the same as that for the actual
node. This can be seen by rewriting (7) as

�i ¼Aið0; T Þ � �i � T
¼A0ið0; T Þ þ b�ic � T � b�ic þ �0i

� �
� T

¼A0ið0; T Þ �A0i
idealð0; T Þ

¼�0i;

where the dashed variables (such as A0i) correspond to the
values for the virtual node with processor assignment �0i.
These equations imply that scheduling nodes in the order of
their surplus values is equivalent to scheduling the corre-
sponding virtual nodes in the order of their surplus values.7

This property means that SFS can be used with original node
weights to achieve the same schedule without having to
maintain a separate set of virtual nodes with residual
weights and running the algorithm on them. This simplifies
the implementation of H-SFS, as opposed to using a different
auxiliary algorithm, which does not satisfy this property.

Note that H-SFS reduces to SFS in a single-level hierarchy
(corresponding to a thread-scheduling scenario). In that case,
the weight feasibility constraint (4) requires that 0 < �i � 1,
8i, implying that all threads are either in the auxiliary set (if
they are not currently running) or are ineligible (if they are
currently running) at any scheduling instant. The auxiliary
threads (that is, the ones in the run queue) are then
scheduled in the order of their surplus values.

4.3 Properties of Hierarchical
Multiprocessor Scheduling

We now present the properties of H-SMP in a system
consisting of a fixed scheduling hierarchy, with no arrivals
and departures of threads and no weight changes. Further-
more, we assume that the scheduling on the processors is

synchronized. In other words, all p CPUs in the system are

scheduled simultaneously at each scheduling quantum. For

the nontrivial case, we would also assume that the number of

threadsn � p. In such a system, H-SMP satisfies the following

properties (the proof of these properties are given in

Appendix A, which can be found on the Computer Society

Digital Library at www.computer.org/tpds/archives.htm):

Theorem 2. After every scheduling instant, for any node i in the

scheduling tree, H-SMP ensures that

b�ic � ri � d�ie:

Corollary 1. For any time interval ½t1; t2Þ, H-SMP ensures that

the CPU service received by any node i in the scheduling tree

is bounded by

b�ic � ðt2 � t1Þ � Aiðt1; t2Þ � d�ie � ðt2 � t1Þ:

From Theorem 2, we see that H-SMP ensures that the

number of processors assigned to each node in the

scheduling tree at every scheduling quanta lies within

one processor of its requirement. This result leads to

Corollary 1, which states that the CPU service received by

each node in the tree is bounded by an upper threshold

and a lower threshold that are dependent on its processor

assignment. In Section 6, we relax the system assumptions

made here and discuss the impact on the properties and

performance of H-SMP.

5 HIERARCHICAL WEIGHT READJUSTMENT

As described in Section 3.2, the weights assigned to the

nodes in a scheduling hierarchy must satisfy the generalized

weight feasibility constraint (6) to avoid unbounded unfair-

ness or starvation. However, it is possible that some nodes

in the hierarchy have infeasible weights. This is possible,

because node weights are typically assigned externally

based on the requirements of applications and application

classes and may not satisfy the feasibility constraint. Even if

the weights are chosen carefully to be feasible to begin with,

the constraint may be violated because of the arrival and

departure of threads or changes in weights and tree

structure. We now present an algorithm that transparently

adjusts the weights of the nodes in the tree so that they all

satisfy the generalized weight feasibility constraint, even if

the original weights violate the constraint.

5.1 Generalized Weight Readjustment

Algorithm 3: gen readjustðarray ½w1 . . .wn�; float �Þ,
returns ½�1 . . .�n�.

1: if w1Pn

j¼1
wj
> �1

�

� �
then

2: gen readjustð½w2 . . .wn�; �� �1Þ

3: �1 �1

���1

� �
�
Pn

j¼2 �j
4: else

5: �i wi, 8i ¼ 1; . . . ; n

6: end if

424 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

7. In practice, SFS approximates the ideal definition of surplus and,
hence, the relative ordering of nodes is also an approximation of the desired
ordering.

