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ABSTRACT

RESOURCE MANAGEMENT FOR DISTRIBUTED
REAL-TIME SYSTEMS

SEPTEMBER, 2006

HUAN LI
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M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy and Professor Krithi Ramamritham

Recent advances in embedded sensor systems and wireless technologies have made
it possible to conceive a new type of real-time application — distributed real-time sen-
sor systems. Examples of such systems include surveillance applications, distributed
industrial control systems, disaster response systems and robotic applications, just
to name a few. In addition to the requirements of providing temporal guarantees,
these distributed embedded systems are normally associated with extreme resource
constraints, both in computation and communication.

In this dissertation, we investigate some of the fundamental resource management
problems that arise in the design and development of distributed real-time sensor
systems. We consider a scenario in which a team of robots collaborating with each

other to rescue people from a building on fire. The coordinated behavior is achieved
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by assigning a set of control tasks, or strategies, to robots in a team. At each step,
the application may have many functionally equivalent strategies, though some of
them may not be feasible, given limited resource and time availability. In order to
accomplish dynamic feasibility checking and improve system performance, we pro-
pose efficient resource allocation mechanisms. Our approaches not only minimize the
communication cost, but also minimize and balance the workload of each processor,
resulting in good performance with regards to system schedulability and feasibility.
With respect to real-time communication in sensor applications, each message
will traverse multiple hops from the source to the destination with an end-to-end
deadline. In order to provide timeliness guarantees, a key challenge is to bound the
delay and prioritize per-hop transmission. However, existing wireless protocols such
as 802.11 families may suffer from unpredictable delays, due to collision, back-off and
false blocking problems. In this study, after showing that the problem of scheduling
all wireless transmissions to meet deadlines is NP-hard, we derive effective deadline
for each per-hop transmission and schedule the most urgent message. We develop
novel algorithms to parallelize message transmissions. By carefully exploiting spatial
reuse property and avoiding collisions, the deadline misses are minimized. Extensive
simulations demonstrate the effectiveness of our approaches, especially under high

channel contention environments.
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CHAPTER 1
INTRODUCTION

The rapid development of sensor devices, embedded systems and advanced wireless
technologies have made it possible to conceive a new type of real-time applications —
distributed real-time sensor systems. Examples of such systems include surveillance
applications, distributed industrial control, earthquake response systems, robotic ap-
plications and so on. In addition to timing characteristics that require the system
to complete its work and deliver its services on a timely basis, these distributed em-
bedded systems are normally imposed with extremely resource constraints, both in
computation and communication. In this chapter, we start by describing the prob-
lem motivation and the thesis goals. Then, the contributions and structure of the

dissertation are summarized.

1.1 Motivation

The design and development of wireless sensor applications have received a lot of
research attention recent years [23, 22, 6, 7, 48, 19, 107]. The advances in wireless
communications and electronics have enable the inexpensive, low-power sensor nodes
to be deployed throughout a physical space. These small sensor nodes, which consist
of sensing, data processing and wireless capabilities, make it possible to provide dense
sensing very close to phenomenon and process/communicate those information in
react to the quick changing environment.

Potential sensor applications include environmental monitoring in remote areas,

monitoring of ocean temperatures, searching and rescuing operations, disaster and



emergency response. A sensor application is typically composed of a collection of
sensor nodes that continuously monitor the surrounding environment and a collec-
tion of sinks that aggregate, process, and react to the sensory data. Communication
between the sensors and sinks requires a network; since the inherent nature of many
sensor applications precludes the use of wired networks, wireless networks are com-
monly used in such applications.

Many wireless sensor network (WSN) applications require real-time communica-
tion in response to dynamic physical world. For example, a surveillance system needs
to alert authorities of an intruder within a few seconds of detection [37]. Similarly,
a fire-fighter may rely on timely temperature updates to remain aware of current fire
conditions [58]. Another example of such applications is a team of robots searching for
trapped people in a building on fire. Each robot is equipped with a set of sensors such
as temperature and pressure monitors, video cameras, GPS, and infra-red monitors.
Not all robots may have all of these sensors due to power and weight constraints or
the consideration of design issues. For example, some robots may specialize in ther-
mal imaging sensors for locating humans, while others may carry extra processing
elements and fewer sensors. The robots pool the sensory data from all sensors and
exchange information with one another to adjust their sensing strategies in a timely
fashion in direct response to the evolving environment and determine where to move
for the next step, both individually and as a group. Since the path for each robot
needs to be determined to ensure timely mobility, the transmission and processing
of sensory data imposes timeliness constraints. The distributed systems which pro-
vide timeliness guarantees for processing and transmitting sensor data are referred as
distributed real-time sensor systems.

Compared with traditional distributed systems, the real-time guarantees for sensor-
based systems is more challenging due to the resource constraints in power, processing

capacity and wireless communication bandwidth. The distributed real-time sensor



systems exhibit performance challenges with regards to system schedulability, fea-
sibility, and timeliness guarantees for wireless transmission. The key features for

meeting these guarantees are as the follows.

e The system resources such as computation and communication should be uti-
lized efficiently and cost-effectively to meet schedulability and feasibility re-

quirements.

e The system should be able to optimize the communication, and the wireless

capacity should be taken into use to the much extent.

e Different sensor data should be transmitted to the destinations on time. This
means that the probability of transmission conflicts should be minimized and

the system is able to bound or predict the delay.

In the example of robotic teams, the distributed control systems are built using
sets of functionally equivalent controllers in the form of coordinated, adaptive con-
trol schemes. These controllers are distinguished by their use of resources including
communication, processor and sensors. Although the control strategies are logically
equivalent, some of them may not be feasible, with regards to the timeliness guaran-
tees. The goal of finding a feasible strategy is, to assign tasks to robots/processors
so that all tasks finish their work on time and the communication costs among tasks
in different processors is minimum. One challenge of task assignment problem is
that given limited resource and time availability, finding an optimal feasible resource
allocation solution is known to be NP-hard. The other complicating aspect of this
application domain is that the robot team is often moving and its size is not fixed.
As robots enter or leave the team, the application must recompute the set of avail-
able strategies. Each time the team changes, the application must run an on-line
algorithm to determine the task allocation and scheduling of a new feasible strategy.

In the literature on real-time systems and on distributed systems, we can find nu-



merous approaches, e.g., simulated annealing [101], branch-and-bound [70], myopic
heuristic [73], network flow, bin packing to different variants of this task assignment
problem. However, most of these approaches are for off-line task assignment [56],
and therefore, cannot be adopted into the robotic scenario.

In the applications of distributed sensory systems where message transmissions
are performed over wireless networks, novel protocols and algorithms are needed to
effectively tackle the unique resource constraints and application requirements to pro-
vide end-to-end temporal guarantees. Traditional CSMA-based schemes are deemed
inappropriate since they all make the fundamental assumption of stochastically traffic
distribution [6], which is not true for the sensor networks where traffic is variable
but is highly correlated and dominantly periodic.

Many MAC protocols have been proposed for wireless sensor networks with the
objective of the creation of self-organizing network, energy efficiency and fairly shar-
ing communication resources between sensor nodes [90, 89, 105, 86, 108, 44, 104, 100].
The protocols for providing soft real-time guarantees are studied in SPEED [38, 39]
and RAP [59], while little research has been done for temporal guarantees through
collision avoidance and parallel transmission. Using traditional wireless protocols
such as CSMA/CA-based 802.11 family of protocols, the time-sensitive sensor ap-
plications will have to meet the following challenges. First, CSMA/CA networks do
not completely eliminate the possibility of collisions despite of the use of the collision
avoidance techniques. Second, senders will back-off exponentially when they sense
ongoing transmissions on the channel, which may cause unpredictable delays. Third,
vanilla 802.11 networks suffer from the false blocking, as observed in [14]. And in the
worst case, the blocking may propagate throughout the whole network [76].

The limited computation and communication resources in wireless sensor networks
raise many challenges in the design of distributed real-time sensor systems. The

motivation of this thesis is to design, analyze and evaluate efficient time-cognizant



resource management mechanisms, and provide insights to improve the performance
objectives of distributed real-time sensor systems. In the next section, we examine
some of the fundamental problems that need to be solved in order to build a feasible
distributed real-time sensor systems. The following section summarize the primary
contributions made by this dissertation. We conclude this chapter with the description

of the structure of the dissertation.

1.2 Scope of Research
In this section, the scope of this dissertation are presented. The specific resource
constraints, wireless channel properties and end-to-end temporal constraints in sensor

data transmission are discussed.

1.2.1 Tasks, Resources And Temporal Constraints

In this dissertation, we call each unit of work that is scheduled and executed by
the system a task. These tasks can provide some system function, e.g., computation of
path plan for a robot team, or the transmission of a sensor data packet. We consider
a system that consists of NV sites, each having an identical CPU. The underlying
network used to support interprocessor communication is wireless network. We model
the wireless channel as a specific processor for the purpose of resource allocation
and scheduling. Resources other than CPUs and wireless channel, which are called
processors, are not considered in this dissertation. The cost of communication between
a pair of tasks is usually significantly lower when they are on the same site than when
they are on different sites, and is negligible in the following chapters. In this situation,
we want to take into account the cost of communication between two tasks that are
assigned on different sites, which depends on the volume of data exchanged and the

bandwidth of the communication link. The goal of task assignment is to assign each



task to an appropriate site to feasibly schedule all tasks on it, and at the same time,
the total communication cost among tasks on different sites is minimized.

The two characteristics that distinguish tasks in real-time systems from those in
nonreal-time systems are the deadlines and release times [56]. The release time of
a task is the instant of the time at which the task becomes available for execution.
The deadline of a task is the instant of time by which its execution is required to
be completed. In the dissertation, we assume the sensor data produced by sensor
tasks are normally consumed by control tasks multi-hops away. And in this case, the
deadline is also referred to as end-to-end deadline. In general, we call a constraint
imposed on the timing behavior of a task a temporal constraint that can be specified
in terms of release times and deadlines.

While considerable research has been devoted to the understanding of the per-
formance of traditional distributed and multiprocessor real-time systems, very little
work specifically geared toward resource management of distributed sensor systems
has been done. The goal of the first part of this dissertation is to (1) characterize
and understand the resource constraints of wireless sensing systems, and (2) explore
novel on-line resource allocation and scheduling mechanisms to improve the system

feasibility and efficiency.

1.2.2 Optimization of Wireless Communication

As discussed in Section 1.1, in most sensor applications, sensor data are trans-
mitted over ad hoc wireless network and have timing constraints for the system in
response to the fast changing physical world. Although one channel with one fixed
frequency is considered in the dissertation, from spatial perspective, there may exist
many parallel processors (channels) that can be used for data transmission, since some
of the messages are geographically apart enough and there is no interference between

those transmissions. The parallel data transmissions can be modeled as the trans-



mission tasks running on different processors simultaneously. However, the number
of processors are not fixed or known in advance. This is because, given a set of data
messages on different sites, any pair of parallel transmissions may affect the subset of
all other transmissions, which leads to the solution space increase exponentially.
The goal of the second part of this dissertation is to (1) gain fundamental un-
derstanding of the parallelization problem in the wireless sensor data transmission
with temporal constraints, (2) obtain insights on the problem complexity and its
variations in practical use, and (3) develop and evaluate the performance of different

parallelization-based algorithms for achieving minimum message transmission time.

1.2.3 Multi-hop Sensor Data Transmission

In distributed sensor systems, sensor updates must flow from the sensor tasks to
the processing tasks, and from processing tasks to the actuators and outplay displays
with bounded delay. The goals of communication protocols in real-time systems are
different from those in traditional nonreal-time data communication systems [47].
The key performance in traditional system is system throughput, that is, how much
data can be transferred over the network in one unit time from source to destination.
In real-time system, the key measure is the probability of delivering a message by a
certain deadline.

Protocols suitable for real-time transmission in wired networks have been studied
in the last couple of decades [109, 110, 17, 30, 80, 106]. Recently, there has been
increasing interest in the study of wireless communication and real-time protocols
[45, 59, 38, 39, 16]. However, most of these protocols support some sort of soft real-
time communications. For example, SPEED [38, 39] provides a delay guarantee per
unit delivery distance(speed guarantee), and a predictable end-to-end communication

delay under given spatial (distance) constraint can be obtained.



The goal of the third part of this dissertation is to (1) explore the wireless channel
spatial properties and its impact on the real-time communication, and (2) design novel
spatial reuse-based algorithms and evaluate the performance in terms of end-to-end

temporal guarantees for varying network and data flow topologies.

1.3 Thesis Contributions

This dissertation presents a study of the resource management for distributed
real-time sensor systems, to achieve the three goals outlined in Section 1.2. The first
discusses the task allocation and scheduling in a resource-constrained distributed
system (robot team). Utilization bound and precedence semantics are explored to
improve the system scehdulability. The second part addresses the characteristics of
wireless transmission in face of temporal constraints. A novel approach is proposed
and analyzed for the purpose of minimizing the total communication time. The
third part presents solutions to multi-hop message scheduling over a shared wireless
channel. In particular, a novel scheduling algorithm that takes use of the spatial reuse
property and temporal per-hop status are proposed and studied.

In this section, we elaborate on the contributions of the thesis. The following are

problems and contributions presented in this dissertation.

e FEfficient Resource Allocation Techniques In the applications of multi-robot sys-
tems where coordinated control schemes are built to achieve collaboration be-
haviors, the control strategies are distinguished by their use of communication,
sensors and processors. Finding an optimal resource allocation with prece-
dence constraints in a distributed environment is in general NP-hard [70], and
even some of the simplest scheduling problems are NP-hard in the strong sense
[26]. In this thesis, we focus on the problem of allocating control tasks in such
distributed collaborative systems. We investigate the problem where communi-

cation is an important factor for each member to share information and achieve



collaboration behaviors. In order to improve schedulability, the system should
be able to minimize communication overhead by allocating communicating tasks
on the same platform. However, the more tasks on the same processor, there
will have higher workload, which may decrease system performance and even

lead to system infeasibility.

To solve the conflict aspects of minimization of communication and processor
utilization, in this thesis, we propose efficient resource allocation algorithms
that take into account the communication cost and utilization at the same time
for each step. To minimize the communication cost, we define a novel concept,
commaunication cost ratio, for counting the real communication weight as to the
total execution times of a pair of communicating tasks. To bound and balance
the workloads of processors, we further use a dynamic utilization threshold for
the selection of processor at each step of task assignment. Our experimental
studies show that our task allocation algorithm together with the precedence-
encoded scheduling policy greatly improves performance of distribute real-time

system in terms of schedulability and feasibility [52].

Optimization of Message Transmission Allocation tasks to processors is the
first step in enabling distributed real-time systems to meet the schedulability
requirements. With these mechanisms in place, the next step is to design tech-
niques for the optimization of message transmission. These techniques should
take into account the wireless constraints, such as range constraint and inter-
ference constraint, while scheduling message transmissions. Also they should

be able to avoid collisions in order to minimize the transmission delay.

In this thesis, we study the problem of providing qualitatively-better QoS to
transmit sensor data, using commodity 802.11 wireless networks. The first prob-

lem we investigate is the Optimal Parallel Communication Scheduling (OParCS)



problem, whose goal is to minimize the completion time of transmitting a set
of sensor messages. We show this problem is NP-complete. Consequently, we
propose several spatial channel reuse algorithms. These algorithms perform
non-interfering transmissions in parallel, and explicitly avoid the transmission
collisions. To enable comparisons, we also propose an A*-based optimal so-
lution. The evaluation results demonstrate that the spatial reuse algorithm
results in good performance: the time to complete transmissions is within a
factor of 8.5 of the optimal solution, and it outperforms the random method.

More importantly, it is robust to the increases in communication density [51].

Scheduling Messages with Temporal Constraints in Multi-hop Sensor Networks
In the sensor applications where each message is associated with a deadline and
need to traverse multiple hops from the source to the destination, the system
should be able to provide the timeliness guarantees. However, if we use the best-
effort techniques to transmit the messages, the deadline misses will be very high.
An early work that studied the real-time communication in sensor networks is
[59]. In their proposal of velocity monotonic scheduling mechanism, at each
hop, packets are scheduled based on the highest velocity requirement, where
the velocity is calculated by the deadline and the distance to travel of each
packet. Although this approach takes the deadline into account, it still meet
the problem of unbounded delay, due to collisions, back-offs or false blocking

problems.

