
Consistency Maintenance In Peer-to-Peer File Sharing Networks�

Jiang Lan, Xiaotao Liu, Prashant Shenoy and Krithi Ramamrithamy

Department of Computer Science

University of Massachusetts Amherst

Amherst, MA 01003

jiang.lan@labs.gte.com, fxiaotaol,shenoy,krithig@cs.umass.edu

Abstract

While the current generation of peer-to-peer networks

share predominantly static files, future peer-to-peer net-

works will support sharing of files that are modified fre-

quently by their users. In this paper, we present techniques

to maintain temporal consistency of replicated files in a

peer-to-peer network. We consider the Gnutella P2P net-

work and present techniques for maintaining consistency

in Gnutella even when peers containing replicated files dy-

namically join and leave the network. An experimental

evaluation of our techniques shows that: (i) a hybrid ap-

proach based on push and pull achieves high fidelity in

highly dynamic P2P networks and (ii) the run-time over-

heads of our techniques are small, making them a practical

choice for P2P networks.

1. Introduction

The past few years have seen a dramatic increase in the

popularity and use of peer-to-peer (P2P) file sharing net-

works. Current P2P systems are specifically designed to

share static content such as music and video files. The util-

ity of P2P systems goes beyond sharing of static files—

future P2P applications (e.g., collaborative P2P applica-

tions) can be expected to share dynamic files. In such ap-

plications, files may be modified and updated during their

lifetime. To handle such dynamic content, P2P networks

must evolve from a predominantly read-only system to one

where files can be both read and written. Since files may be

widely replicated in a P2P system, handling dynamic files

requires consistency techniques to ensure that all replicas of

a file are temporally consistent with one another.

Consistency techniques have been widely studied in the

context of web proxy caches [1, 2]. However, these tech-

�This research was supported by NSF grants CCR-9984030, CCR-

0098060, CCR-0219520 and EIA-0080119
yAlso with the Indian Institute of Technology Bombay

niques are not directly applicable to P2P systems due to

their dynamic nature—peers can dynamically join and leave

the network at any time, making consistency maintenance

more challenging than in web environments where proxies

are mostly available and failures are rare. Due to this crucial

difference, novel consistency techniques specifically de-

signed to handle unavailable peers are required. In this pa-

per, we propose three consistency maintenance techniques

for P2P networks. Our first two techniques are based on

push and pull, respectively, and have complementary trade-

offs. Our results show that: (i) a flooding-based push ap-

proach can provide near-perfect fidelity but has high com-

munication overheads and is suitable only for static net-

works; (ii) in contrast, a pull-based approach has lower

communication overheads and is better suited for dynamic

networks but provides weaker guarantees than push. Based

on these observations, we propose a hybrid approach that

combines the best features of push and pull and attempts

to provide good fidelity in highly dynamic networks at a

reasonable cost. We propose enhancements to the Gnutella

protocol to incorporate our techniques and implement them

into the public-source Gtk-Gnutella system. Our experi-

ments show that the hybrid approach can provide good fi-

delity in highly dynamic environments. Our measurements

from the prototype implementation indicate that this fidelity

can be provided at a reasonable run-time cost.

The remainder of this paper is structured as follows. We

present our consistency maintenance techniques in Section

2. Section 3 presents our experimental results, and finally,

Section 4 presents our conclusions.

2. Consistency Techniques for P2P Gnutella

File Sharing Networks

Peer-to-peer file sharing networks provide an infrastruc-

ture for communities to share storage and popular files. Our

work is focused on the widely used decentralized system–

Gnutella [4]. In Gnutella, peers are organized into an over-

lay network, where each peer is connected to some num-



ber of neighboring peers over logical links; neighbors are

discovered by running a peer discovery protocol. A peer

can join or leave the network at any time. Queries propa-

gate through the overlay network via flooding; the reach of

a query message is limited by a time-to-live (TTL) value,

which is decremented at each hop. The information (name,

size, peer ID, etc) of matching files are transmitted back to

the initiator through the reverse path. Files are download

using the HTTP protocol.