Algorithm 3 shows the generalized weight readjustment
algorithm that modifies the weights of a set of sibling nodes in
a scheduling tree so that their modified weights satisfy (6).
This algorithm determines the adjusted weight of a node
based on its original weight and the number of threads that it
can schedule. Intuitively, if a node demands more CPUs than
the number of threads that it can schedule, the algorithm
assigns it as many CPUs as what is allowed by its thread
parallelism; otherwise, the algorithm assigns CPUs to the
node based on its weight.

As input, the algorithm takes a list of node weights,
where the nodes are sorted in the nonincreasing order of

their weight-parallelism ratio wi
�i

� �
. The algorithm then

recursively adjusts the weights of the nodes until it finds a

node that satisfies (6). Ordering the nodes by their weight-

parallelism ratio ensures that infeasible nodes are always

placed before feasible nodes.8 This ordering makes the

algorithm efficient, as it enables the algorithm to first

examine the infeasible nodes, allowing it to terminate as

soon as it encounters a feasible node.

Algorithm 4: hier_readjust(tree_node node).

1: gen readjustðnode:weight list; �nodeÞ
2: for all child in the set of node’s children Cnode do

3: �child �childP
j2Cnode

�j

� �
� �node

4: hier_readjust(child)

5: end for

The generalized weight readjustment algorithm can be
used to adjust the weights of all the nodes in the tree in a
top-down manner using a hierarchical weight readjustment
algorithm (Algorithm 4). Intuitively, this algorithm traverses
the tree in a depth-first manner,9 and for each node P , the
algorithm 1) applies the generalized weight readjustment
algorithm to the children of node P and 2) computes the
processor assignment for the children of P by using (3)
based on their adjusted weights �i.

5.2 Properties of Hierarchical Weight Readjustment

In this section, we first present the properties of the
generalized weight readjustment algorithm. We then pre-
sent its runtime complexity that allows us to determine the
time complexity of the hierarchical weight readjustment
algorithm. Detailed proofs and derivations of the properties
and results presented in this section can be found in
Appendix B, which can be found on the Computer Society
Digital Library at www.computer.org/tpds/archives.htm.

First, the generalized weight readjustment algorithm is
correct in that it ensures that no node demands more CPU
service than what it can utilize, as stated by the following
theorem:

Theorem 3. The adjusted weights assigned by the generalized
weight readjustment algorithm satisfy the generalized weight
feasibility constraint.

Aside from satisfying the generalized weight feasibility
constraint, the adjusted weights assigned by the generalized
weight readjustment algorithm are also “closest” to the
original weights in the sense that the weights of nodes
violating the generalized weight feasibility constraint are
reduced by the minimum amount to make them feasible,
whereas the remaining nodes retain their original weights.
This property of the generalized weight readjustment
algorithm is stated in the following theorem:

Theorem 4. The adjusted weights assigned by the generalized
weight readjustment algorithm satisfy the following properties:

1. Nodes that are assigned fewer CPUs than their thread
parallelism retain their original weights.

2. Nodes with an original CPU demand exceeding their
thread parallelism receive the maximum possible share
that they can utilize.

These properties intuitively specify that the algorithm
does not change the weight of a node, unless it is required
to satisfy the feasibility constraint, and then, the change is
the minimum required to make the node feasible.

To examine the time complexity of the generalized
weight readjustment algorithm, note that for a given set of
sibling nodes in the scheduling tree, the number of
infeasible nodes can never exceed the processor assignment
of their parent node.10 Since the generalized weight
readjustment algorithm examines only the infeasible nodes,
its time complexity is given by the following theorem:

Theorem 5. The worst-case time complexity T ðn; �Þ of the
generalized weight readjustment algorithm for n nodes and
� processors is Oð�Þ.

Since the hierarchical weight readjustment algorithm
employs the generalized weight readjustment algorithm to
adjust the weights of sibling nodes at each level of the tree,
we can extend the analysis of the generalized weight
readjustment algorithm to analyze the complexity of the
hierarchical weight readjustment algorithm, which is given
by the following theorem:

Theorem 6. The worst-case time complexity T ðn; h; pÞ of the
hierarchical weight readjustment algorithm for a scheduling
tree of height h, with n nodes running on a p-CPU system, is
Oðp � hÞ.