In this thesis, we examine the problem of providing end-to-end temporal guar-
antees for multi-hop wireless transmissions. We argue that this problem is NP-
hard, and consequently we sort to heuristics. To efficiently solve the problem
with the goal of minimizing the deadline misses, we first derive effective mes-
sage deadlines for each hop transmissions and use this information to choose the

most urgent message for scheduling to meet the end-to-end deadline. Second,

10



we propose novel efficient algorithms which attempt to transmit messages in
parallel to the much extent. We discuss the criteria upon which the messages
can be sent at the same time and move the the next hop to the destination, to
maintain the end-to-end deadline requirements. We compare the performance
of our proposed algorithm CR-SLF with the PH-SLF, a simple CSMA-based
algorithm. We evaluate the impact of sensor period, deadline and message size
based on specific transmission topology. We also investigate how the different
interference ranges may affect the properties of the algorithms. Our experiments
show that CR-SLF performs much better than PH-SLF with the performance
of deadline miss ratio, especially when utilization is high and/or the probability

of collisions is high [49].

1.4 Structure of the Dissertation

In this introduction, we have provided the motivation and brief description for
three problems arising in the design and development of distributed real-time systems.
The rest of this dissertation is structures as follows. First, we discuss related work in
Chapter 2. In Chapter 3, we describe the resource allocation techniques. In Chapter
4, we consider the problem of minimizing total transmission time and present our
channel-reuse schemes. The problem of providing temporal guarantees for multi-hop
wireless transmission is discussed in Chapter 5. We conclude with a research plan

and a brief summary of our research contributions in Chapter 6.

11



CHAPTER 2
RELATED WORK

Distributed real-time sensor systems draw several related works, such as resource
allocation, schedulability analysis and improvement, message transmission with tem-
poral guarantees, etc.. In this chapter, we will highlight some of the most recent work

in these areas.

2.1 Real-Time Task Assignment and Scheduling

The purpose of real-time computing is to execute, by the appropriate deadlines,
its critical control tasks [47]. The allocation/scheduling problem can be stated as
follows. Given a set of tasks, task precedence constraints, resource requirements, task
characteristics, and deadlines, we are asked to derive feasible allocation/schedule on
a given computer. There is an enormous literature on allocation/scheduling problems
since 1970’s. In the following, we present some techniques that relates to the meeting

of deadlines in multiprocessor/distributed systems.

2.1.1 Task Assignment in Multiprocessor Environment

Except for trivial cases, the problem of finding an optimal assignment of tasks to
processors is NP-hard in the strong sense [27]. Therefore, most methods use heuristics.
Let us first consider a simplest form where a set of periodic independent preemptable
tasks (task deadlines equal their periods) to be assigned to a multiprocessor system
consisting of identical processors, and resources other than processors are not required

by tasks. It is known that as long as the total utilization of all tasks assigned to the

12



same processor is no greater than 1, this task set is EDF-schedulable. It is easy
to formulate this task assignment as the simple bin-packing problem [18], and the
number of bins required to pack all items is the number of processors required to
feasible schedule all tasks. The bin-packing is NP-complete, but there are many good
heuristic algorithms to solve it. In the first-fit algorithm, tasks are assigned one by
one in an arbitrary order, and the 4y, task is assigned to the processor Py if i) the total
utilization of T; and existing tasks already assigned to Py is no greater than 1, but ii)
assigning T; to any other processors Py, ..., P,_; (ordered by the increasing values of
utilizations) would make the total utilization larger than 1. By measuring the ratio
of the number of processors required by a heuristic algorithm to the number obtained
by the optimal assignment, in the worst case, first-fit algorithm never achieves the
ratio of more than 1.7 [18]. Simulation also show that when the utilizations of tasks
are uniformly distributed in [0,1], the total utilization per processor achieved by first-
bit is 0.93 on average. Above discussion is based on the assumption there is no
limit on the number of processors. If the tasks are sorted in non-increasing order
of their utilizations and are assigned in turn by that order, the ratio of the number
of processors required by the first-fit decreasing algorithm to the optimal solution is
only 1.22; in the limit as the number of processors approaches infinity. In the case
where we are given m fixed number of processors, Oh and Baker [67] showed that on
the fixed-priority basis, the first-fit (RMFF) can always find a feasible assignment if
the total utilization of tasks is no greater than m(2/2 — 1) = 0.414m. Lopez et al [57]
later showed that RMFF can schedule any system of periodic tasks with utilization
up to (m +1)(20™*1) — 1), a upper bound that appears to be tight.
Utilization-balancing algorithm attempts to balance processor utilization, and pro-
ceeds by allocating the tasks one by one to the least utilized processor at each step
[47]. This algorithm also assigns r; copies of task T; to separate processors for fault-

tolerance. It is shown that if r; = ... = r,, = r, and there are p processors in all and
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P > r, the approximation result is 1.125 times of the optimal solution with regards

to the sum of the squares of the processor utilizations.

2.1.2 Task Assignment in Distributed Real-time Systems

For task assignment in a distributed system, all resources including processors and
communication media must be considered and then a complete end-to-end model of
transactions passing through the many resources must be constructed [83]. Tindell et
al. [101], Peng et al. [70], Abdelzaher et al. [1] and Ramamritham [74] studied the
task allocation and scheduling problem. In their models, tasks can have precedence
or communication constraints.

Tindell et al. describes an approach to solving the task allocation problem us-
ing a technique known as simulated annealing. In their work, simulated annealing
is proved to be an effective approach to task allocation. However, it may not be di-
rectly used as an on-line algorithm, considering the speed of the algorithm. Besides,
well-balanced allocations is shown in their paper to result in infeasible solutions, since
token protocol is used as the message transmission model, and a high bus utilization
gives a high token rotation time, resulting in less schedulable solutions. By using a
branch-and-bound search algorithm [70], the optimal solution in the sense of mini-
mizing maximum normalized task response time is found to the problem of allocating
communicating periodic tasks to heterogeneous processing nodes. Though the heuris-
tic guides the algorithm efficiently toward an optimal solution, the algorithm cannot
be simply applied and extended to the applications that need to i) make on-line fea-
sible guarantees, and ii) consider a non-preemptive schedule, which is NP-hard in the
strong sense even without precedence constraints [27].In [1], a period-based method is
proposed to the problem of load partitioning and assignment for large distributed real-
time applications. Scalability is achieved by utilizing a recursive divide-and-conquer

technique.|[74] discussed a static algorithm for allocating and scheduling components
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of periodic tasks across sites in distributed systems. How to allocating replicates is a
major issue counted in the algorithm.

Despite the advances described above, feasibility analysis for parallel computation
system is still not as well understood as for the single processor systems [83]. In the
design of feasible distributed real-time sensor systems, a good task allocation should
enable the system to provide on-line schedulability guarantees with regards to all

kinds of physical and temporal constraints.

2.2 Real-Time Schedulability Analysis

Numerous research results have demonstrated the complexity of the design for
real-time system [29, 75, 77, 78, 79|, especially, with respect to the analysis and
improvement of system schedulability [46, 68, 69, 103]. For tasks with temporal con-
straints, researchers have focused on generating task attributes, e.g., period, deadline
and phase. For example, Gerber et al. [29, 79] proposed the period calibration tech-
nique to derive periods and related deadlines and release times from given end-to-end
constraints. Techniques for deriving system-level constraints from performance re-
quirements are proposed by Seto et al. [81, 82]. When end-to-end constraints are
transformed into intermediate task constraints, most previous research results are
based on the assumption that task allocation has been done a priori. However,
schedulability is clearly affected by both the temporal characteristics and the allo-
cation of tasks. A more comprehensive approach that takes into account the task
temporal characteristics and allocations, in conjunction with schedulability analysis,
is required.

For a set of independent periodic tasks, Liu and Layland [55] first developed the
feasible workload condition for schedulability analysis under uniprocessor environ-
ments. Much later, Baruah et al. [13] presented necessary and sufficient conditions,

namely, U < n (n is the number of processors) based on P-fairness scheduling for
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multiprocessors. Also, the upper bounds of workload specified for the given schedules,
e.g., EDF and RMA, are derived for homogeneous or heterogeneous multiprocessor
environments (8, 11, 24, 33, 32, 93, 10]. For example, Andersson et al. [8] shows that
the utilization guarantee for any fixed-priority multiprocessor scheduling algorithm is
equal or lower than (m + 1)/2 for a m—processor system. Philips et al [72] studied
the competitive performance of on-line multiprocessor scheduling algorithms. They
showed that if a task set is feasible on m identical processors, then the same set is
schedulable by preemptive RM scheduling algorithm on m processors that are faster
by a factor of (2 —1/m). A number of studies have followed up on the schedulability
analysis for both identical and “uniform” processors [12, 24, 31, 10].

All these techniques are for preemptive tasks and task or job migrations are as-
sumed to be permitted without any penalty. If precedence and communication con-

straints exist, these results cannot be directly used.

2.3 Communication in Wireless and Sensor Networks

The goal of communication protocols in real-time systems is to provide real-time
support for message delivery over wired or wireless networks. Numerously protocols
have been proposed for providing real-time capabilities on wired networks || in the
past twenty years, though increasing work has been done in the design of real-time
wireless communication recently. In this section, we present some of the major pro-

tocols for real-time support in various wireless communication scenarios.

2.3.1 Real-Time Communication for Wireless or Sensor Networks

Sensor networks can be used for many future applications, such as environmen-
tal monitoring, chemical or radiological detection and protection systems, and public
surveillance systems etc.. Typically, each node in the sensor networks consists of

sensors, wireless interface, and limited power and computational capabilities. Time-
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dependent data being being routed and aggregated throughout the whole network
must arrive at the destinations (monitors/actuators) on time to ensure the timeliness
action to the real-world. Real-time issues that arise in various layers of the network
stack in sensor networks are studied in [95, 94]. In terms of MAC layer, the authors
pointed out that a key research challenge is to provide predictable delay and/or pri-
oritization guarantees, while minimizing overhead packets and energy consumption.
Other efforts that address real-time issues in sensor networks include the design of
the communication stack and real-time routing protocols.

RAP [59] is a real-time communication architecture for large-scale wireless sensor
networks that includes a novel packet scheduling policy called velocity monotonic
scheduling. At each hop, packets are scheduled based on the highest velocity require-
ment, and the velocity is calculated by the deadline and the distance to travel of each
packet. In this method, the requested velocity is mapped to a MAC-layer priority,
which in turn reduces the deadline miss ratio.

SPEED [38, 39] is an adaptive location-based real-time routing protocol that uses
feedback-based techniques to satisfy per-hop deadlines in face of unpredictable traf-
fic. It supports soft real-time communication service with a desired delivery speed
across the sensor network, so that the end-to-end delay is proportional to the distance
between the source and destination. A neighborhood feedback loop on each node pe-
riodically computes the probability of forwarding a packet to a neighbor based on
its measured speed in the last sampling period, and ensure that only those neigh-
bors whose speed is higher than S — speed bound are eligible for receiving packets,
and the neighbors with lower speeds get lower receiving probabilities. Since each
node maintains an average delay for packet transmission, given a distance to travel
in hops, whether a packet will meet its deadline can be determined. Simulation given
in [38, 39] shown that SPEED achieve significant improvement in terms of miss ratio

than geographic routing, DSR [43] and AVDV [71].

17



SWAN [4, 3] uses feedback information from the MAC layer to regulate the trans-
mission rate of nonreal-time TCP traffic in order to sustain real-time UDP traffic.
In particular, SWAN uses local rate control for best-effort traffic, and sender-based
admission control for real-time UDP traffic. Explicit congestion notification is used to
dynamically regulate admitted real-time traffic in the face of network dynamics such
as mobility and temporary traffic overload. Simulation, analysis, and results from
an experimental wireless testbed show that real-time applications experience low and
stable delays under various multihop, traffic, and mobility conditions.

Kanodia et al. [45] proposed a service differentiation for delay-sensitive traffic
by prioritizing 802.11. Woo and Culler [105] proposed an adaptive MAC layer rate
control to achieve fairness among nodes with different distances to the base station.
All of these algorithms work well by locally degrading a certain portion of the traffic,
though they cannot handle long-term congestion.

Collision free real-time MAC protocol is proposed in [16], where a hexagonal
cellular network architecture is used as the infrastructure for wireless transmission.
Implicit earliest deadline first (EDF) scheduling is used inside each cell for intra-cell
packet transmission; frequency division multiplexing (FDM) is used among adjacent
cells to allow parallel transmissions in different cells. Each router is equipped with
two transceivers so that they can transmit and receive in the same direction at the
same time for inter-cell messages. The schedulability condition is given for a hybrid
message set consisting of hard periodic and soft aperiodic messages.

Recently, there has been work on the relationship between the delay and capacity
or throughput in wireless networks [28, 85, 25, 64, 65]. All of these efforts focus on
computing asymptotic performance bounds. By modeling neighboring interference
as conflict graph, lower and upper bounds on the maximum throughput for a given

network and workload are computed in [41].
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2.3.2 Scheduling-Based Transmission Protocols

In scheduling-based MAC protocols, the time at which a node can transmit is
determined by a scheduling algorithm, so that multiple nodes can transmit simulta-
neously without interference on the wireless channel [95].

A large amount work has been focused on time division multiple access (TDMA)
scheduling [66, 96, 54]. Most of them focus on the maximization of system through-
put and fairness bandwidth occupation. Recent years, the distributed computation
and assignment of schedules for a spatial reuse TDMA (STDMA) protocol for ad
hoc networks is a topic of active research [36, 34, 88, 91]. The idea is to increase
capacity by letting several radio terminals use the same time slot when possible. A
time slot can be shared when the radio units are geographically separated such that
small interference is obtained. Simulation results in [35] show that the average de-
lay can be decreased considerably by taking the traffic load into consideration in a
STDMA scheme and by modeling the total interference in the network. When direc-
tional antenna patterns are used, RA-MHA (the method uses minimum hop paths
between sources and destinations as well as STDMA scheduling strategy) produces a
substantial improvement in throughput and packet delay [88].

In the channel reuse scenario, the service area is divided into a number of regions
called cells. In each cell is a base station that handles all the calls made within the
cell. The total available bandwidth is divided permanently into a number of channels.
Channels must then be allocated to cells and to calls made within cells without
violating the channel reuse constraint. The minimum distance at which there is no
interference is called the channel reuse constraint. Ramanathan [92] introduced a
unified algorithm for efficient (T/F/C)DMA channel assignment to network nodes or
to inter-nodal links in a (multihop) wireless networks. In [42], the authors established
a relationship between the mutual exclusion problem and the distributed dynamic

channel allocation problem.
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CHAPTER 3

DYNAMIC RESOURCE ALLOCATION FOR ROBOTIC
TEAMS

3.1 Introduction

Most of the current research in sensor networks puts their focus on fixed wireless
networks where the nodes are deployed in the area with fixed locations, on the other
hand, mobile sensor networks attract much less attentions. Consider a networked
robot system, in which each small robot is implemented with a wireless network
interface for communication, accurate odometry and compass for navigation, infra-
red and bump sensors for object detection [87]. Robots are moving around in order
to achieve a common objective, e.g., search a goal and maximize (or minimize) some
system characteristics (such as network connectivity). For example, a network that
autonomously moves nodes to locations of low signal strength to improve throughput
along a multi-hop transmission path [15]. One of the big difference between the fixed
sensor network and the mobile sensor network is that, in mobile sensor system, the
network topology is changing dynamically.

A vparticularly significant development in robotics within the past decade has
been the move away from disembodied, traditional AT to real-time embedded decision
making in physical environments [21]. For nearly two decades, the dominant paradigm
in mobile robotics research involved the offline design of control algorithms based
on deliberation. These planner-based algorithms relied on logic and models of the
robots and their environments, but the systems were unresponsive and slow to adapt

to dynamic environments. An alternative modern approach is to hybridize control
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[9], where a planner and a receive system communicate through a third software layer
designed explicitly for that purpose.

Different coordinated behaviors can be also achieved by assigning sets of control
tasks, or strategies, to robots in a team [98]. These control tasks must be scheduled
either locally on the robot or distributed across the team. An application may have
many control strategies to dynamically choose from, although some may not be fea-
sible, given limited resource and time availability. Thus, dynamic feasibility checking
becomes important as the coordination between robots and the tasks that need to be
performed evolves with time.

However, given limited resource and time availability, finding an optimal feasible
resource allocation solution is known to be NP-hard. In this chapter, we address the
problem of allocating control tasks to distributed processing entities (robots). We first
provide the background and challenges arising in building such distributed collabora-
tion system. With the purpose of improving system feasibility, we then present our
on-line resource allocation algorithms that not only minimize the inter-robot com-
munication overhead, but also minimize and balance the workload of each processor.
Extensive experimental results have shown the effectiveness of communication-based
least utilization algorithms, even under extreme resource-constrained environments.
Since schedulability is an overlooked part of large multi-robot system design, we also
demonstrated the application of our approach to real-world large robotic teams. By
analyzing the structure of the processes and their tasks’ timeliness constraints, we
were able to calculate the upper bound on the size of feasible teams.

The remainder of this chapter is organized as follows. We begin this chapter by
introducing the application background and the problems and challenges in Section
3.2. We next present the system and task model in Section 3.3. Then, in Section
3.4, we describe our task allocation algorithms and the scheduling methods in detail.

A performance evaluation of the scheduling strategy and the allocation algorithms is
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presented in Section 3.6. Finally, we conclude the chapter with a summary of our

contributions in Section 3.8.

3.2 Application Background

There are many challenges in the development of distributed real-time sensor
system. Typically, those systems need to provide temporal guarantees over highly
resource-constrained environments. For the example of robotic searching applications,
the computation and power resources are so limited in each robot, thus, the team
members have to collaborate with one other in the timely fashion to respond to the
changing environment.

Collaborating with one another to accomplish a common goal, for example, search-
ing a burning building for trapped people, is a promising application for a team of
robots. Human operators may direct the search by teleoperation, but wireless com-
munications in these situations can be unreliable. When a search robot ventures
outside a reliable communication range, a second robot can autonomously create a
network to preserve quality of service between the operator and the search robot. One
instantiation of such technology constructs a series, kinematic chain of mobile robots
where each of them actively preserves Line-Of-Sight (LOS) [98] and intra-network
bandwidth. In the simplest case, two pairwise coordinated controllers, push and pull
are developed for a team of two robots.

The push and pull controllers differ in the way in which the LOS region is com-
puted and communicated between the pair. The application constructs a strategy by
assigning push or pull controllers to the entire team. The task models for these two
strategies, namely, the push and pull controllers themselves, are depicted in Figure
3.1. Here, each robot must run IR obstacle detection and odometric sensor process-
ing tasks, denoted by I R; and POS;, respectively. In addition, both robots must run

a command processing task, M;, which takes desired heading and speed commands
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and turns them into motor commands. All these tasks are preassigned to specific
execution sites (robots). In the push configuration, the follower computes the LOS
region in task H; (standing for the abbreviation of the path planner), and passes it
to task Ly, which computes a new movement vector of the leader that maximizes
the search area while keeping the leader within the specified LOS region. In the pull
configuration, the leader robot does the search, and, concurrently, computes the LOS
region in task L,. The qualitative difference between the two configurations is that
pull allows a leader robot to search for an area while “pulling” a following robot
behind it; push allows a follower to specify the search area of the leader, in effect,
“pushing” the leader along.

In many cases, different combinations of push and pull controllers, named strategy,
will have the same coordinated search behavior. A discussion of how applications
generate possible strategies is beyond the scope of this study. However, if there are
n robots in the team, the potential strategies are 2" using push/pull as building
blocks. Since the control tasks in a strategy, such as Hy, H and Lo in the push/pull
model can be distributed among sites in a team, different task allocation may lead to
different feasibility. Therefore, a strategy that is valid at the application level may
not always be feasible at the system level. How to find feasible, schedulable strategies
from a set of functionally equivalent strategies, given by the application, is one goal
of this work.

One complicating aspect of this application domain is that the team is often
moving and its size is not fixed. As robots enter or leave the team, the application
must recompute the set of available strategies. Figure 3.2 shows a sequence from
a simulation with five robots using push and pull controllers, where robot 0 is the
leader searching for the goal — the square in the lower left of the map. Each time the
team changes, the application must run an on-line algorithm to determine the task

allocation and scheduling of a new feasible strategy.
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Figure 3.1. Tasks in a Leader/Follower team.

Figure 3.2. A sequence of active robots in a robot team.

If two communicating tasks have to be allocated on different robots, commu-
nication over the shared communication medium happens. To avoid the run time
contention, the communication needs to be scheduled as well. Assigning tasks with
precedence relationships in a distributed environment is in general an NP-hard prob-
lem [70], and even some of the simplest scheduling problems are NP-hard in the strong
sense [26]. Given temporal and resource constraints, we propose two heuristic alloca-
tion algorithms. The purposes of those algorithms are: 1) minimizing communication
overhead, 2) minimizing and balancing the processor workload, so that the overall

schedulability is improved and optimal coordinated behavior is achieved.
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3.3 System Model And Our Goal

In this section, the system and real-time task models are described. Also, the goal
of this study to efficiently find a feasible strategy and the accomplishment of this goal

are presented.

3.3.1 System and Task Model

A coordinated team consists of a set of sites (robots), each having an identical
processor. In this chapter, we use site and processor interchangeably. Robots in a
team share a communication medium that allows broadcast communication between
robots. A strategy, which is specified at the application level, is denoted at the system
level by an acyclic Task Graph (TG), e.g., tasks graphs for push/pull strategies in
Figure 3.1. To accomplish a common goal for the team, a set of functionally equivalent
strategies are supplied by applications.

In a TG, nodes represent tasks (7;), directed edges between tasks represent com-
munication (sender/receiver) relationships or precedence (producer/consumer) con-
straints. The amount of communication is denoted as a communication cost attached
to the edges. In our model, all tasks are periodic. Each task is characterized by a
period P;, Worst Case Ezecution Time (WCET) C;, and relative deadline D;, here,
D; = P;,. Periods can be different for different tasks. But if the sender and re-
ceiver run with arbitrary periods, task executions may get out of phase, which results
in large latencies in communication [78]. Harmonicity constraints can simplify the
reading/writing logic, reduce those latencies [77] and increase the feasible processor
utilization bound [84]. To this end, we assume the period of a receiver task as a

multiple of the related sender’s period.

3.3.2 Our Goal
Given a set of sites and a set of functionally equivalent strategies, our goal is to

find a feasible strategy. A strategy is feasible if and only if:
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e within the LC'M (Least Common Multiple) of task periods, each instance of a
task is scheduled to run at its start time, and the completion time will not be

later than its relative deadline;
e all constraints, such as precedence, are satisfied.

Based on the nature of the application, some tasks, e.g, sensor and motor systems,
are required to run on designated processors, e.g., a specific robot platform. Other
tasks, such as control or computation tasks, however, can be assigned to any site in a
team. To find a feasible strategy, especially when the temporal and physical resources

are tight, the system needs to:

1. assign unallocated tasks to appropriate processors so that the communication

cost and the workload of each processor is minimized;

2. determine a feasible schedule for all task instances, including communication

tasks.

The method for constructing communication tasks will be discussed in Section
3.5. In this chapter, we assume the Leader robot is responsible for computing the
feasibility of all available strategies and deciding which strategy the team should
implement. The decision and execution process works as follows. The initial team
settings are supplied by the application. At run time, the Leader determines feasibility
and chooses a strategy for the team to execute. The Leader broadcasts this result
to the rest of the team and waits for confirmation responses. (How these messages
are propagated over the network to the rest of the team is beyond the scope of this
chapter.) After this broadcast phase is finished, the team members start the execution
phase. We set a supervisory period, e.g., a multiple of the LC'M, as the time interval
during which the system runs under the current strategy. Once the supervisory period

ends, the Leader checks if the team requires a new strategy due to a change in team
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size or topology, recomputes a new strategy, broadcasts it to the team, and a new

execution phase begins.

3.4 Allocation Algorithms
In this section, we will present two heuristic algorithms to allocate real-time tasks
to distributed sites with the goal of minimizing communication cost and processor
workload. Before we give the details of the allocation algorithms, let us first illustrate
some of the attributes or concepts that will be used in this chapter.
T; : Task ID
C; : Worst Case Execution Time (WCET) of task T;
P, : Period of task T;
D : Deadline of the n'* instance of T}
EP : Earliest start time of the n'* instance of T;
Sz @ Site (Processor) ID
up - Utilization of Processor S,
u? : Utilization of S, that 7} is on
T; —T; : Precedence constraint between T; and T;

CCR;; : Communication Cost Ratio for T; — T;

If there are n tasks on processor S,, the processor utilization is given by

Here, CCR;; is defined as:

communication_cost (T; — Tj)
Ci+C;

CCR;; =
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3.4.1

This algorithm takes into account the amount of communication and computation
involved for each pair of communicating tasks. A decision is made as to whether these
two tasks should be assigned to the same site, depending on the utilization condition;
thereby, eliminating the communication cost. For schedulability purpose, a threshold
t is used to minimize and balance the utilization of each processor. Initially, ¢ is

the maximum utilization value among all all processors which have been assigned

Greedy Algorithm

preallocated tasks.

F:
I:

R:
U:

Greedy Allocation Algorithm

Input: a task graph G = (E,V); P;, C; for each task T;; communication costs.
preallocated tasks with related processors; the number of processors m
Output: an assignment to all unallocated tasks such that the utilization of
each processor (site) is less than 1.

Variables:

allocated task set

unallocated task set

set of (CCR; ;, Sz, Tj), s.t. T; — Ty, T; € F,Site(T;) = Sg, T; € I
set of utilizations

t: utilization threshold
Algorithm 3.1:
. Initialize U = {w;|i = 1,2, ..., m}, that is for each processor S;:

U=y, %,Tj € FASite(T;) =S ;
Let t = maz(u;),u; € U; /* initialize the utilization threshold */
If (t > 1),do

exit without solution;
For all T; € F /* initialize R */

Insert (CCR, j, Sy, T}) to R, s.t., T; — Tj, Site(T;) = S, Tj € I
While (I is not empty) do

Let T; be the task that has the largest value CCR, ; out of R;

Let u, = (up + 7); /* Ti = Ty, Site(T:) = S, */

If ((S; = thresholdUpdate(u,, S, T;)) < 0), do;

exit without solution; /* cannot find an appropriate processor */

Update set F', I s.t., F = FU{T;}, I =1\ {T}};

Delete (CCR, j, S;,T;) from R;

For all Ty s.t., T; — Ty and Ty, € 1

Insert (CCR;x, 51, T)) to R; /* update R, Site(T;) = S; */

Table 3.1. Greedy allocation algorithm
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At each step, among all unallocated tasks, the algorithm selects the one that has
the largest communication cost ratio, and then attempts to assign it to the same
processor as its sender. For instance, if CCR; ; has the largest value, where T; — T}
and T; is located on site S;, the algorithm will attempt to allocate T to S;, based
upon whether or not the utilization of S, becomes larger than the threshold ¢. For
instance, let ¢ denote the “expected” utilization of S, if Tj; is assigned to Sg. If t <t
Tj; is allocated to S and t keeps the value. Otherwise, the algorithm will find a site
S; that currently has the least utilization, and then attempts to assign 7; to S;. Two
cases need to be discussed under this situation.

Case 1: t > 1. In this case, if S; is different from S,, and the new utilization
u, (after loading the selected task 7;) is less than 1, T} is assigned to S; and the
threshold is updated to the max value of ¢t and u; Otherwise, no processor can load
the task and the algorithm fails.

Case 2: t < 1. In this case, we can simply assign the task to the processor with
least utilization, and then update the threshold to t'. Now the new threshold reflects
the new workload demands.

Depending on the threshold update result, if an appropriate processor is found,
the algorithm moves on to the next unallocated task that currently has the largest
CCR, using the new threshold. The algorithm is deemed successful if no task is left
unallocated. However, if no site can be found for the selected task because any of the
processor’s utilization will be greater than 1 after loading this task, the algorithm fails.
The pseudo-code for the Greedy allocation algorithm and the function of threshold
update is shown in Table 3.2 and Table 3.1, respectively.

Let N be the number of tasks, M be the number of processors. Generally there
are M allocation ways, and finding an optimal feasible allocation so that tasks meet
all physical and temporal constraints is known to be NP-hard. In our algorithm, the

While loop runs in O(N?) time. Consequently, the algorithm runs in O(N?) time.
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Function of Threshold Update

Processor thresholdUpdate(float ¢, Processor S, Task T;)

/* return the allocation or -1 if fails, T and processor S, is selected, t = u,, */
1. Case 1: t <t ,do /*t isless than the threshold ¢ */

2. Assign task Tj to processor Sy;

3 Update U with the new utilization u, =t ';

4 Return S,;

5. Case 2: t >t,do /*t islarger than the threshold ¢ */

6. Find S; that has the least utilization u; = min(u;),u; € U,
7 Let u; = u; + %;

8. Case 2.1: t > 1, do /* processor S, cannot load T} */
9. If (S; # S,) A (y; < 1), do

10. Allocate task T} to processor S;

11. Update U with u; = u;;

12. t = max(t, u));

13. Return S;;

14. Else

15. Return -1; /* cannot find an assignment for T; */
16. Case 2.2: t <1,do /*u, <t <1%

17. Allocate task T} to processor Sj;

18. Update U with u; = u;;

19. t=t:

20. Return S;

Table 3.2. Threshold update

3.4.2 Aggressive Algorithm

Before we introduce a new algorithm, let us first look at an example that is
depicted as a task graph in Figure 3.3, to illustrate the motivation. Here, 7} and 75
are preallocated on site S, T3 is on site Sy; Ty, T5 and T are under consideration.
The numbers attached to the arrows are communication costs. Table 3.3 shows the
related parameters of each task, the communication ratios are given in Table 3.4. For
S1 and Ss, the initial utilization values are : u; = 0.45, us = 0.5.

According to Greedy, since CC Ry 5 is the largest value among all communication
ratios, T5 is considered next. If assigning 75 to 57, the same site as T3, the utilization
will become u; = 0.45 + 0.2 = 0.65 < 1. Hence, Tj is allocated to S;. Now, let

us consider Ty and Ts. Because CC R34 has the largest value among the remaining
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Site(T1)=S; Site(T2)=S;

Site(T3)=S;

Figure 3.3. A simple task graph example

ratios, task T, will be assigned to site S5, the same site as T3, and uy becomes 0.7.
At this moment, no site can load task Ty — the utilization will be larger than 1 if

loading T§, therefore, the algorithm finally fails.

Task T1 T2 T3 T4 T5 T6
WCET (C;) | 2 | 5|1 | 4|8 |16
Period (P;) | 10 | 20 | 2 | 20 | 40 | 40

Table 3.3. Parameters for tasks in Figure 3.3

Communication Tl — T4 T2 — T4 T3 — T4 Tz — T5 T3 — T6
CCR I I I 1 :

6 9 5 13 9 17

T3 — T5
1

Table 3.4. Communication ratios for related communicating tasks in Figure 3.3

The second allocation algorithm we propose takes into account the total com-
munication cost, and selects the task that has the largest accumulated CCR to do
allocation. For T, in above example, since the accumulated communication cost from
Sy is greater than that from S,, i.e., (CCR14+ CCRy4) > CCR34, it is better to
assign Ty to S, other than S,.

Because the utilization bound is still required for schedulability purpose, once the

task is selected, the function of assignment and threshold update is the same as in
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Greedy. To this end, for the Aggressive algorithm, R is the set of (3, CCR,; ;, S, Tj),
where VT;,T; € F,T; — T}, Site(T;) = S;. Line 6 in Table 3.1 is changed to: Insert
(>_,CCR; ;,S;,Tj) to R; and line 13 is changed to: Delete (> . CCR; ;, S;,T;j) from
R; line 15 is changed to: Insert (}°,CCR;x,S;,Ty) to R, where VT;, Site(T;) =
Sy, T; — Ty. Following Aggressive, when Ty is considered, it will be assigned to 5;
and thereafter u; = 0.65+0.2 = 0.85. Now, if we assign Tg to site Ss, the utilization of
So becomes 0.9, and the algorithm succeeds. This slightly more complicated algorithm

is shown to be more effective in the sense of higher schedulability.

3.5 Making Scheduling Decisions

After a successful task assignment is found, we need to find a feasible schedule for
all instances of the tasks. Searching for a feasible schedule for real-time tasks subject
to precedence constraints in a distributed environment is an intractable problem in
the worst case, therefore, we propose to use heuristic methods. Before we discuss the

approach, first, let us define some terminology.

e Earliest start time The earliest start time of an instance of a task is derived
from the precedence constraints. Let L be the LC'M of task periods. If task
T; has no predecessors, the first instance is ready to execute at time 0, denoted
as E! = 0; and for the n'* instance of that task, E" = (n — 1) x P;, where
1 < n < L/P;,. If T; has predecessors, its first instance becomes enabled only
when all its predecessors have completed execution. In order to achieve this
condition, the tasks in the original task graph are topologically ordered. When
a task T} is processed, the lower bound of E} is set to maz(E;}, E} 4+ Cy), where
Vk, Ty € Predecessors(T;). Since we will model communication as a task if two
communicating tasks are on different sites, and we have harmonicity constraints

for all such pairs, initially, the lower bound of E? is assigned to (n—1) x P;+ E}.
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e Communication task If the pair of communicating tasks have been assigned
to the same site, the communication cost is avoided; otherwise, communication
needs to be scheduled. Consider T; — T; and m = %, we will construct m

communication tasks; and the k" such task 7%  has the following features.

1. Pt = P;. T; needs to process data sent from one instance of T; only

once during one period of T};

2. Dt =Pkt —C;. Thisis an upper bound since the communication

should finish its execution no later than the latest start time of Tj.

3. EX

b omm = EF+ C;. This is a lower bound because the communication task

should begin execution at least after the completion of the related instance

of T;

The data sent by the communication tasks for the same sender task are buffered
at the destination site until the receiver task begin to process them. In this

thesis, we assume the transmission is lossless once it is scheduled.