Theorem 6 states that the runtime of the hierarchical
weight readjustment algorithm depends only on the height
of the scheduling tree and the number of processors in the
system and is independent of the number of runnable
threads in the system.

6 IMPLEMENTATION CONSIDERATIONS

In this section, we discuss some of the system issues and
considerations for implementing the H-SMP and hier-
archical weight readjustment algorithms in a real system.

CHANDRA AND SHENOY: HIERARCHICAL SCHEDULING FOR SYMMETRIC MULTIPROCESSORS 425

8. We prove this property of the ordering in Appendix B, which can be
found on the Computer Society Digital Library at www.computer.org/
tpds/archives.htm. The intuitive reason is that nodes that have higher
weights or have smaller number of threads to schedule are more likely to
violate the feasibility constraint (6).

9. We can also use other top-down tree traversals such as breadth first,
where a parent node is always visited before its children nodes.

10. This is because if a node demands more CPU service than its thread
parallelism, then its demand exceeds at least one processor (since its thread
parallelism > 0), and the number of nodes demanding more than one
processor cannot exceed the number of processors available to them,
namely, the parent node’s processor assignment �.

Height of scheduling hierarchy. Each internal node of a
scheduling tree typically corresponds to either a multi-
threaded application or an application class. Most systems
have the need for only a few statically defined application
classes (such as BE, real time, etc.), and hence, scheduling
trees in real implementations can be expected to be broad
rather than deep. The height h of a typical scheduling tree
can thus be expected to be a small constant. A special case
is that of a two-level hierarchy, consisting only of
independent threads and no further grouping into applica-
tion classes, which can be the default configuration of the
scheduling tree at system initialization. Note that the height
of the tree h is not dependent on the number of threads n in
the system (for example, h 6¼ OðlogðnÞÞ, which is the usual
assumption in many parallel models [22]). This is because a
scheduling tree is not binary (or k-ary for a constant k), and
there can be an arbitrary number of children attached to
each node in the tree. Thus, the time complexity of the
hierarchical scheduling algorithm (Theorem 6) in real
implementations is likely to be truly independent of the
number of threads in the system.

Arrivals and departures of threads. Although we made
assumptions of a statically known tree of threads in
Section 4.3 for the tractability of the proofs, H-SMP is not
constrained by these assumptions for its actual function-
ality. Arrivals and departures of threads or weight mod-
ifications in the tree would essentially require the
hierarchical weight readjustment to be performed in the
tree. This is because these events change the parallelism �i
or processor availability �i of the nodes to which they are
attached, thus possibly making some of the weights in the
tree infeasible. Due to the readjustment in weights, it is
possible that some of the nodes in the system may
temporarily violate the bounds of b�ic and d�ie on their
current assignment ri (Theorem 2). One possibility of
preventing this violation is to reschedule all the CPUs with
the H-SMP algorithm immediately upon each weight
readjustment. However, a less expensive approach is to
ignore such temporary violations and allow subsequent
scheduling events to gradually restore the above property
for all nodes. In fact, in our simulations presented in
Section 7, we allow arrivals and departures of threads,
resulting in such temporary violations, but our results show
their impact on the allocation fairness to be negligible.

Reducing tree traversals. Another approach to reduce the
overhead of traversing the whole tree at every scheduling
instant is by using a different granularity of scheduling/
readjustment across different levels of the tree. For instance,
a different scheduling quantum size Q can be associated
with each level of the tree such as QðlÞ ¼ 2h�l � q, where h is
the height of the tree, l is a tree level (with lroot ¼ 0), and q is
the baseline quantum size used by the system for threads.
In this case, scheduling at level l will be done only after QðlÞ
time units so that scheduling at lower levels of the tree is
performed more frequently than at higher levels. For
instance, although threads will be scheduled at the system
quantum, node selection at upper levels would take place
less frequently. Such a use of different granularities will
also lead to more effective space partitioning of the CPUs.
Of course, such an approach would lead to load imbalances

and unfairness within the quantum durations but would
lead to more efficient execution.