Given a task graph with location information, the first step is to build a set
that includes all instances of each unallocated task, including the communication
tasks. Then we use a search algorithm to find a feasible schedule. A scheduling
decision determines the time at which a task can begin execution, in other words, the
time when all its precedent tasks have completed execution before their respective
deadlines. Within the LC M, each instance to be scheduled is treated as an individual
entity.

Since it may take an exhaustive search to find a feasible schedule, which is in-
tractable in the worst case, we adopt a heuristic approach. We take into account the
most important properties of the real-time tasks and precedence constraints, namely,
deadline, earliest start time and laxity, to actively direct the search towards a plausible

path. The potential heuristic functions we use, H(T') are as follows, where parameter
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W is the weight factor used to adjust the effect of different temporal properties of the

tasks.

e Barliest deadline first: H(T) = Min_D,;

e Minimum earliest-start-time first: H(T') = Min_E;

Minimum laxity first: H(T) = Min_L = min(D; — (E; + C}));
e H(T)= Min_D+ W x Min_E;
o H(T)= Min_.D+ W x Min_L;
o H(T) = Min_E + W x Min_L.

The search attempts to determine a feasible schedule for a set of tasks in the
following way. It starts with an empty partial schedule as the root and tries to
extend the schedule with one more task by moving to one of the vertices at the next
level in the search tree. It continues this process until a feasible schedule has been
found. The heuristic function H is applied to each of the remaining unscheduled
tasks at each level of the tree. The task with the smallest value is selected to extend
the current partial schedule. Once a task is scheduled, the earliest start times of
all its successors are updated accordingly. Because Min_E encodes the precedence
constraints in the sense of their temporal relationship, it turns out that it outperforms
other simple heuristics. The simulation studies also show that (Min_D+W x Min_E)

has superior performance.

3.6 Evaluation

To study the features of the proposed algorithms, we conducted several experi-
ments to evaluate the allocation algorithms with regards to schedulability. How these
algorithms can be applied to an actual robotics application is discussed in Section

3.7. Tasks generated in a directed acyclic graph have the following characteristics:
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e The computation time C; of each task T; is uniformly distributed between C,,;,
and Chue. set to 10 and 60 time units, respectively. The communication cost
lies in the range (CR X Cpyin, CR X Cpaz), where CR is the Communication
Ratio used to assign communication costs. Experiments were conducted with

CR values between 0.1 and 0.4.

e To address harmonicity relationships, we set a period range, (minP}, mazP}),
for each input task T; (task without incoming edges), and (1, maxzP}) for each
output task T; (task without outgoing edges), where minP/ = Lower x C;
and mazP! = Upper x C;, Lower = 1.1 and Upper = 4.0. To ensure that
the periods of output tasks are no less than those of input tasks, a param-
eter, mult_factor is used to set the upper bound of the period for output
task Tj: maxPjO = mult_factor X max(mazP}), where T; are input tasks and
mult_factor is randomly chosen between 1 and 5. In order to make periods har-
monic, first, we process input tasks and make their periods harmonic; then we
tailor the techniques from [77] to process output tasks; finally, we use the GCD
technique for intermediate tasks to achieve harmonicity constraints. The idea of
computing GCD is to do a backward period assignment: a task T} gets period
P, from all its successors so that P, = GCD{PR|P, € succ(Ty)}. Because of
precedence constraints, periods of output tasks cannot be considered separately
from those of input tasks, so P2, which is the least period of output tasks, is cal-
culated upon the largest period of input tasks (PL), P? = |mazPP/PL| x PL.

Other output tasks’ periods are computed upon PP to achieve harmonicity.

e Parameter out_degree is used to set the precedence relationships in terms of data
processed by multiple producers/consumers. For each task, except for output
tasks, the out_degree is randomly chosen between 1 and 3. The total number of

tasks in a task set is: 4 X tasksetsize_factor, where 3 < tasksetsize_factor < 8,
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and all the results shown here are for task sets with four input and four output

tasks, though we have conducted experiments with different numbers.

All the simulation results shown in this section are obtained from the average value
of 10 simulation runs. For each run, we generate 100 test sets, each set satisfying
>r 1 (Ci/P;) < m, where n is the number of tasks and m is the number of processors.
For a given task set, if this condition is not held, at least one processor utilization
will be larger than 1. The scheme used here is to remove the task sets that are
definitely infeasible. Obviously, this does not eliminate all infeasible task sets because
the presence of communication costs are not considered. However, since feasibility
determination is intractable, if one heuristic scheme is able to determine a feasible
schedule while another cannot, we can conclude that the former is superior. Therefore,
the performance of the algorithms and parameter settings are compared using the

SuccessRatio (SR):
NTSUCC

SR = NT

NT*s%¢ is the total number of schedulable task sets found by the algorithm, and NT'
is the total number of task sets tested. In this chapter, NT is 100 for each simulation
run, and for each result point in the graphs, we have the average value of 10 runs.
That is: SR = (.12, SR;)/10, where SR; = NT?“*/100.

The tests involved a system with 2 to 12 processors connected by a multiple-
access network. Resources other than CPUs and the communication network are not

considered.

3.6.1 Selecting a Scheduling Heuristic
In order to eliminate the bias from scheduling heuristic functions when study
the performance of allocation algorithms, we first investigate the scheduling heuristic

functions.
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Figure 3.6. Performance of allocation algorithms (CR = 0.1).

For both Greedy and Aggressive algorithms, we find Min_FE is the best simple
scheduling heuristic, while Min_D + W x Min_E has substantially better performance
than other heuristics including Mn_E. This is because earliest start time of each
instance of a task encodes the basic precedence information, and besides precedence
constraints, another important factor, deadline, is also taken into account in Min_D+
W x Min_E. Figure 3.4 shows the effect of different scheduling heuristic functions
when using Greedy algorithm. We have similar results for aggressive algorithm.

Since Min_D + W x Min_E is a weighted combination of simple heuristics, we
investigate its sensitivity to the weight (W) values for various number of processors.
When W = 0, the heuristic becomes the simple heuristic Min_D, and does not
perform well. When the weight changes from 0 to 4 (or to 12 if the number of
processors is 2), we see a significant performance improvement. The algorithm is
robust with respect to heuristics, because the performance is only slightly affected
when the weight changes from 4 to 30 (or 12 to 30 if the number of processors is 2).
To this end, we will choose W = 4 for following experiments. The results are shown

in Figure 3.5
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Figure 3.7. Performance of allocation algorithms (CR = 0.4).

3.6.2 Performance of Allocation Algorithms

In this section, we evaluate the performance of three allocation algorithms: Greedy,
Aggressive and Random. The Random scheme will randomly assign an unallocated
task to a processor as long as the utilization is less than 1. Figure 3.6 and Figure 3.7
illustrate the results when communication ratio is set to 0.1 and 0.4, respectively. As
shown in the graphs, for each instance with different task set size, Aggressive outper-
forms Greedy, and Greedy outperforms random. The gains come from two factors: 1)
the elimination of communication cost, 2) minimizing utilization for each processor.
Since Greedy only considers the individual communication cost at each step, while
Aggressive clusters and eliminates communication costs as many as possible, it is not
surprising that Aggressive achieves better performance than Greedy.

The other observation is when the communication cost is heavier, the improvement
in performance of Greedy or Aggressive is larger. Table 3.5 shows the difference in
improvement of Greedy and Aggressive over Random. For both Greedy and Aggressive,
in most cases, the improvements with C'R = 0.4 are much greater than those with
CR = 0.1. When CR = 0.4, the communication introduces more workload, and
therefore, the system has more resource contention in terms of utilization boundary
and deadline guarantee. So communication costs dictate the schedulability much more

than the case when C'R = 0.1. In contrast to random assignment, our approaches
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exploit this important property to direct the allocation assignment, hence, they work

better in the resource-tight environment.

#Processor | 4 6 8 10 12
CR=0.1 (192 156 97 37 24
CR=04 | 179 146 15.0 13.7 15

(a) Greedy over Random

#Processor | 4 6 8 10 12
CR=0.1 |248 20.2 132 6.5 3.8
CR=04 |228 183 181 16.1 16.3

(b) Aggressive over Random

Table 3.5. Improvement of Greedy and Aggressive over Random (Percentage).

Finally, we find as the number of processors increases, the improvement for both
Greedy and Aggressive tends to decrease for a given task set. This result further

demonstrates the tighter the resource, the better our algorithms perform.

3.6.3 Effect of Communication

Using those allocation approaches minimizes the total communication cost by
allocating sender and receiver tasks to the same site. However, in cases where such
tasks have to be placed on different sites, the communication cost becomes a very
important factor in overall performance. To investigate the effect of communication,
we compare the results with CR = 0.1 and CR = 0.4 by varying the number of
processors and the number of tasks. The results are illustrated in Figure 3.8.

Our results show that when the number of processors is very limited, e.g., 2 or 3,
the performance is almost the same. This is because in such a situation, it is hard
to find a feasible schedule for both cases. But as the number of processors increases,

the performance for CR = 0.1 is better than that for CR = 0.4. This is because each
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Figure 3.8. Effect of Communication

communication introduces extra workload in addition to the precedence constraints,
if the communicating tasks have to be assigned to different processors. When the
communication ratio (CR) is set to be larger, the communication costs are bigger,
which have more impact on the earliest start time of related consumers and the overall

system.

3.7 Application of Our Algorithms to Mobile Robotics

In this section, we return to the robotic problem discussed in Section 3.2, where
two strategies, push and pull, are given for a team of two robots. In Table 3.6, the
WCET of tasks are taken from an experimental implementation on a StrongARM
206MHz CPU; in Table 3.7, communication costs are based on the bytes transmitted
using 802.11b wireless protocol with 11 Mbit/s transmission rate. Although 802.11b
does not allow for real-time transmission guarantees, by prescheduling communica-
tions, medium contention is avoided. The periods are assigned with 220 ms for all
sensor tasks and motor drivers by the application. Therefore, the periods of controller

tasks are also designed to be 220 ms by the harmonic constraint. Though these figures
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Task | TR1(2) | Pos1(2) | Hy | Hy | Ly | M1(2)
Push 20 120 35125 5 20
Pull 20 120 25 | 25 | 18 20

Table 3.6. WCETs(ms) of tasks in Figure 3.1

(a) {Push, Push} (b){Pull, Pull} (a) {Push, Pull}  (b) {Pull, Push}

Figure 3.9. Four possible strategies for a team of three robots using the push and
pull controllers

are given based on tasks in Figure 3.1, they are compatible to tasks that occur with
more robots. Let us consider the scenario when a third robot wants to join the team.
Since the push and pull controllers are pairwise, there are four strategies, composed
of push and pull controllers, that the application can use for a team of three robots:
{Pull, Pull}, {Pull, Push}, { Push, Pull}, and {Push, Push}. The task graphs for
these four strategies are shown in Figure 3.9.

First, let us use the Aggressive algorithm to analyze the task assignment in each
strategy. In this example, since the accumulated communication cost is considered,
the allocation is the same for all strategies: H; is assigned to Si, Hs to Sy, H3 to Ss,

L2 to S2 and L3 to S3.

IR]_(Q) — Hl(g) POSl(z) — H]_(z), L2 H1(2) — L2 H]_ — Ml L2 — M2(1)
Push 0.02327 0.01236, 0 2.979 2.979 2.979(0)
Pull | 0.02327 0.01236 0(2.979) | 2.979 | 2.979(2.979)

Table 3.7. Communication costs for Figure 3.1
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Strategy | {Ph, Ph} | {Pl, Pl} | {Ph, PI} | {PI, Ph}
Site 1 195 | 205.979 | 222.979 | 195
Site 2 | 202.979 | 208.958 | 220 | 205.979
Site 3 | 210.958 | 203 | 230.958 | 203

Table 3.8. The completion time for all strategies

Next, the algorithm will see which strategies are schedulable under the heuristic
Min_D +W x Min_E. To simplify the analysis, here W is set to 1. The completion
times for tasks on each site are shown in Table 3.8. The algorithm finds that, except
for { Push, Pull}, denoted as {ph, pl}, all other strategies are feasible, but with differ-
ent completion times (including communication delay). Since multiple strategies are
feasible, the application can use some criteria to rank the strategies. In this case, if
the total laxity is used as the criterion, the application will choose the {Pull, Push}
strategy, because it has the maximum value.

The application can then use the feasible results when computing new sets of
strategies. For example, if at some time a fourth robot joins the team, the application
immediately knows that any strategy that contains { Push, Pull} will not be feasible,
since that strategy was already determined to be infeasible. Therefore, the application
can use the feasibility analysis to prune infeasible strategies as the team’s size scales.
The idea of using the proposed algorithm to do the scalability analysis is shown in

[99].

3.8 Conclusions

In this chapter, we consider the problem of task allocation on distributed robotic
systems. The question on how to improve system schedulability while tasks maintain
their physical constraints and meet their deadlines poses new challenges. In this study,
issues involved in the design and development of real-time distributed robotic systems

are addressed. The ideas of minimizing communication, balancing workload and using
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utilization bound are developed well together to improve the system feasibility. The

major contributions are:

e Taking pairwise communication costs into account for task assignment improves
system performance, but not as much as when the accumulated communication

costs from the same processor are considered.

e Using dynamically increased utilization bound not only minimizes total commu-
nication costs and utilization, but also balances the workload of each processors.
This property can be further explored to other multiprocessor/distributed real-
time applications, such as, finding minimum number of processors while meeting

temporal constraints.

e When deadline and earliest start time are weighted combined in the scheduling
policy, the heuristic performs significantly better than others, since it encodes

both the precedence and the timeliness constraints.
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CHAPTER 4

OPTIMIZATION OF SENDING DATA OVER WIRELESS
TRANSMISSION

4.1 Introduction

In this thesis, we consider a class of wireless sensor applications that impose
timeliness constraints on the transmission and processing of sensory data. We refer
to such applications as real-time sensor applications.

The problem of scheduling processing tasks to meet physical and timeliness con-
straints in a real-time sensor application has been discussed in last chapter. In this
chapter, we focus on the problem of transmitting sensor data to optimize the system
performance. Due to their low cost and wide availability, we assume that the sen-
sor applications employ commodity 802.11-based wireless networks. However, such
wireless networks employ a best-effort technique based on CSMA/CA, where packet
transmission intended for one neighbor may cause interference with other neighbors.
Interference not only significantly reduces the channel utilization, but may also cause
unbounded delay, and hence, they cannot be directly used in time-sensitive sensor
applications, due to possible collisions, back-offs and false blocking problems.

In the CSMA /CA-base networks, a node must explicitly request permission for
transmission via a “request-to-send” (RTS) packet and must receive a “clear-to-send”
(CTS) acknowledgment before sending data. Once receive these messages, all nodes
in the vicinity must avoid transmission for the required transmission duration and
are thus blocked. Such a protocol can lead to false blocking and blocking propagation.

As shown in Figure 4.1, node S; transmits data to node R; and node R, is blocked
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Figure 4.1. False blocking problem (blocking propagates from Ry to R3 to Ry)

since it within S;’s transmission range. While R, is blocked, node S; sends a RTS
packet to Ry and receives no response. However, node R3 which is within S5’s range
also receives the RTS and is blocked. If S; wishes to send data to Rz and issues a
RTS, it will not receive the C'TS from Rj3 and has to back off exponentially although,
the transmissions S; — R; and S3 — Rj3 is, in fact, able to perform in parallel.

In this chapter, we develop techniques for optimizing the transmission of sen-
sor data over wireless networks. We argue that the problem is NP-complete and
present heuristics based on edge coloring to address this problem. These techniques
should consider the wireless constraints, such as range and interference constraints,
while scheduling message transmissions. In order to minimize the completion time
of sending a set of sensor messages, we exploit the special characteristics of wireless
transmission and design techniques to parallelizing the transmissions to the much
extent, and in the meanwhile, the collisions and interference are explicitly avoided.

We also present an A*-based optimal algorithm to enable comparisons with our
heuristics. We conduct a detailed simulation study to evaluate our heuristics and

find that the minimum weight color heuristic is robust to increases in communication
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density and yields results that are close to the optimal solution. In conjunction
with clustering and grouping techniques, we believe such communication scheduling
techniques can adapt well to large scale sensor networks.

The rest of this chapter is structured as follows. Section 4.2 presents our sys-
tem model and the problem formulation. Sections 4.3 and 4.4 present our edge
coloring-based heuristics and the optimal solution, respectively. We discuss the im-
plementation issues of schedule construction and decision propagation in Section 4.5.

Section 4.6 presents simulation results. And, finally, Section 4.7 summarizes our work.

4.2 System Model and Problem Formulation
In this section, we present the system model, and then formulate the problem of

scheduling communication in real-time sensor applications.

4.2.1 System Model

Consider a wireless sensor application with N nodes. We denote designated sender
nodes by S and receiver nodes by R. Each node has a wireless network interface with
a certain transmission range; depending on the exact wireless interface employed (e.g.,
802.11b versus 802.11g), different nodes may have different transmission ranges. Each
node can be a sender or a receiver or both, and no base-stations are assumed in this
environment. A node should be within the transmission range of a sender to be an
eligible receiver, and all communication is assumed to be unicast. The terms source
and sender as well as sink and receiver are used interchangeably in this chapter.

The communication medium is assumed to be shared by all nodes in the system.
If a receiver is within the range of multiple senders, then interference may happen
if more than one sender attempts to transmit simultaneously. However, there will
be no interference if two receivers are mutually outside the other sender’s range. In

Figure 4.2, R; is in the transmission range of sender S; and Ss; if both senders
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attempt to simultaneously communicate with their receivers, interference may occur.
On the other hand, S3 can transmit messages in parallel with either of the other
transmissions. In this work, we assume that the location of each node is known at
all times, and thus the nature of the overlap can be determined for the purpose of
scheduling the network transmissions. This is a reasonable assumption, since in the
robotics example, robots carry GPS receivers and can additionally use localization
algorithms [63] to precisely determine their locations.

Observe in Figure 4.2 that source S; sends data to two different receivers Ry and
R3. Such a scenario might result from the need to transmit data from different sensors
on robot S; to different robots. The unicast nature of the communication necessitates
separate messages to each receiver.

To precisely state these assumptions, let Range(S;, R;) denote that R, is within
the transmission range of S;, and S; — R, denote a message transmission from S; to

R,. We have following system constraints.

e Network Interface Constraint: At any instant, a node can be either a sender or

a receiver, but not both.

e Range Constraint: A node can receive a message only if it is within the sender’s

range, i.e., S; =& R, = Range(S;, Ry).

o Interference Constraint: Two simultaneous transmissions will not interfere if
and only if both receivers are mutually outside the other sender’s range. That
is, V(i # j), (Si = Ryz) A (S; = Ry) A —Inter ference(S; = Ry, S; = R,) <
—Range(S;, Ry) N ~Range(S;, Ry).

o Unicast Constraint: Each message can have only one recipient.

Given a set of senders, receivers, their locations and transmission ranges, the

communication scheduler must determine a transmission schedule so that the above
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Figure 4.2. A communication example

constraints are satisfied and the time to complete all transmissions is minimized. We
refer to this problem as the Optimal Parallel Communication Scheduling (OParCS)

problem.

4.2.2 Graph-based Representation of the Problem

Consider a set of messages that are awaiting transmission at various nodes. The
scheduling problem can be formulated using a weighted, directed graph G = (V, E), in
which each vertex denotes a node in the sensor application, and a directed edge from
vertex v; to v; indicates that a message needs to be sent from v; to v;. The weight w of
the edge denotes the transmission cost (time) and is a function of the message length
(and the transmission rate). We refer to this graph as the communication graph.
Each vertex is associated with a transmission range, therefore, the interference set,
I C E x E, includes all pairwise edges that will incur interference if messages are
transmitted through those edges at the same time. If the range of each transmission
is known in advance, we can obtain the interference set by checking the interference
constraints in polynomial time. Given such a graph and associated interference set,

the OParCS problem can be formulated as follows.
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Input: Graph G = (V, E), a weight function w that assigns a positive weight to
each edge, and the interference constraint set I C F x E.

Problem: Find a partition of E into disjoint sets F1, Es, ..., E, such that,
1. Ve;,ej € E;, (ei,e5) ¢ 1,

2. Ve;,e; € Ej, e, e; do not share a common endpoint in G,

3. X i<icn MaXeer,(w(e)) is minimized.

The first condition avoids interference during message transmissions, while the
second condition addresses the network interface and unicast constraints; the range
constraint is implied in the input.

Proposition 1: The OParCS problem is NP-complete. The problem is NP-
complete even if all weights are equal.
Proof:
Step 1: OParCS € NP. since given the disjoint sets, validating them and compute
the objective function ), mazeer; (w(e)) can be done in polynomial time.
Step 2: OParCS is NP-hard. We prove that Minimum-Edge-Coloring (MEC) is
polynomially reducible to OParCS problem, i.e., MEC <, OParCS. The Minimum-
Edge-Coloring is an NP-complete problem [40].!

Given an instance of Minimum-Edge-Coloring with graph G = (V, E), we can

formulate an instance of the OParCS problem as follows:
e let the graph G = (V, E) be G = (V, E) in OParCS;

e Ve € E, let w(e) = 1;

Tnput: Graph G = (V, E).

Question: A coloring of E, i.e., a partition of E into disjoint sets Ei, Es, ..., E, such that, for
1 < i < mn, no two edges in E; share a common endpoint in G, and the cardinality of the coloring,
i.e., the number of disjoint sets F; is minimized.
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o let I =0;

Suppose Ei, Es, ..., E; is an optimal solution of OParCS. Now we establish that
it, Fy, Es, ..., Ey, is also a solution of the corresponding MEC problem. According
to the constraints of the OParCS problem, E, Es, ..., E is a valid partition of E of
MEC. Now we will show that Eq, Es, ..., Ey is an optimal solution of the MEC. We
prove this by contradiction.

!

Assume that there exists another valid partition of E for MEC, E|, E,, ... B
and k' < k. This partition, £}, F,, ..., E;c, also satisfies the constraints of OParCS,

and it has a lower value:

Z mazecm (w(e)) = Z 1=k <k= Z mazecr, (w(e))
1<i<k' 1<i<k! 1<i<k
. Therefore, E1, E, ..., E} is not an optimal partition, which contradicts the assump-
tion.

This completes the proof.

4.3 Heuristic Communication Scheduling

Consider a simplified version of the problem where all messages are of equal length
(edge weights are normalized to 1) and there is no interference between any of the
messages. In this case, the only constraint is that all adjacent edges (sharing a
common endpoint) cannot be scheduled simultaneously. Since an edge coloring of a
graph is an assignment of colors to the edges such that adjacent edges receive distinct
colors, we can color the edges so that edges with the same color can be scheduled
simultaneously. In this simplified version, the number of colors in the edge coloring
is equivalent to the time slots taken to schedule the transmission.

In this section, we propose polynomial time heuristics for the OParCS problem.

Our heuristics use edge coloring as a building block — note that edge coloring can
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not be used directly since it does not explicitly consider weights on edges, nor does
it consider the interference constraint. Both of these factors should be taken into
account when generating a transmission schedule for our problem.

In the following, we first present a color-based heuristic and then discuss three
color selection strategies for coloring edges. The following are some of the attributes

of a task graph that are useful to explain the algorithms.

€; : edge ID

V; : vertex ID

C; : color ID

ei; : edgeofv; — v

c(e;) : the color of ¢;

e; ~ e; : e; is adjacent to e;

W (e;) : the weight, communication delay, of edge e;
W (c;) : the weight of the color ¢;

P(e;) : the palette associated with e;

4.3.1 Edge Coloring Heuristic

The objective of the heuristic is to assign a color to each edge such that (i) no two
edges sharing a common endpoint have the same color, (ii) no two edges with the same
color interfere with one another, and (iii) the total time to complete transmission is
minimized.

Given a communication graph and an interference set, we design a palette for each
edge in the graph. Initially all palettes are identical and are assumed to contain a
sufficiently large number of colors. How to make the palette large enough is not a

focus of this study and is not addressed here. Also, each color in the palette is assigned
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a weight. Initially, all colors have a weight of zero and as the heuristic progresses, the
weight for a color will be set to the weight of the “heaviest” edge with that color.
The heuristic begins by picking the vertex with the maximum degree. If the
degree of this vertex is d, then we need d distinct colors to color those incident edges.
Once an edge has been assigned a color, that color is deleted from the palettes of all
uncolored adjacent edges — two edges are said to be adjacent if they incident on a
common vertex. From this point on, the heuristic repeats the following steps until all

edges are colored.

1. Choose an edge e; with the smallest palette (i.e., a palette with the least number
of colors). This is because the smaller the palette is, the more constraint is on

the possible colors. Ties are broken randomly.

2. Pick a color from the palette such that no other edges with that color interfere
with this edge (we present three heuristics for this color selection step in the

next section).

3. Delete the chosen color from the palettes of all uncolored edges that are adjacent

to this edge, if the color is in those palettes.
4. Update the weight of the chosen color: W (c¢;) +— max(W(c;), W(e;)).

Once all edges have been colored, the transmission schedule involves scheduling all
edges with the same color in parallel. For instance, all red edges are scheduled in
parallel, then all the blue edges and so on. The total time to transmit messages of
a given color depends on the edge with the maximum weight, which is also given
by the weight of that color W(c;). Therefore, the time to transmit all messages is
> & W{(ck), where k is the number of distinct colors that are needed to color the graph.

The heuristic algorithm is depicted step by step in Algorithm 4.1.
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Algorithm 4.1: Coloring-based Communication Scheduling
Input: A communication graph with message lengths and all constraints.
Output: The time to complete all transmissions without any conflict.

1. Find the vertex that has the maximum degree, and do:

1.1  Color each incident edge e, with a distinct color.
1.2 For each neighbor e,, of the edge e,, do:
P(en) < P(en) \ {cy}, if cez) = cy N en ~ ey
1.3  Update the weights of the assigned colors, s.t.,
W(cy) « W(ey), if c(ez) = .

2. Select the edge e; that has the smallest palette. Break ties randomly.

3. Select the first appropriate color ¢; based on the specific heuristic, and
then test if there is an interference with existing same colored edges. If not,
ie., Ves, (c(eg) = ¢j) A ~Interference(e;, e,), assign c; to e;, s.t., c(e;) = ¢;;
otherwise, choose the next appropriate color until no interference can happen.

4. If W(e;) > W(c;), then W(c;) + W (e;).

5. Ve ~ e;, P(ex) < P(ex) \ {c;}, if ¢; € P(ex).

6. If there is at least one un-colored edge, goto step 2; otherwise calculate

and output the final completion time: )", W (c;).

4.3.2 Color Selection Policies

We propose three heuristics to choose a color from the palette for the selected
edge. The first one is to consider the weight which is the function of communication
length and attempts to cluster those messages that have close weights together. The
second one is a random method and the third is the one that is commonly used in

coloring problems.

e Minimal Weight Color (MWC) Heuristic: Observe that the total time to

transmit messages of a certain color is governed by the longest message in the
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set. If the palette of an edge contains a color that already indicates a longer
message transmission time, i.e., the weight of the color is larger than that of
the selected edge, then choosing that color will not result in any increase in the
total time to transmit all messages (including the new one) of that color. This

is the intuition behind this heuristic.

Suppose that the weight of the selected edge is W(e;). Consider only those
colors from its palette that have a weight greater than W (e;). These are essen-
tially colors that are associated with a message that is longer than the current
message. If the palette has such colors, the MWC heuristic picks a color with
the least weight. Note that the interference constraint must still be satisfied

when picking a color.

If no color in the palette has a weight greater than the edge weight, then the
heuristic simply picks the color with the maximum weight from the ones in the

palette.

In summary, the heuristic attempts to assign messages with “similar” lengths
with the same color and avoids increasing the weight of a color whenever pos-
sible. Doing so enables the heuristic to reduce the completion time for all

messages.

Random Color Selection (RCS) Heuristic: The random color selection
heuristic picks a random color from the palette so long as the interference con-

straint is satisfied.

Least Used Color (LUC) Heuristic: The least used color is a common
heuristic for general coloring problems and we choose this heuristic to determine
its effectiveness for our communication scheduling problem. This heuristic picks
the least used color—the color with the least number of edges—such that the

interference constraint is satisfied.
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81

Figure 4.3. An example

4.3.3 An Example

Let us use the example depicted in Figure 4.3 to further explain the algorithm.
The attached are the communication costs, denoted as transmission duration.

Suppose initially, each palette has 4 colors with weight of 0. Since vertex v, has
the maximum degree, the heuristic begins by assigning distinct colors (¢; as shown
in the figure) to all edges incident on vy. After deleting the related color(s) from the
palette, edge e3 4 has the smallest palette (it has 2 colors, while eg; has 3 colors), and
is considered next.

If using MWC, because W(c1) = 82 > Wi(es4) = 81, color ¢; is selected for es 4;
if using LUC, since ¢4 is the currently least used color, ¢4 is chosen and W(cy) < 81.
Now, let us consider edge e ;. Any color except c; is a possible color. If we use MWC,
since ¢, is the heaviest edge (the weights of ¢, c3 and ¢4 are all less than 80), ¢, is
chosen and W (e¢y) +— 80. For LUC, since all colors have been evenly used, any possible
color can be chosen. In the above analysis, we assume that there is no interference in
any step. Hence, the completion time for MWC is W (c;)+ W (c2) +W (c3) = 82+80+
15 = 177, which is also the optimal solution; for LUC, before assigning edge eg 1, the
completion time is: W (cy) + W (cz) + W(es) + W(cq) = 82+ 38+ 15+ 81 = 216. Note
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here, we didn’t show the process for RCS because it has multiple possible (random)

choices at each step.

4.4 Optimal Communication Scheduling

In this section, we present an optimal solution to the OParCS problem—a solution
that minimizes the completion time for all transmissions, subject to the constraints.
Since the problem is NP-complete, the optimal solution has exponential complexity.
Nevertheless, it is useful to consider such a solution to enable comparisons with our
proposed heuristics.

Our technique uses directed search based on the A* algorithm. A* search has
been shown to be optimally efficient in that no other search algorithm will expand
fewer nodes in the search tree to locate the optimal solution [20]. The search process
builds a search tree in which the root node represents the original communication
graph. Expanding a node involves two steps. First, it finds all matchings for the
current expanding node (a matching is a subset of edges such that no two edges
share a vertex), subject to the interference constraints. Then, for each matching, the
corresponding edges are deleted from the node (graph) and the resulting graph is
added as a leaf node to the tree.

To find the next node to be expanded, an evaluation function f(n) = g(n) + h(n)
is needed in A* so that the node with the lowest f value is selected. Here, g(n) is
the cost of the path from the root to node n, and h(n) is the estimated cost of the
cheapest path from n to the goal. To guarantee that the search algorithm is complete
and optimal, A* requires that h function should never overestimate the cost to reach
the goal.

In our algorithm, the g function is defined as the sum of the costs of all matchings
along the path from the root to the node. Let W(e,) denote the cost of edge e, in

the original communication graph, ng denote a node representing a graph G in the
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search tree, and ng, denote a child of this node representing graph G’, then g(ng,) is

defined as:

g(ng) = g(ng) + matching_cost(M;)

= g(ng) + max (W(e;)), e, € M; (4.1)

where, G' = G — M;, M; is a possible matching of G. Initially, g(ng) = 0 for the root.
For a search node ng and related graph G, if W (v;) denotes the weight of vertex

v;, then h(ng) is defined as:

h(ng) = maz (W (v;))

= max (Z W(e;)) (4.2)

where, e;- are all edges that are incident on vertex v;. Observe that this A function
never overestimates the cost to reach the goal. This is because the time to transmit
the remaining messages is at least equal to the cost of the edges that can not be

scheduled at the same time (i.e., are adjacent to each other).

4.5 Implementation of Communication Scheduler

In this work, we have presented a centralized algorithm and assume a centralized
scheduler that has the perfect knowledge for the packet information at each node in
the entire network flow graph. This is a reasonable assumption for applications such
as coordinated robot team since a centralized path planner is used to determine the
movement for each robot as well as for the whole group. And hence, the scheduler
can run in conjunction with the planner to determine when each message should be
transmitted. There are two design issues need to be discussed: i) how to build the
schedule when a new flow message joins the network, and ii) how to propagate the

schedule decision to the entire network once it is made at the leader node (robot).
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The scheduler can be invoked periodically or on demand (like the scheduler stud-
ied in Spring System [73]). Upon each invocation, the scheduler must schedule all
messages that have become ready for transmission since the previous invocation (thus,
a newly arriving message must wait until the next scheduling instance before it can
be scheduled for transmission). When invoked, the scheduler considers the current
schedule (i.e., the messages that were scheduled in a prior invocation and are await-
ing transmission) and all newly arrived messages at each node. Two approaches are
possible for generating a new schedule. In the first approach, the unsent messages
and the new messages are considered together to compute a new schedule. In this
method, a new flow graph which includes all existent messages will be constructed,
and a new schedule is calculated. The second approach is incremental—it determines
a new schedule for the new messages and appends that schedule to the current sched-
ule; the approach essentially assigns a transmission time to each new message while
keeping the current schedule unchanged. In either case, the transmission times are
then conveyed to the corresponding sender nodes.