List management overheads. As outlined in the descrip-
tion of H-SMP, each internal node in the tree maintains
three lists: deficit, auxiliary, and ineligible. The deficit list
and the ineligible list do not require any specific
ordering, and hence, insertions/deletions from these lists
will be Oð1Þ. The auxiliary list is typically maintained
according to the priority order assigned by the auxiliary
algorithm (for example, ordered by surplus for SFS). The
insertions/deletions from this list could be made
OðlogðnÞÞ by maintaining suitable data structures for the
list implementation such as heaps. Similarly, the weight
readjustment algorithm maintains a sorted list of nodes
by their weight-parallelism ratios. Such a list will
typically have to be modified much less frequently,
although similar data structures could be employed here.

7 SIMULATION STUDY

We now present a simulation study to evaluate the
properties of the H-SMP algorithm and compare it to other
existing algorithms and their extensions. We first present
our simulation methodology and metrics used in our
evaluation, followed by the results of the study.

7.1 Simulation Methodology

In our study, we used an event-based simulator to simulate
multiprocessor systems with different numbers of proces-
sors p. For each simulation, we generated a scheduling tree
hierarchy with a given number of internal nodes N and a
given number of threads n. These nodes and threads were
arranged in the tree in the following manner. The parent of
an internal node was chosen uniformly at random from the
set of other internal nodes, whereas the parent of a thread
was selected uniformly at random from the set of internal
nodes without children (to prevent a thread and an internal
node from being siblings in the tree). These nodes and
threads were then assigned weights chosen uniformly at
random from a fixed range of values (1-100).

Each run of the simulation is conducted as follows:
Similar to a real operating system, the system time is
measured in ticks, and the maximum scheduling quantum
is defined to be 10 ticks. Each CPU is interrupted at a time
chosen uniformly at random within its quantum,11 at which
point it calls the hierarchical scheduler to assign the next
thread to run on the CPU. Each thread is assigned a service
time at creation, which is generated from a heavy-tailed
distribution ðPareto; a ¼ 1:01Þ. A thread departs the system
when it has received a CPU service equal to its desired
service time. We model arrivals of new threads as a Poisson
process, and thread arrival times are generated from an
exponential distribution.12 Furthermore, we used different
random-number streams for each of the different distribu-
tions (parent IDs, weights, scheduling times, service times,
and arrival times).

426 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

11. Threads may not use full quantum lengths either because of having
used up partial quantum lengths in their previous runs or due to
preemption or blocking events.

12. To emulate a stable system (with the number of arrivals
approximating the number of departures), we used a mean � / 1

p .

In our study, we simulated multiprocessor systems with
2, 4, 8, 16, and 32 CPUs, respectively. We generated
scheduling trees with 2, 4, 6, 8, and 10 internal nodes and
a set of values for the number of threads in the system,
varying from 3 to 100. Each simulation (with each of these
parameter combinations) was run for 10,000 ticks and
repeated 100 times with a different random seed to simulate
different thread mixes and tree structures for the same
parameter combinations.

In our study, we use H-SFS as an instantiation of H-SMP
for evaluation purposes. We compare the H-SFS algorithm
with the following algorithms that represent existing
algorithms and their extensions for use in a hierarchical
scheduling framework.

7.1.1 Surplus Fair Scheduling

As a representative of a uniprocessor hierarchical scheduler
(Algorithm 1), we employed SFS algorithm directly to
schedule nodes at each level of the scheduling hierarchy.
Note that even though SFS is a proportional-share algo-
rithm designed to schedule threads in a multiprocessor
environment, it cannot exploit the inherent parallelism of
internal tree nodes.

7.1.2 Extended Surplus Fair Scheduling

This algorithm is an extension of SFS for hierarchical
scheduling that works as follows: At each scheduling instant,
at each level of the scheduling hierarchy, it selects a node
with the minimum surplus among a set of sibling nodes and
assigns it d�ie number of CPUs. This is a generalization of
SFS, as SFS algorithm assigns d�ie ¼ 1 CPU to each selected
thread, where 0 < �i � 1 for all threads in that case. Thus,
this algorithm is designed to extract parallelism for each
internal node in the scheduling tree. However, note that this
algorithm does not guarantee that b�ic � ri � d�ie for all
nodes in the scheduling tree, as shown for H-SMP. We use
Ext-SFS to represent one possible extension of an existing
multiprocessor proportional-share algorithm.

7.1.3 Hierarchical Round Robin

Hierarchical Round Robin (H-RR) is an instantiation of
H-SMP that employs the Round-Robin algorithm as the
auxiliary scheduler. This algorithm also employs a space
scheduler (and the notions of deficit, auxiliary, and
ineligible sets) to assign processors to nodes. However,
the nodes in the auxiliary set are scheduled using the
Round-Robin scheduler instead of SFS or another
proportional-share algorithm. We use this algorithm for
comparison to illustrate that a naive choice of auxiliary
scheduler can result in deviations from the fair allocation
of bandwidth, even when employing the space scheduler
as the first component of the hierarchical scheduler.

To quantify the performance of an algorithm, we
measure the normalized deviation Di of each node i in

the scheduling tree from its ideal share: Di ¼ Ai�Aideal
i

Atotal

��� ���,
where Ai and Atotal denote the CPU service received by

node i and the total CPU service in the system, respectively,

and Aideal
i is the ideal CPU service that the node should have

received based on its relative weight in the hierarchy. We

then use statistics such as the mean and maximum

deviation of all the nodes in the scheduling tree to quantify

the unfairness of the algorithm. Thus, an algorithm with

smaller deviation values is better able to satisfy the CPU

requirements of the tree nodes.

7.2 Comparison of Schedulers

We first compare the performance of the various schedulers
described above in terms of their ability to satisfy the CPU
requirements of the threads and nodes in the scheduling
tree. We present results only for some of the parameter
combinations due to space constraints.

7.2.1 No Arrivals and Departures

In our first set of experiments, we assume a fixed set of
threads and a fixed scheduling hierarchy during each run;
that is, there are no thread arrivals/departures. Fig. 3
shows the comparison of the algorithms described above
for 2, 8, and 32-processor systems for a scheduling tree
with 10 internal nodes. The figure plots both the mean and
the maximum deviation from the ideal share for all the
nodes in the tree. Based on the graphs, the SFS algorithm
has the highest deviation. This is because SFS assigns at
most one CPU to each node, resulting in large deviations
for nodes that have a requirement of multiple CPUs. The
poor performance of SFS shows the inability of a thread-
scheduling algorithm to exploit thread parallelism within
the tree. The H-RR algorithm also performs relatively
poorly. However, in Figs. 3b, 3d, and 3f, which plot the
maximum deviation for any node in the tree, we see that the
maximum deviation of any node in the tree, in the presence
of H-RR, is bounded by about 17.1 percent, 5.89 percent, and
1.75 percent for 2-, 8-, and 32-CPU systems, respectively,
which translates to a maximum deviation of about 0.34, 0.47,
and 0.54 CPUs, respectively. Since the maximum deviation
< 1, this result shows that the number of CPUs available to
any node in the scheduling tree is bounded by the upper and
lower thresholds of its processor requirement. However,
since the Round-Robin algorithm does not differentiate
between the requirements of different nodes, the residual
bandwidth is not divided proportionately among the nodes.
Finally, we see that the Ext-SFS and H-SFS algorithms have
small deviation values, indicating that employing a general-
ization of a proportional-share algorithm is crucial in
meeting the requirements. Furthermore, we see that H-SFS
has the smallest deviation values, which indicates that a
combination of threshold bounds and a proportional-share
algorithm provides the best performance in terms of
achieving proportional-share allocation.

Similarly, Figs. 4a and 4b show the comparison of
the algorithms for scheduling trees with different sizes
(6 and 10 internal nodes, respectively) and running on a
32-processor system. As shown in the figures, the
results are similar to those obtained above, and the
H-SFS algorithm again has the least mean deviation
values among the algorithms considered here.