Once a new schedule is constructed, the information needs to be broadcast to all
nodes in the network with minimum time. Generally, in a network that has point-to-
point links, the optimal solution of propagating information from one node to all the
rest nodes in minimum time can be achieved by a shared minimum-height spanning
tree, which can be obtained by breadth-first search algorithm or a generic Dijkstra’s
algorithm [61]. Note here, due to the potential collisions, the minimum-height tree
may not be the optimal solution, and other method, e.g., constructing conflict-free
shared tree may be helpful. Since this is not the focus of the study, we just assume

here, a minimum-height tree is used in our scenario to convey the schedule decision.
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4.6 Evaluation Results

We conduct a simulation study to evaluate the performance of our heuristics. Our
study also compares the heuristics to the optimal solution computed by the A* search
algorithm.

We assume that the sensor network is represented by a 3-tuple (N, P, R), where N
is the number of nodes, P = {(X;,Y:),1 < i < N} is the set of positions for the nodes
in the area of [100, 100] units. Each P, is generated randomly in the area for its X and
Y coordinates. R is the set of transmission ranges. We convert the communication
network into a directed graph G(V, E), so that |V| = N, and (v — v) € E if and only
if the Euclidean distance between u, v is less than or equal to R,. The communication
cost for each transmission W; is randomly chosen over [10, 100].

All results shown in this section are obtained as the mean of at least 1000 runs
or with 95% confidence interval in [—0.005,4+0.005]. In each run, one communica-
tion graph is generated with some specific settings. Since the algorithms attempt to
minimize the total completion time for all transmissions in a graph, the performance
is measured by comparing the completion times across different algorithms. For in-
stance, if we have M graphs, and the comparison result for RC'S to MW C per graph
is:

Time(RCS

If we use Completion Time Ratio (CTR) to denote the mean, then for each result in

the graph (e.g., RCS to MWC), we have:
CTR(RCS/MWC) =" Comp(RCS/MWC)/M
M

4.6.1 Comparison of Heuristics
In this section, we compare the three color selection heuristics by varying three

system parameters, the number of nodes, the number of edges and the transmission
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range. Each time when the sensor network is constructed, the interference relation-
ships are calculated based on their communication range, and the results are as the

input for the further evaluation.

4.6.1.1 Effect of the Number of Nodes

To study the impact of the number of nodes (IV), we systematically vary N from
20 to 50. For each N, we generate sufficient different communication graphs and
determine the total time to schedule all messages (for each graph) using the three
heuristics. Figure 4.4 shows the CTR of the three heuristics (we use the completion
time of the MWC as the normalizing factor).

As can be seen, the minimum weight color (MWC) heuristic outperforms the other
two heuristics. This is because it always put transmissions with approximate the same
transmission durations in the same set and attempts to transmit them in parallel.

Random color selection (RCS) yields completion times that are within 8% of
MWC, but the performance is not sensitive to the value of N. This is easy to un-
derstand. Since the first and the third steps of the Edge Coloring Heuristic have put

effort to eliminate the constraints on the sharing of end points, if the networks are
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generated fully random, then we should expect to obtain a stable results for random
algorithm.

The least used color (LUC) heuristic has the worst performance, though it is the
most common heuristic used for normal coloring problems. This is because LUC
always tries to find the color that is currently least used, which actually decreases the
ability to schedule messages in parallel. The sudden increase in the LUC curve reflects
the impact of the initial palette size. For a fixed palette size, when N increases, the
CTR decreases. This indicates if the initial palette sizes are closer to the number of
colors needed, the better are the LUC performance results. We choose more colors at
N = 35 because the palette has not enough colors to cover all edges. (In the figure,

C = 50 means that the initial number of colors in the palette is 50).

4.6.1.2 Effect of the Number of Edges

The number of edges reflects the communication density. Since the more edges are
in the graph, the more communication constraints exist to achieve better performance.
Here, we vary the number of edges in the communication graph systematically and

study the performance of the three heuristics.
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Figure 4.5 plots the completion time ratio for the three heuristics as the number
of edges varies. Again, the MWC outperforms the other two heuristics. And the
reason is about the same as explained above. Random color selection is about 10-
18% worse and is not sensitive to different communication densities. For LUC, when
the communication density is small, if the number of colors to be chosen from is much
larger than necessary (and depends on the initial palette), the performance diverges
from the optimal solutions. The performance of LUC improves as the number of

edges increases, since the initial palette size tends to be suitable for the needs.

4.6.1.3 Effect of the Range

In this experiment, transmission range of a node is varied from 20 to 50. For a
given range, we determine the completion times for the three heuristics for sensor
networks containing 20, 40, 60 and 70 nodes. To avoid the impact of palette size, all
initial palettes are set to have 100 colors.

Figure 4.6 compares the completion times of RCS and MWC, while Figure 4.7
compares the completion times of LUC and MWC. We find that MWC outperforms

the other two heuristics across all ranges and network sizes. Like in the previous
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experiment, the performance of random color selection is within 10-20% of MWC,
while that of LUC is significantly worse. For LUC, for a given N, initially the curve
goes up to some peak, and then drops as the range increases. This is because, initially,
the number of nodes has more impact on the communication density, and after some
point, the Range dominates.

Overall, our results show that MWC heuristic yields the best performance among
the three heuristics. This is not surprising since the heuristic takes the completion
time of each color into account when assigning colors to edges (which in turn, helps
minimize the total completion time). Next, we compare the performance of this

heuristic to the optimal solution.

4.6.2 MWC versus the Optimal Solution

MWC is a time-based heuristic that has better performance than the other two
heuristics in term of minimizing the communication completion time. We construct
several examples to understand how far MWC is from the optimal schedule. Since
the A*-based optimal solution has exponential complexity as the problem scales, it is

computationally feasible to compare MWC with the optimal solution only for small
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network sizes. Consequently, we restrict the input to no more than 20 nodes (and
20 edges) in our experiments (this still involves expanding O(2%°) search nodes in
the search tree for one instance, and can take several hours to find a solution on a
Pentium-4 workstation).

We conduct two experiments. In the first experiment, each node is assumed
to have a different transmission range; we vary the number of nodes and compute
the completion times of the schedules produced by MWC and A*. In the second
experiment, each node in the network has an identical transmission range; we vary
the number of nodes and compute the completion times. Because of the space limit,
we only show the results of the first experiment (the results of the second experiment
have similar trend and are detailed in [50]). Figure 4.8 plots the CTR (normalized
by the optimal solution); and Figure 4.9 plots the fraction of the cases where MWC
yields a solution identical to the optimal solution.

We observe the following behavior:

1. The time to complete transmissions using MWC is within 8.5% of the optimal

solution for sensor networks of up to 20 nodes (and 20 edges).
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2. While the solution yielded by MWC is different from the optimal solution in
a large fraction of the cases, this sub-optimal schedule is only about at most

6-8.5% worse for a variety of transmission ranges.

3. When the transmission range becomes larger, e.g., in R = [10, 80|, or the number
of nodes increases, the performance actually becomes stable, i.e., still within
8.5% of the optimal solution, which indicates that MWC is robust even when

the complexity increases.

4.6.3 Summary of Experimental Results

In summary, our experiments obtain the following results:

e MWC is the best of the three heuristics across a wide range of system param-
eters. The better performance is a result of taking the communication dura-
tion of each transmission into account when generating a message transmission
schedule. And the algorithm attempts to schedule the similar transmissions

simultaneously as many as possible.
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e RCS is a close second in terms of the completion times of its schedules. Further,
RCS performs stable as the number of nodes increases or the range parameter
changes. This is because the color selection is only one of the major steps with

respect to meeting the constraints.

e LUC has worst performance and is very sensitive to the initial number of colors
in the palette. If the number of colors is much more than the actual needs, it
will in fact diverge from the optimal solution, which is different from the results

of the common coloring problems.

e For small networks (up t0 20 nodes), the results of MWC are close to the optimal
solution. Also, the performance of MWC can be considered to be stable, even
with increasing range and number of nodes, because its performance is within

8.5% of the optimal solution.

4.7 Conclusions

In this chapter, we considered a class of wireless sensor applications that im-
pose timeliness constraints. We assumed that these sensor applications are built
using commodity 802.11 wireless networks and focused on the problem of providing
qualitatively-better QoS during network transmission of sensor data. We formulate
an optimization problem of message transmission over wireless channel. We prove
that the problem is NP-Complete. We thus propose three heuristics based on edge
coloring that are designed to explicitly avoid network collisions and minimize the
completion time to transmit a set of sensor messages. Our simulation results showed
that the minimum weight color heuristics yields the best performance across a range
of systems parameters and is close to the optimal solution — the time to complete
transmissions is within a factor of 8.5 of the optimal solution in the sensor networks

tested.
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CHAPTER 5

MESSAGE TRANSMISSION WITH TEMPORAL
CONSTRAINTS IN MULTI-HOP SENSOR NETWORKS

5.1 Introduction

In the applications of real-time sensor networks, we have investigated the problem
to minimize the completion time for sending a set of messages through wireless chan-
nel. In sensor applications where sensor data must traverse multiple hops across the
network, the communication delay affects both the end-to-end sensor data delivery
and the validity of sensor data. One such application is wireless sensor and actor
networks (WSAN) [5] where a group of sensors and actors linked by wireless medium
to perform distributed sensing and actuation tasks. The physical architecture of the
WSAN is given in Figure 5.1. In such a network, sensors gather information about
the physical world, while actors take decisions and then perform appropriate actions
upon the environment, which allows a user to effectively sense and act at a distance.
In order to provide effective sensing and perform right and timely acting, the collected
and delivered sensor data must be wvalid at the time of acting.

In most of the real WSAN applications, integrated sensor/actor nodes may replace
actor nodes and one example for an integrated sensor/actor node is robot. These
robots can be resource-rich big robots or small autonomous robots [102, 97]. However,
each of the small robot may not have a sufficient sensing capability to sense the entire
area. Hence, in order to initiate more reliable actions, although each of them is not
capable of performing complicated tasks, they can coordinate with one another by

exploiting their wireless communication capabilities and then make the achievement.
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Figure 5.1. WSAN physical architecture.

As shown in Figure 5.1, sensor nodes are scattered in the sensor/actor field, and the
sink monitors the overall network and communicates with task manager node and
sensor/actor nodes (robots). Sensor data can be either sent to the related actors
to initiate appropriate actions, or route back to the sink which then issue action
command to actors. In either way, real-time communication is critical since actions
are taken upon the most current information after the sensing occurs and hence the
traffic is very delay sensitive.

As discussed before, traditional wireless protocols may cause unpredictable delay,
due to collisions, exponential back-offs and blocking. To provide end-to-end timeliness
guarantees, a key research challenge is to provide predictable delay and/or prioriti-
zation guarantees, while minimizing overhead packets and energy consumption [95].
This chapter is devoted to schedule messages to meet message deadlines over multi-
hop wireless transmission. The problem we focus is to provide timeliness guarantees
for multi-hop transmissions in a real-time sensor networks. In such applications, each
sensor data that needs to be transmitted is associated with a validity and a latest

start time of processing at the destination. Message deadlines are derived from the
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validity of the accompanying sensor data and the start time of the consuming task at
the destination. We show that the problem of meeting message deadlines is NP-hard
even for single hop message transmissions. Consequently, we propose heuristics for
on-line scheduling of messages with deadline constraints. Our technique (i) schedules
messages based on their per-hop timeliness constraints, (ii) carefully exploits spatial
reuse of the wireless channel and (iii) explicitly avoids collisions to reduce deadline
misses. We evaluate our technique using simulations of various network topologies and
examine the impact of various system and sensor parameters on meeting timeliness
constraints. Our results show that: the channel-reuse-based algorithm outperforms
the CSMA /CA-based algorithm for a wide variety of experimental settings, and espe-
cially when (i) the channel utilization (the fraction of bandwidth the wireless channel
is busy over a time interval) is high, (ii) the interference range is large, or (iii) the
probability of collisions is high.

Spatial channel reuse in ad-hoc networks has been studied from the perspective
of improving channel utilization, throughput and fairness [60, 62]. However, to the
best of our knowledge, this is the first instance where spatial reuse property has been
used to address the problem of meeting real-time constraints for multi-hop message
transmissions.

The remainder of this study is organized as follows. In Section 5.2, we present
the data validity model, communication model and then formalize the problem. We
discuss the algorithm design issues in Section 5.3 to address the intuition behind
the heuristics. Then, our novel spatial-reuse scheduling algorithms are presented in
Section 5.4. The simulation results are shown in Section 5.5. Finally, we summarize

our study in Section 5.6.
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5.2 System Model And Problem Formulation
In this section, the conception of data validity and deadline is defined. The com-
munication model used in this chapter is presented. And finally, the problem is

formalized.

5.2.1 Data Validity and Transmission Deadlines

In real-time sensor applications, the values of sensor data reflect the current state
of the environment. Since the environment may be constantly changing, sensor read-
ings have a temporal interval during which they are valid. For instance, the temper-
ature readings from a few minutes back are no longer valid if the fire in a room burns
out of control. We use the term data validity to define the time interval for which a
data value produced by a sensor is valid.

In this work, we assume that sensors produce data periodically and each must
reach the destination before the associated validity expires. Further, since the sensor
update is consumed by the task at the destination, the effective deadline of a sensor
message is the minimum value of expiration time and the start time of the consuming
task. Formally, if a sensor value is produced at time ¢, and its validity is v time units,

the effective deadline (ed) of sensor message m is:

ed(m) = min(t + v, ) (5.1)

where ¢ is the start time of the consuming task that consumes m.

5.2.2 Communication Model

The communication medium used in the sensor application is assumed to be shared
by all robots (nodes) in the system. Each node has a wireless network interface with a
certain transmission range, depending on the exact wireless interface employed (e.g.,

802.11b versus 802.11g). Each node can be a sender or a receiver or both, and no
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base-stations exist in such environment. A node should be within the transmission
range of a sender to be an eligible receiver, and all communication is assumed to
be unicast. If a receiver is within the range of multiple senders, then interference
may happen if more than one sender attempts to transmit simultaneously. However,
there will be no interference if two receivers are mutually outside the other sender’s
transmission range.

Let Range(S;, R;) denote that receiver R, is within the transmission range of
sender S;, S; — R, denote a message transmission from S; to R,, we have following

constraints.

e Network Interface Constraint: At any instant, a node can be either a sender or

a receiver, but not both.

e Range Constraint: A node can receive a message only if it is within the sender’s

range, i.e., S; =& R, = Range(S;, R;).

e Interference Constraint: Two simultaneous transmissions will not interfere if
and only if both receivers are mutually outside the other sender’s range. That
is, V(i # j, z #y), (Si = Ry) N (S; = Ry) N ~Inter ference(S; = Ry, S; —
R,) <= —Range(S;, Ry) N ~Range(S;, R;).

e Unicast Constraint: At one instant, each message can have only one recipient.

5.2.3 Problem Formulation

In this section, we will formalize the problem faced in the design of communication
plan and leave out the routing discovery and broadcast phase, since they have been
thoroughly studied in networking community.

Each time when a new communication plan is built, the system has:

e A set of sensor messages, each is associated with a per-hop transmission dura-

tion, an end-to-end deadline and related routers.
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e A set of mutually conflicting relationships among all transmissions.

Out goal is to schedule those wireless transmissions at each hop so that all end-
to-end message deadlines are met.

Before presenting the algorithms to solve the multi-hop message transmission
scheduling problem, we first consider a simplified version of the problem where all
transmissions will traverse a single hop with unit transmission duration and have an
overall deadline. We can formalize this problem using a contention graph G = (V, E).
In the graph, each vertex represents a message transmission and there exists an edge
between two vertices iff the two transmissions (vertices) cannot be scheduled simul-
taneously (having mutual conflict). We can show the hardness of this problem by
reducing the graph K-colorability problem [27] to it; here, K is the number of possible
colors such that the connected vertices always have different color. If the contention

graph is K-colorable, all transmissions can be completed within K time units.

5.3 Design Considerations

If the system has an overall deadline, the transmission scheduling problem can
then transform to the problem of finding the minimum transmission completion time.
This is because, if the minimum completion solution cannot make all transmissions
meet the deadline, then at least on transmission will miss the deadline wherever we
reorder the transmissions.

Although we have proposed and evaluated the effectiveness of the color-based
heuristics, it is not sufficient enough to directly adopt to use those methods for multi-
hop transmission with end-to-end deadlines. First, the previous problem doesn’t have
individual deadline for each message transmission, and transmission duration is the
only property that needs to be considered. Second, there is only one hop transmissions
in the previous version, so avoiding collisions is the most important factor that will

affect the completion time.
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Figure 5.2. Example of false blocking and channel reuse

With regards to the multi-hop message transmission problem, a desirable scheduler
should not only be cognizant of message deadlines when making scheduling decisions,
but also effectively use the channel bandwidth by avoiding collisions and exploiting
spatial reuse.