7.2.2 Arrivals and Departures

Next, we allow thread arrivals and departures in the system
by using the methodology described in Section 7.1. Fig. 5
shows the mean deviation for the different algorithms for 4, 8,
16, and 32-CPU systems with 10 internal nodes, respectively.
Here, we have the initial number of threads in the system on
the x-axis (the actual number of threads vary over the
duration of the run as threads arrive and depart). Once again,

CHANDRA AND SHENOY: HIERARCHICAL SCHEDULING FOR SYMMETRIC MULTIPROCESSORS 427

we notice that SFS performs the worst and H-SFS performs

the best in all cases. However, we notice an interesting trend

with respect to the performance of H-RR and Ext-SFS. As the

number of CPUs increases, the performance of Ext-SFS

becomes comparatively worse, whereas that of H-RR

improves marginally. This happens, because with an increas-

ing number of CPUs, there are more arrivals/departures in

the system.13 This result indicates that H-SMP-based algo-

rithms (H-SFS and H-RR) are able to maintain the processor

requirement bounds more effectively in the presence of an

increasing number of thread arrivals/departures. Moreover,
the impact of such arrivals/departures on H-SMP can be seen
to be minimal in terms of maintaining these bounds.

Overall, these results demonstrate that a combination of
space scheduling coupled with a proportional-share algo-
rithm such as SFS as an auxiliary scheduler achieves the most
desirable allocation. We see that a thread-scheduling algo-
rithm is ineffective for exploiting thread parallelism in a
scheduling tree. We also see that although a simple extension
of a proportional-share algorithm such as SFS is fairly
effective in achieving a desirable allocation, its performance
is adversely affected by frequent thread arrivals/departures.
Finally, fitting a naive algorithm such as Round Robin in the
hierarchical framework does not maintain the desired shares
effectively.

428 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

13. There are more processors available for parallel execution, thus
allowing threads to finish faster. In addition, recall that we use a higher
arrival rate for more CPUs to balance out the large departure rate in our
experiments.

Fig. 3. Mean and maximum deviation for scheduling trees with 10 internal nodes on different sizes of multiprocessor systems and no arrivals/

departures. (a) Two CPUs: mean deviation. (b) Two CPUs: maximum deviation. (c) Eight CPUs: mean deviation. (d) Eight CPUs: maximum

deviation. (e) Thirty-two CPUs: mean deviation. (f) Thirty-two CPUs: maximum deviation.

7.3 Impact of System Parameters

Now, we consider the effect of system parameters such

as the number of threads, number of processors, and

tree size on the performance of H-SFS. All of these

results are for the scenario with arrivals/departures of

threads.

7.3.1 Impact of the Number of Threads

The impact of increasing the number of threads on H-SFS

can be seen in Figs. 3, 4, and 5 (the lowest curve in all

figures), which show that the number of threads has little

impact on the allocation deviation, indicating that H-SFS

is largely unaffected by the number of threads in the

system.

7.3.2 Impact of the Number of Processors

In Fig. 6, we plot the mean deviation as the number of CPUs

is varied. In the figure, we see that the mean deviation

increases as we increase the number of processors in the

system. This result can be explained due to more arrivals/

departures happening with more CPUs, as explained in the

previous section. Such frequent arrivals/departures impact

the adjusted weights more frequently and lead to more

temporary imbalances in processor allocation.

CHANDRA AND SHENOY: HIERARCHICAL SCHEDULING FOR SYMMETRIC MULTIPROCESSORS 429

Fig. 4. Mean deviation for scheduling trees with different sizes on a 32-processor system and no arrivals/departures. (a) Six internal nodes.

(b) Ten internal nodes.

Fig. 5. Mean deviation for scheduling trees with 10 internal nodes on different sizes of multiprocessor systems and with arrivals/departures.

(a) Four CPUs. (b) Eight CPUs. (c) Sixteen CPUs. (d) Thirty-two CPUs.

7.3.3 Impact of Scheduling Tree Size

In Fig. 7, we plot the mean deviation as the tree size (in a
number of internal nodes) is varied. As shown in the figure,
the number of nodes has little impact on the deviation,
indicating that the tree size does not affect the performance
of H-SFS.

Overall, our results demonstrate that H-SFS is effective in
providing the desired shares of nodes in a scheduling
hierarchy. Moreover, the performance of H-SFS is largely
unaffected by the tree size and the number of threads in the
system, and frequent arrivals/departures have only a small
impact on its fairness properties.

8 CONCLUDING REMARKS

In this paper, we considered the problem of using
hierarchical scheduling to achieve aggregate resource
partitioning among related groups of threads and applica-
tions in a multiprocessor environment. We described two
limitations of existing hierarchical schedulers in multi-
processor systems: 1) their inability to incorporate the
inherent parallelism of multiple processors and 2) that of
unbounded unfairness due to infeasible weights. We
presented H-SMP, a hierarchical CPU scheduling algorithm
designed for a multiprocessor platform. This algorithm
employs a combination of space and time scheduling and
can incorporate existing proportional-share algorithms as
auxiliary schedulers to achieve the desired hierarchical
CPU partitioning. In addition, we derived a generalized

weight feasibility constraint that formalizes the notion of
feasible weights to avoid the problem of unbounded
unfairness and developed a hierarchical weight readjust-
ment algorithm to transparently satisfy this feasibility
constraint. We evaluated the properties of H-SMP using
H-SFS, an instantiation that employs SFS as an auxiliary
algorithm. This evaluation was carried out through a
simulation study that showed that H-SFS provides better
fairness properties in multiprocessor environments as
compared to existing algorithms and their naive extensions.
As part of our future work, we intend to implement H-SMP
and its instantiations in a real SMP environment and study
its efficiency by using real-world applications. In particular,
we would like to evaluate heuristics to achieve better space
partitioning and exploit cache affinity.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” Proc. 19th ACM Symp. Operating Systems
Principles (SOSP ’03), Oct. 2003.

[2] C.A. Waldspurger, “Memory Resource Management in VMware
ESX Server,” Proc. Fifth Usenix Symp. Operating System Design and
Implementation (OSDI ’02), Dec. 2002.

[3] V. Sundaram, A. Chandra, P. Goyal, P. Shenoy, J. Sahni, and
H. Vin, “Application Performance in the QLinux Multimedia
Operating System,” Proc. Eighth ACM Int’l Multimedia Conf.
(ACM Multimedia ’00), Nov. 2000.

[4] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, “Cellular
Disco: Resource Management Using Virtual Clusters on Shared-
Memory Multiprocessors,” ACM Trans. Computer Systems, vol. 18,
no. 3, pp. 229-262, 2000.

430 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

Fig. 6. Effect of the number of processors on the deviation of H-SFS. (a) Six internal nodes. (b) Ten internal nodes.

Fig. 7. Effect of tree size on the deviation of H-SFS. (a) Eight CPUs. (b) Thirty-two CPUs.

[5] Intel Dual-Core Server Processor, http://www.intel.com/business/
bss/products/server/dual-core.htm, 2006.

[6] IBM xSeries with Dual-Core Technology, http://www.intel.com/
business/bss/products/server/dual-core.htm, 2006.

[7] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy,
“Scheduler Activations: Effective Kernel Support for the User-
Level Management of Parallelism,” ACM Trans. Computer Systems,
vol. 10, no. 1, pp. 53-79, Feb. 1992.

[8] G. Banga, P. Druschel, and J. Mogul, “Resource Containers: A
New Facility for Resource Management in Server Systems,” Proc.
Third Usenix Symp. Operating System Design and Implementation
(OSDI ’99), pp. 45-58, Feb. 1999.

[9] P. Goyal, X. Guo, and H. Vin, “A Hierarchical CPU
Scheduler for Multimedia Operating Systems,” Proc. Second
Usenix Symp. Operating System Design and Implementation
(OSDI ’96), pp. 107-122, Oct. 1996.

[10] J. Bennett and H. Zhang, “Hierarchical Packet Fair Queuing
Algorithms,” Proc. ACM SIGCOMM ’96, pp. 143-156, Aug. 1996.

[11] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simula-
tion of a Fair Queueing Algorithm,” Proc. ACM SIGCOMM ’89,
pp. 1-12, Sept. 1989.

[12] K. Duda and D. Cheriton, “Borrowed Virtual Time (BVT)
Scheduling: Supporting Latency-Sensitive Threads in a General-
Purpose Scheduler,” Proc. 17th ACM Symp. Operating Systems
Principles (SOSP ’99), pp. 261-276, Dec. 1999.