In this section, we first discuss the potential heuristics based on these two issues,
and then propose our algorithms. Before we start our discussion, let us first define a
terminology, LST, which is used to determine the urgent status of a message and is
derived from the effective deadline.

Suppose a message m needs to traverse h hops from the source to the destination
and let m® denote m is at the ' hop. Further, let pd(m®) denote the total propagation
delay and transmission duration that will be incurred on the remaining hops from hop
i to the destination. Then the latest transmission start time (LST) of the message
at the ** hop is:

I(m*) = ed(m) — pd(m*) (5.2)

The LST denotes the latest time by which the ** hop must start transmitting the
message in order for it to reach the destination by its effective deadline. If there are
multiple messages queued up at a robot awaiting transmissions, their LST's can be

used to derive a transmission schedule.
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5.3.1 Message Contention and Channel Reuse

Consider a simple one hop transmission example depicted in Figure 5.2. The
location of each node and transmission range of each sender are shown in the figure.
For simplicity, we assume the interference range is equal to the transmission range. As
shown in Figure 5.2, three single hop messages mi, ms and m3 need to be scheduled
for transmission. Table 5.1 depicts the arrival time (AT), the transmission duration
(TT)(the difference between the instants when the first bit is sent out and the last bit
is received by the receiver), and the effective deadline (ED), for each message. The
latest start time (LST), calculated using Equation 5.2, is also shown in the table.

Since m; arrives at time 0 and is the only message in the system, node 1 transmits
a RTS and receives a CTS acknowledgment from node 0. Since node 2 also receives
this RTS, it is blocked during the transmission of m;. When message ms arrives at
time 1, node 3 sends a RTS to node 2 but does not receive a response. Node 4 receives
this RTS message as well and is also blocked. Consequently, when node 5 sends a
RTS to node 4 for message mg, it does not receive a CTS and is unable to transmit
mg. Observe, from Figure 5.2, that m; and ms do not interfere with one another and
it is possible to transmit them simultaneously. This is referred to as false blocking.
In this example, false blocking causes the messages to be transmitted sequentially in
the order m;, mo and mg, resulting in poor spatial reuse. More importantly, doing
so causes ms to miss its deadline.

However, if the scheduler were to exploit spatial reuse and transmit ms in parallel
with my, followed by ma, then all messages are able to meet their deadlines (see

Figure 5.3).

5.3.2 Why Simple Channel Reuse is Not Sufficient?
Although the previous example demonstrated the benefits of exploiting spatial

channel reuse for meeting deadline constraints, surprisingly, parallelizing transmis-

sions via spatial reuse can sometimes increase deadline misses. Consider the same
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Message AT TT ED LST
my 0 2 6 4
mo 1 5 8 3
ms 1 2 8 6

Table 5.1. Message characteristics

myp  mpms3 ms
arrives arrive -
finishes finishes 2 finishes

y v A A
> |

0 1 2 3

Figure 5.3. Parallel transmissions reduce deadline misses.

scenario depicted in Figure 5.2 but with the parameters listed in Table 5.2. Like
before, the sensor message m; is transmitted first at time ¢ = 0. Since m; and my
interfere with one another, m, is blocked. However, when ms arrives at time ¢ = 1, it
can be transmitted in parallel with m, since the two transmissions do not interfere.
Assuming this is done, my can not be transmitted until mgs finishes at time ¢t = 3.
Since message mo requires a transmission duration of 6 time units, ms will finish only
at t = 9, causing it to miss its deadline (see Figure 5.4). In this scenario, the only
schedule that satisfies all deadlines is to transmit the messages sequentially: my, ms
and ms. The example shows that naively maximizing spatial reuse can sometime be
detrimental in meeting deadline guarantees. Thus, the message scheduler should con-
sider the potential impact of scheduling a message on future message transmissions.

The above examples illustrate the fundamental problem existing in order to achieve
temporal guarantees in wireless sensor networks. As a result, the traffic delay has to

be dealt with in both the time domain and the spatial domain.
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Message AT TT ED LST
my 0 2 6 4
ms 1 2 10 8

Table 5.2. Message characteristics

M7 deadline
mp o Mo,m3 my .03 . m finishes
arrives arrive 1 fipishes (deadline miss)

' lf““%h“?
/// T

Figure 5.4. Deadline misses caused by parallel transmissions.

5.4 Scheduling Messages With Deadlines

The problem of scheduling parallel messages with deadlines over wireless channel
can be shown to be NP-hard. The problem is NP-hard even when messages traverse
a single hop, having unit transmission durations and identical effective deadlines.
This can be proved by reducing the graph k-colorability problem [27] to it, where
a contention graph G = (V, E) is used to represent conflicts among transmissions.
In the graph, each vertex represents a transmission, and an edge exists between two
vertices iff the two transmissions (vertices) cannot be scheduled simultaneously. If
the graph is k-colorable, all transmissions can be completed within k time units.

Due to the NP-hard nature, we must resort to heuristics to schedule multi-hop

messages through the network. In this section, we present two such heuristics.
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5.4.1 Per-Hop Smallest LST First (PH-SLF)

Per-hop Smallest LST First (PH-SLF) is a distributed scheduler, where each node
makes local scheduling decisions independent of other nodes. In this approach, given
a set of messages that are queued up at a node, the node schedules the message
with the smallest LST for transmission. Observe that the latest start time (LST), as
defined in Equation 5.2, is the deadline by which the node must start transmitting
the message in order for it to meet its effective (end-to-end) deadline. The underlying
MAC protocol is vanilla CSMA/CA. As a result, collisions and the resulting back-
offs, and false blocking can not be eliminated in this approach. The advantage of this
approach is that it can be used in conjunction with vanilla 802.11 networks, since
PH-SLF can be implemented in software in the OS driver.

We use PH-SLF as our baseline algorithm. In the rest of this section, we present

an approach that explicitly avoids collisions and maximizes spatial reuse.

5.4.2 Channel Reuse-based Smallest LST First (CR-SLF)

The goal of our Channel Reuse-based Smallest LST First (CR-SLF) approach
is to be cognizant of message deadlines at each hop, while avoiding collisions and
exploiting spatial reuse. Before presenting the approach, we define some terminology.
The following list the key attributes for a message and the associated terminology.
m¢ : message m, at the i hop
T(m) : the transmission of m¢
a(ml) : the arrival time of m, at the i** hop
d(m) : the deadline of m¢, d(m’) = ed(m,)

I(m?) : the latest start time (LST) of T(m}), see Eq. 5.2
s(mt) : the transmission start time of T'(mi)
)

f(ms,

finish time of m’—the time m,, reaches the next hop
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e(mg) : the execution time for m, (same for all per-hop transmissions of m,)

Since sensor updates are generated periodically, the arrival time of a message at
the source (first hop) is the time at which the sensor data is produced. The arrival
time at an intermediate node is the time the last bit of the message arrives at that
hop enroute to the destination. Observe that the arrival time at an intermediate
node depends on when the message is scheduled for transmission at the previous
hop. The start time is the time when message is scheduled for transmission and the
finish time is the time when the message is completely received by the next hop node
(and the channel becomes idle again). The execution time is the time for which the
channel is busy and is the sum of the transmission delay and the propagation delay
(the difference between the instants when the first bit is sent out and the last bit is

received by the next hop). Observe that,

In the rest of this paper, transmission refers to a per-hop transmission unless spec-
ified otherwise. With this background, we present the intuition behind our approach,

followed by the details.

5.4.2.1 Overview

Given a set of nodes, their locations and transmission ranges as well as a set of
messages queued up at these nodes, their destinations, effective deadlines, and the
associated routes, our scheduler derives a schedule to meet these deadlines. The

scheduler exploits the following characteristics in deriving this schedule:

e It maximizes spatial reuse by scheduling non-interfering message transmissions

in parallel.
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e It considers message transmissions in the order of their LSTs. The LST is the
“local” deadline of a transmission at a hop, since it is the latest time by which

the message must be scheduled to meet its end-to-end effective deadline.

The basic idea is to partition the set of message transmissions into disjoint sets
such that transmissions within each set do not interfere with one another and can be
executed in parallel. These sets are ordered sequentially, and all transmissions within
a set must finish before transmissions in the next set can begin.

To construct these sets, the scheduler considers the transmissions in order of
their LSTs. At each step, the transmission with the smallest LST is chosen and the
scheduler checks if it is feasible to assign this transmission to an existing set (the
feasibility will be discussed in the next section). If no existing set is feasible, a new
set is created with that message transmission so long as the deadline is met. Once
a message is scheduled at hop ¢, it can be considered for scheduling at hop ¢ + 1.
Observe that a message needs to be transmitted hop by hop, since the arrival time
at the next hop is not known until it is scheduled for transmission at the previous
hop. The above process continues until all queued up messages are scheduled along
all hops from their sources to their destinations (i.e., the message transmission on
each hop is assigned to a feasible set). The constructed sets define the transmission

schedule for these multi-hop messages.

5.4.2.2 Details of the Algorithm

Initially, the schedule S is empty: & = ¢. The goal is to construct a set of sets
S = {51, 52, ..., Sp} where elements are disjoint and message transmissions in each
set are non-interfering. We define a start time and a finish time for each set S;.
The start time of set S, s(S;), denotes the instant where all its transmissions can
start using the channel; the finish time of S;, f(S;), denotes the instant where all

transmissions have reached the their respective receivers. In general, s(S;+1) = f(S5;);
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that is, transmissions in a set can start to transmit when those in the prior set have
finished.

The algorithm proceeds in the following steps.

Step 1 : Select a transmission to schedule. From the list of yet to be scheduled
message transmissions, the scheduler chooses the one with the smallest LST. This
enables the scheduler to consider the most urgent transmission first. Other strategies
are possible, such as choosing transmissions based on the earliest data validity first or
earliest start time first, although we do not consider such alternatives in this paper.

Step 2: Assign this message transmission to a set. Suppose that n sets have
been constructed in the partial schedule thus far: S;,Ss, ..., Sy, and T(m,) has been
selected. The scheduler attempts to assign this transmission to the first feasible set
in the set list. If no existing set is feasible (or the schedule is empty), then a new set
Spy1 is added to the list and T'(m!) is inserted into this set so long as the deadline
constraint is not violated.

A set S; to be feasible for a message transmission T'(m},) iff the following conditions

are satisfied.

1. The finish time of the set f(S;) is later than the arrival time of the message
a(m?). This indicates that a message transmission should be added to a set only
if there is some temporal overlap with existing transmissions so that parallelism

can be exploited.

2. The finish time of m’, is no later than its effective deadline, i.e.,
f(m) = maz(s(S;), a(my)) + e(m},) < d(ms).

z

3. T(m!) does not interfere with any existing message transmissions in S;.

4. The insertion of the transmission T'(m¢) into S; does not violate deadlines of

messages in subsequent sets Sg,j < k < n.
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The first three conditions are easy to understand, so we elaborate on the fourth
condition. If the current message m¢ happens to be the longest message or its trans-
mission finishes last in S}, then the duration for which S; occupies the wireless channel
is increased. As a result, the transmission start times of messages in subsequent sets
will need to be pushed forward. Since a later start time may violate their deadlines,
the scheduler needs to verify that inserting this transmission of m!, in S; does not
impact the deadline meeting of subsequent message transmissions. To do so, we first
need to compute the new finish time of S;. If inserted in S;, the start time of m}, is
s(m%) = max(s(S;),a(m%)). Then, its finish time is f(m’) = s(m.) + e(m?). The

new finish time of the set is the maximum finish time of all messages in the set:
Frew(S;) = mazye(f (ma2))-

Next, we can compute the amount by which all subsequent transmissions are
pushed forward. This is done by computing the new start time of each set Si, j <
k < n, which is simply the finish time of the previous set: s(Sx)) = f(Sk—1). The new
start time of each message transmission T'(m,) in the set is recomputed as s(m,) =
max(s(Sk), a(my)). Then, the finish time is f(m,) = s(my) + e(m,). The new finish
time of the set is the maximum finish time of all messages in the set: freu(Sk) =
mazyy(f(my)), T(my) € Sk. Given the new start and finish times of the affected
messages, the scheduler needs to verify that the finish time of each message is not
later than its deadline: f(m,) < d(m,). If no deadlines are violated, then it is possible
to insert the current selected message transmission, T'(m?), in S;.

The scheduler searches for the first set in the list S1, .5, ..5, that is feasible and
inserts the selected transmission into that set. If no existing set is feasible and insert-
ing the transmission into a new set S, violates its deadline, then the algorithm can
not meet the deadline for this message. In this scenario, the message is removed from

consideration and all scheduled transmissions for hops 1 to ¢ — 1 are removed from
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the corresponding sets. And then the start/finish times of those sets are adjusted
accordingly.

Step 3 : Update the finish time of the feasible set and insert a new transmission
for the next hop. If a feasible set S; is found, then the transmission T'(m?) is inserted
into the set, and the new finish time is updated as discussed above. The transmission
T (m?) is deleted from the list of yet to be scheduled transmissions, and the next hop
transmission T'(m&t!) is inserted into the list, assuming that hop 7 is not already the
destination for the message. All these steps are repeated until the list of unscheduled

transmissions becomes empty.

5.4.2.3 An Example

In this section, we will use a simple one-hop transmission example to illustrate
the basic procedure of the algorithm. Let us consider the example shown in Figure
5.2 with message characteristics in Table 5.1.

Because T'(m;) arrives first, and at time 0, it is selected to be scheduled. Initially,
the schedule set is empty, a new set S; is created for the transmission of m;, and we
have: s(S1) = 0, f(S1) = f(my) = 2. Then, T(m,) is considered since it has the
smallest LST. Because T'(my) interferes with T'(my), set S is not feasible and a new
set is needed for T'(ms). Thus, we will have two sets: S; = {T'(m1)}, Sa = {T'(m2)},
and s(Ss) = f(S1) =2, f(S2) = maz(s(S2),a(ms)) +e(ms) =2+5=71.

Finally, let us consider the last transmission of m3. First, consider the set S; with

the four conditions:
1. The finish time of S; is 2, which is later than a(m3);
2. f(ms) = maz(s(S1),a(ms)) + e(ms) =142 =3 < d(mgs);

3. Transmission of m3 will not interfere with the existing transmission of m; in

the set;
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4. Since f(m3) = 3 > f(S1), we have the new possible finish time for Si: frew(S1) =
f(ms3) = 3; so the new start time for S is Spew(S2) = frew(S1) = 3 and we have

fnew(mZ) =34+5=8 S d(mz) = 8.

Therefore, S; is feasible for T'(ms), transmission of mjs is assigned to S;. The final
schedule is : S; = {T'(my),T(m3)}, S = {T(ms)}, which indicates that m; and ms

are transmitted in parallel, followed by the transmission of ms;.

5.5 Evaluation

We have designed an event-driven simulator to simulate a team of robots that
exchange multi-hop sensor messages and move in the environment. We compare
the performance of our proposed algorithm CR-SLF with the PH-SLF scheduling
using our simulator. We evaluate the impact of sensor period, deadline and message
size based on specific transmission topology. We also investigate how the different
interference ranges may affect the properties of the algorithms. Last, we study the
impact of node mobility; observe that the movement of a team of robots is highly
correlated, and consequently, mobility models such as the random waypoint are not
suitable for our scenario.

The metrics used to measure performance is the Deadline Miss Ratio which is

defined to be:

number of unsuccessful end—to—end transmissions

total end—to—end transmzissions

A successful message transmission is one where the message is transmitted from the
source to the destination before the effective deadline. Note here, for the CSMA/CA
based algorithm PH-SLF, a message that cannot meet the deadline will still be trans-
mitted from the source through the network; but for the proposed algorithm CR-SLF,

once a message is found that it cannot meet the deadline, it will not be scheduled to
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transmit.The deadline-missing in CR-SLF happens for two reasons: one is the design
problem which means that those messages cannot meet the deadlines using any al-
gorithms, the other reason is since the problem is NP-hard, the heuristic algorithm

may not be able to find the optimal solution.

5.5.1 Experimental Settings

The wireless card on each robot and its radio parameter are based on the existing
commercial product (e.g., Lucent Wavelan card) with a 2 Mbps data rate and a
transmission range of 250 meters. Unless specified otherwise, the interference range
is set to be equal to the transmission range, and each pair of nodes (robots) are
separated by the distance of 200 meters which is likely to yield close to the maximum
capacity possible [53].

Table 5.3 gives the default parameter settings used in our simulations. The ef-
fective deadlines are specified in relative terms, relative to the start times of the

respective transmissions at the source.