[13] S.J. Golestani, “A Self-Clocked Fair Queueing Scheme for High-
Speed Applications,” Proc. IEEE INFOCOM ’94, pp. 636-646,
Apr. 1994.

[14] P. Goyal, H.M. Vin, and H. Cheng, “Start-Time Fair Queuing: A
Scheduling Algorithm for Integrated Services Packet Switching
Networks,” Proc. ACM SIGCOMM ’96, pp. 157-168, Aug. 1996.

[15] J. Nieh and M.S. Lam, “The Design, Implementation and
Evaluation of SMART: A Scheduler for Multimedia Applica-
tions,” Proc. 16th ACM Symp. Operating Systems Principles
(SOSP ’97), pp. 184-197, Dec. 1997.

[16] B. Caprita, W. Chan, J. Nieh, C. Stein, and H. Zheng, “Group
Ratio Round-Robin: O(1) Proportional Share Scheduling for
Uniprocessor and Multiprocessor Systems,” Proc. Usenix Ann.
Technical Conf. ’05, Apr. 2005.

[17] Solaris Resource Manager 1.0: Controlling System Resources Effec-
tively. Sun Microsystems, Inc., http://www.sun.com/software/
white-papers/wp-srm/, 1998.

[18] C. Waldspurger and W. Weihl, “Stride Scheduling: Deterministic
Proportional-Share Resource Management,” Technical Report
TM-528, Laboratory for Computer Science, Mass. Inst. of
Technology, June 1995.

[19] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus Fair
Scheduling: A Proportional-Share CPU Scheduling Algorithm for
Symmetric Multiprocessors,” Proc. Fourth Usenix Symp. Operating
System Design and Implementation (OSDI ’00), Oct. 2000.

[20] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
G. Plaxton, “A Proportional-Share Resource Allocation Algo-
rithm for Real-Time, Time-Shared Systems,” Proc. 17th IEEE
Real Time Systems Symp. (RTSS ’96), pp. 289-299, Dec. 1996.

[21] C.A. Waldspurger and W.E. Weihl, “Lottery Scheduling: Flexible
Proportional-Share Resource Management,” Proc. First Usenix
Symp. Operating System Design and Implementation (OSDI ’94),
Nov. 1994.

[22] R.M. Karp and V. Ramachandran, “Parallel Algorithms for
Shared-Memory Machines,” Handbook of Theoretical Computer
Science—Volume A: Algorithms and Complexity, pp. 869-941, 1990.

Abhishek Chandra received the BTech degree
in computer science and engineering from the
Indian Institute of Technology, Kanpur, India, in
1997 and the MS and PhD degrees in computer
science from the University of Massachusetts,
Amherst, in 2000 and 2005, respectively. He is
currently an assistant professor in the Depart-
ment of Computer Science and Engineering,
University of Minnesota. His research interests
include operating systems, distributed systems,

and Internet systems. He received a US National Science Foundation
Faculty Early Career Development (CAREER) Award in 2007, and his
PhD dissertation “Resource Allocation for Self-Managing Servers” was
nominated for the ACM Dissertation Award in 2005. He is a member of
the IEEE, the ACM, and the Usenix.

Prashant Shenoy received the BTech degree in
computer science and engineering from the
Indian Institute of Technology (IIT), Bombay, in
1993 and the MS and PhD degrees in computer
science from the University of Texas at Austin
(UT) in 1994 and 1998, respectively. He is
currently an associate professor of computer
science at the University of Massachusetts,
Amherst. His research interests include operat-
ing and distributed systems, sensor networks,

Internet systems and pervasive multimedia. He is the recipient of a US
National Science Foundation Faculty Early Career Development
(CAREER) Award, the IBM Faculty Development Award, the Lilly
Foundation Teaching Fellowship, the UT Computer Science Best
Dissertation Award, and an IIT Silver Medal. He is a senior member of
the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHANDRA AND SHENOY: HIERARCHICAL SCHEDULING FOR SYMMETRIC MULTIPROCESSORS 431

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