Message Size Sensor Period Relative Deadline
512 byte 10ms 50ms

Table 5.3. Default Settings

5.5.2 Impact of the Sensor Period and Deadline
In this experiment, the robotic group is based on a chain topology with 8 robots,
as illustrated in Figure 5.5. Two sensor messages periodically travel through inter-
mediate nodes from two end robots to the opposite end on both directions. We use
this scenario to demonstrate the effectiveness of our proposed algorithm, CR-SLF,
for different sensor periods and deadlines, and compare it to PH-SLF scheduling.
The impact of varying the sensor periods is shown in Figure 5.6. In this simulation,

the period to generate a new message is depicted on the x-axis. We can see that CR-
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Figure 5.6. Impact of sensor period

SLF has fewer deadline misses than the PH-SLF scheduling, especially when the
period is between 10ms and 20ms and where collisions are likely unless the scheduler
is careful. Beyond 20ms, since the transmission duration per hop is approximately
around 2ms. When the next update is generated, the previous one has reached the
destination (without considering the update from the opposite direction). Hence, the
probability of collisions is very low. Therefore, both algorithms are able to schedule
messages with few collisions or deadline misses.

The impact of message deadlines is shown in Figure 5.7. Here, the sensor period

is set to 19ms. As the deadline of each sensor update goes from 50ms to 150ms, we
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have 40% improvement for CR-SLF and 87% improvement for PH-SLF. The reasons
we have less improvement for CR-SLF are: 1) although the deadlines are different,
the utilization and the probability of collisions are the same; CR-SLF has already
explicitly taken these issues into account, and the deadline will only affect the order
of transmissions considered, 2) for the PH-SLF scheduling, the larger deadline actually
gives it more chances to back off and retransmit, increasing the number of eventual

successful transmissions.

5.5.3 Impact of Distance

In the previous section, we evaluated the impact of the sensor period and message
deadline with a node distance of 200 meters. In this section, we study how varying
the distance between robots affects the results.

We assume the chain topology and assume that two sensor updates are periodically
generated from two ends. The period is set to 19ms. We vary the distance between
each pair of robots from 50 meters to 200 meters and plot the resulting miss ratio

in Figure 5.8. We observe that CR-SLF performs much better than PH-SLF for all
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settings. Specifically, when the distance between nodes is small, i.e., 50 meters, the
interference due to one transmission from one node will impact at least 5 other nodes
(transmissions on node 2 to node 5 will affect transmissions on all other nodes). Even
with this high interference, our proposed algorithm, CR-SLF enables more than 60%
of the messages to meet their deadlines, while no message meets its deadline when a

CSMA /CA-based algorithm is used.

5.5.4 Impact of Message Size

In this example, we study the effect of varying the message size. We use a cross
topology as shown in Figure 5.9. There are four periodic sensor updates traveling
through the network. The period of each sensor is 30ms and the relative deadline is
100ms.

We vary the message size from 256 bytes to 1024 bytes for each respective trans-
mission and measure the miss ratio. The results are shown in Table 5.4. As we know,
the packet size reflects the transmission duration. Since small packet sizes have a

smaller probability of collisions, both algorithms work very well. However, as the
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Figure 5.9. Scenario 2: transmissions over a cross topology

packet size increases, the per hop transmission duration increases. This increases the
duration for which the channel is busy, since many transmissions may be travers-
ing intermediate hops at the same time. Consequently, collisions cause exponential
back-offs and increase the queue delay at each hop. As a result, the performance
of PH-SLF scheduling degrades a lot. On the other hand, since CR-SLF explicitly
avoids collisions, it is able to meet the deadlines for larger message sizes, so long as

the messages are feasible.

Size PH-SLF CR-SLF
(byte) MissRatio MissRatio

256 0 0
512 0.725 0.124
1024 0.996 0.394

Table 5.4. Impact of message size

5.5.5 Impact of Interference Range
Note that one node can interfere with message reception at another node even
when they are too far apart for successful transmission [53]. In this simulation, we use

a tree topology, shown in Figure 5.10, to study the impact of the interference range.
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Figure 5.10. Scenario 3: tree topology with various interference range

Observe that in a tree, the interference increases for nodes closer with the root, due to
the larger node density. We use the parameters in [53] to vary the interference range.
We consider two different interference ranges, namely 250 meters and 550 meters,
and two different sensor periods, namely 20ms and 25ms. Sensor messages from two
leaf nodes, node 19 and 22, are assumed to be sent out periodically to the root (node
0). The third sensor update is sent from a leaf, node 20, to another leaf on the other
side, node 21. The relative deadline for each message update is set to 200ms.

We measure the miss ratio for all four combinations of the interference ranges and
the sensor periods. Figure 5.11 shows the results and we have several observations.
First, CR-SLF performs better than the PH-SLF scheduling for all different param-
eters. Second, for a fixed sensor period, when the interference range increases, the
miss ratio increases for both algorithms, but the difference between the two algorithms
gets smaller. The reason is that if the interference range is small, the probability of
collisions is dominated by the sensor period. However, when the period is larger, the
occurrence of collisions is dominated by both of the sensor period and the interference

range.
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Figure 5.12. Scenario 4: movement of a robot team

5.5.6 Impact of Routing and Node Mobility

In this section, we consider the impact of routing and node mobility. Figure 5.12
depicts the sequence of the moves in a robot chain, where the leader (node 7) leads
the team to make a U-turn. Two sensor messages traverse the chain, one from node
0 to 7 and vice versa, with sensor period of 15ms. Two scenarios are considered here:
(i) overlay routing, where each update traverses through all intermediate nodes of the
overlay chain, and (ii) shortest path routing, where transmissions use the shortest

path from the source to destination.
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Figure 5.13. Impact of mobility

The results of CR-SLF are shown in Figure 5.13. For the overlay routing, since
the update has to travel through every intermediate node, as the team moves from
position (1) to (5), the interference increases due to the increase of the node density.
Hence, the miss ratio increases. But when the team moves from (5) to (9), the team
becomes a chain again, the miss ratio decreases since the interference decreases.

For the shortest path routing, the algorithm will always find the shortest path
for message transmissions. For instance, in position (5), messages are directly sent
out from node 0 to 7 without passing through any other nodes. So when the team
moves from position (1) to (5), the number of intermediate routers involved actually
decreases. This causes the miss ratio to decrease since the probability of collisions

also decreases.

5.6 Conclusions

In this chapter, we study the problem to schedule messages with temporal con-
straints. Consider the application where a team of robots equipped with sensors that
collaborate with one another to achieve a common goal. Sensors on robots produce
periodic updates that must be transmitted to other robots and processed in real-time

to enable such collaboration. Since the robots communicate with one another over
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an ad-hoc wireless network, we address the problem of providing timeliness guaran-
tees for multi-hop message transmissions in such a network. We derive the effective
deadline and the latest start time for per-hop message transmissions from the valid-
ity intervals of the sensor data and the constraints imposed by the consuming task
at the destination. Our technique schedules messages by carefully exploiting spatial
channel reuse for each per-hop transmission to avoid MAC layer collisions, so that
deadline misses are minimized. Extensive simulations show the effectiveness of our
channel reuse-based SLF (smallest latest-start-time first) technique when compared
to a simple per-hop SLF technique, especially at moderate to high channel utilization

or when the probability of collisions is high. The major reason is as follows:

e CR-SLF explicitly avoids collisions while PH-SLF incurs exponential back-off

at each collision.

e CR-SLF doesn’t inject infeasible packets into the network once it finds out the
packet cannot meet the deadline; hence, the infeasible packet will not affect

other feasible packets.
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CHAPTER 6
SUMMARY AND FUTURE RESEARCH

In this chapter, I summarize the contributions of the thesis and then discuss future

research directions.

6.1 Summary and Contributions

In this thesis, I identify several fundamental problems of the design and develop-
ment of distributed real-time sensor systems. Two key features of such applications
make the problems challenging. First, the applications exhibit highly dynamic re-
source sharing requirement with many computation and communication variations.
Second, they are built through wireless infrastructure, and transmitting sensor data
over traditional wireless networks may suffer from unbounded delay. My research
goal is to investigate the inherent characteristics of such resource-constrained envi-
ronments, and to identify and provide the solutions to fundamental problems that
arise in the design of such distributed embedded systems, so that all physical and
temporal constraints are guaranteed. I will briefly describe my contributions in the

following sections, and then I will discuss my future research directions.

6.1.1 Summary

My dissertation focuses on resource management in a resource-constrained dis-
tributed environment, and investigates fundamental problems in the analysis and de-
sign of distributed real-time embedded systems. Typically, these resource-constrained

systems operate collaboratively within a dynamic information exchange environment,
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adapting to changing conditions in a timely manner to meet interactive real-time
needs. Some challenges for delivering sensor data with temporal constraints in such
resource-constrained systems are: i) effective use of limited resources to improve sys-
tem feasibility and scalability; ii) meeting the temporal requirements that are inherent
in such severely resource-limited distributed systems; and iii) developing communica-
tion mechanisms that can be used to optimize the system performance.

In my dissertation, I have provided answers to these questions by solving realistic
and complex distributed resource management problems. One of my contributions
is the development of a resource allocation algorithm with the purpose of improving
system feasibility. The algorithm not only minimizes communication cost, but also
minimizes and balances the workload of each processor. We have also applied the
algorithm to a real-world robotic example to achieve efficient resource allocation and
scheduling.

Collaborative sensory systems must deliver, process and react to the sensor data
subject to temporal constraints. The second contribution of my work is the study of
temporal issues that arise in the design of distributed real-time systems. In particu-
lar, T have characterized the wireless spatial/temporal properties when transmitting
sensor data with end-to-end and per-hop deadline constraints. I have formulated the
problem of minimizing total transmission time and providing timeliness guarantees
for multi-hop message transmission in wireless sensor networks. I have shown that the
optimization problems are NP-hard. Since the complexity results apply only to the
worst case scenario, I have thus developed a good heuristic to achieve near-optimal
solutions. Specifically, I have developed novel spatial channel reuse techniques to i)
optimize the completion time of transmitting a set of sensor messages, ii) provide

timeliness guarantees for multi-hop sensor data transmission.

95



6.1.2 Contributions

The contributions of this dissertation can be summarized as follow.

e Dynamic Resource Allocation for Mobile Robotics Distributed control systems
are built using sets of functionally equivalent controllers that are designed in the
form of coordinated, adaptive control schemes on multi-robot systems. These
controllers are distinguished by their use of resources including communication,
processor or sensors. Although the control strategies are logically equivalent,
some of them may not be feasible, given limited resource and time availabil-
ity. Thus, dynamic feasibility checking becomes important as the coordination

between robots and the tasks that need to be performed evolve with time.

However, given limited resource and time availability, finding an optimal feasi-
ble resource allocation solution is known to be NP-hard. I have developed two
simple but efficient on-line algorithms for allocating control tasks to distributed
processing entities (robots). For the purpose of schedulability, both communi-
cation cost and utilization bound are considered. By minimizing the inter-robot
communication overhead and workload of each processor, we can then improve
system feasibility. Extensive experimental results have shown the effectiveness
of our approaches even under extreme resource-constrained environments. Since
schedulability is an overlooked part of large multi-robot system design, we have
also demonstrated the application of our approach to real-world large robotic
teams. By analyzing the structure of the processes and their tasks’ timeliness
constraints, we were able to calculate the upper bound on the size of feasible

teams.

o Communication Scheduling in Real-Time Sensor Networks To ensure timely
mobility for robotic teams, in addition to the problem of task allocation and

processing that has been addressed in the above work, another critical problem
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is the time-critical message transmission over a wireless channel to guarantee
the freshness of sensor data. However, message transmission over traditional
wireless networks, such as CSMA /CA-based 802.11, may suffer from unbounded

delay due to collisions, backoff, and blocking.

I have studied the problem of providing qualitatively-better QoS to transmit
sensor data, using commodity 802.11 wireless networks. The first problem I
have solved is to minimize the completion time of transmitting a set of sensor
messages. In particular, I have conducted a complexity analysis to show that
this problem is NP-complete. I have exploited the specific characteristics of the
wireless channel and devised novel spatial channel reuse algorithms to optimize
the transmission time. By performing non-interfering transmissions in parallel,
the transmission collisions are explicitly avoided and the total time for trans-
mitting a set of messages is minimized. Further, I have proposed an A*-based
optimal algorithm to enable comparisons. The evaluation results demonstrate
that our approach results in good performance: the time to complete transmis-
sions is within a factor of 8.5 of the optimal solution, and it outperforms the
random method. More importantly, it is robust to the increases in communica-

tion density.

In sensor applications where messages must traverse multiple hops across the
network, the communication delay affects both the end-to-end delivery and the
validity of sensor data. Another problem I have studied is scheduling messages
to meet deadlines over multi-hop wireless transmission. I have shown the prob-
lem to be NP-hard even for single hop message transmission. Consequently, I
have designed a technique to derive the effective deadlines and the latest start
times for per-hop message transmissions from the validity intervals of the sen-
sor data and the temporal constraints imposed by the data-consuming tasks.

In order to solve the problem in an efficient manner, I have investigated the po-
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tential impact of spatial reuse with the purpose of decreasing deadline misses.
Then, I proposed an algorithm that carefully schedules the messages accord-
ing to their per-hop temporal constraints and the wireless spatial properties.
Extensive simulations have shown the effectiveness of our channel-reuse-based
SLF (Smallest Latest-start-time First) technique when compared to a simple
per-hop SLF approach, especially at moderate to high channel utilization, a

large interference range, or a high collision rate.

6.2 Future Work

Allocating and scheduling of real-time tasks in a distributed environment is a dif-
ficult problem. In addition to task-level constraints, e.g., periods and deadlines, such
systems also have system-level constraints, e.g., precedence and communication. The
algorithms discussed in this paper provide a framework for allocating and scheduling
periodic tasks with precedence and communication constraints in a distributed dy-
namic environment, such as a mobile robot system. The required properties of sets
of distributed, coordinated tasks, such as in the LOS chain of a multi-robot system,
are well captured by our methods. In the scheduling part of the algorithm, various
temporal characteristics of tasks are taken into account at each search step. Our
algorithm was applied to a real world example from mobile robotics to achieve a sim-
ple but efficient allocation and scheduling scheme for a team of robots. We believe
that this approach can enable system developers to design a predictable distributed
embedded system, even if there are a variety of temporal and resource constraints.

Now we discuss some of the possible extensions to the algorithm. First, if the
system design does not have pre-allocated tasks, the heuristic is still applicable. In
this case, the initial threshold is 0. After selecting the first pair of communicating
tasks and randomly assigning them to a processor, the algorithm can continue to

work on remaining tasks as discussed in the original algorithms.
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Second, the algorithm can be tailored to apply to heterogeneous systems. If
processors are not identical, the execution time of a task could be different if it runs
on different sites. To apply our approach in such an environment, first, we can take
the worst case communication cost ratio, which is calculated by the slowest processors
for each pair of communicating tasks, and then we can use these values as estimates
to choose the task to be considered next. Second, when we select the processor, if
the task can be assigned to the processor that the producer is on, then we are done;
otherwise, we need to consider the utilization and the speed of a processor the same
time, e.g., compare the utilization from the fastest processors to see which processor
will have the least utilization after loading the task, and choose the one with the
minimum value. After assigning each task, the threshold will change in a way similar
to the original algorithm.

In the work of providing qualitatively-better QoS during network transmission of
sensor data, we proposed three heuristics based on edge coloring that are designed
to explicitly avoid network collisions and minimize the completion time to transmit
a set of sensor messages.

As part of future work, we plan to evaluate the effectiveness of our techniques by
implementing them into a sensor testbed. To do so, we plan to design a scheduler
above the MAC layer to prioritize the packet transmissions based on the transmission
schedule. We also plan to examine the impact of message deadlines and will extend
our techniques to multi-hop sensor networks.

In this dissertation, we presented two algorithms for scheduling message transmis-
sions with validity and processing constraints in multi-hop robotic sensor networks.
Our results show that CR-SLF outperforms PH-SLF since it not only takes the
deadline into account, but also attempts to schedule parallel per-hop transmissions
as many as possible, so that the end-to-end effective deadlines can be met. We now

discuss some other issues that need further study.
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In this work, we assume a leader node that is responsible for routing, scheduling
and path planning decisions. This is a realistic model for small robotic teams. When
team becomes large, the whole group can be split to multiple smaller groups. A
hierarchical communication infrastructure can then used, and our algorithm can be
used for communications at each level.

In robotic applications, the speed of a robot is usually much slower than message
transmissions. Since robots can transmit messages while moving, we must ensure that
these transmissions will succeed, which means that the overlay network topology must
not change even though two nodes may move in opposite directions. Our current work
assumes that the leader robot will recompute new routes and a new schedule before
a topology change and while the nodes are moving as per the current plan. However,
due to the issues of speed, signal strength and routing, this is a problem that needs
further study.

We made a few assumptions in our paper that would need further studies in
future work. First, the impact of radio irregularity [111] needs to be embedded in
our performance evaluation studies. Second, packet loss rates typically increase with
distance [2], resulting in retransmissions that is not included in our current evaluation
metrics. Although we did not specifically consider transmission losses, we believe that
our results will hold even in perturbed settings. We will incorporate these issues in

future work.
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