With this background, we now present techniques for

maintaining consistency of replicated files in a P2P net-

work. We assume that each file in the system has a unique

owner. Modifications to a file can only be made by its

owner. While this assumption may seem overly restrictive,

it is not—any user (peer) may modify a file, but upon doing

so, it is required to transmit these modifications to the owner

to “commit” the changes. This ensures that the owner al-

ways has the most up-to-date version of the file at all times.

Each file is also associated with a version number; the ver-

sion number is incremented by the owner upon each update.

Since a file may be arbitrarily replicated at different peers,

upon a modification, the replicas will need to be made con-

sistent with the version at the owner peer. We present three

different techniques for doing so in the remainder of this

section.

2.1. Push: Ownerinitiated Consistency

In the owner-initiated approach, the owner broadcasts an

invalidation message upon each update to a file (alternately,

the new version of the file may be broadcast). The broad-

cast message propagates through the P2P overlay like query

or ping messages—the owner forwards the message to its

neighbors, who then propagate the message to their neigh-

bors and so on until the TTL limit is reached. Upon receiv-

ing an invalidation message, a peer checks its shared cache

and invalidates the file if the version number of the cached

copy is smaller than the version number specified in the in-

validation message.

The main advantage of such a push-style approach is its

simplicity and stateless nature. The limitation though is

that the broadcast nature of the technique increases the con-

trol message overhead substantially, especially for objects

cached only at a few peers. While a push based approach is

suitable for a static P2P network, the following limitations

arise in dynamic networks:

1. Not all the peers in the network may receive the broad-

cast messages, since network dynamics can temporar-

ily partition or increase the diameter of the network.

2. Peer that are disconnected don’t receive invalidation

messages and will share stale files upon reconnection.

Based on the above observations, we conclude push

alone is not sufficient for maintaining consistency in a large-

scale Gnutella network. Next, we present a pull-based ap-

proach for maintaining consistency.

2.2. Pull: Peerinitiated Consistency

A pull approach puts the burden of consistency mainte-

nance on individual peers. In this approach, a peer polls

the owner to determine if a file is stale. Different policies

can be used to determine when and how frequently to poll

the owner; we outline one such policy in this section. Un-

like push, distant peers can still achieve good consistency

in the pull approach and the approach is less sensitive to the

choice of TTL values, network size and the connectivity of

a peer [11].

The following information must be stored at each peer

for pull-based consistency maintenance: (i) the version

number and/or last modification time of a file, (ii) the IP

address of the owner and (iii) the consistency status. The

consistency status of a file can take one of three values:

(i) valid, indicating the file is consistent with the version

at the owner, (ii) stale, indicating that the file is older than

the version at the owner, and (iii) possibly stale, indicating

that the file could possibly be stale but the peer is unable

to determine the actual status since the owner peer is un-

available (i.e., has left the P2P network). Observe that a

pull-based approach is more resilient to dynamic joins and

leaves. Upon rejoining the network, a peer can poll the own-

ers of all cached files to check if these files were updated in

the interim, and thereby ensure consistency of shared files.

Adaptive Polling: In this policy, a peer dynamically

varies the polling frequency based on the update rate for the

file—frequently modified files are polled more frequently

than relatively static files. The notion of adaptive polling

has been explored in the context of web cache consistency

[6, 7] and we use a similar idea here.

A time-to-refresh (TTR) value is associated with each

file. The TTR denotes the next time instant the peer must

poll the owner, and thus, determines the polling frequency.

The TTR value is varied dynamically based on the results

of each poll message. The TTR value is increased by an ad-

ditive amount if the file doesn’t change between successive

polls. In the event the file is updated since the last poll, the

TTR value is reduced by a multiplicative factor. In essence,

an additive increase multiplicative decrease (AIMD) algo-

rithm is used to probe for the update rate. A key advantage

of the technique is that it can adapt to changing update rates

by recomputing the TTR value after each poll.

To precisely define this technique, if a file has not

changed between two polls, we set

TTR = TTR

old

+ C (1)

2



where C, C > 0, is an additive constant. If the file was

modified, then

TTR = TTR

old

=D (2)

whereD,D > 1 is the multiplicative decrease constant. Af-

ter the above computation, the TTR is bound by a maximum

and minimum value to prevent the TTR from becoming very

large or very small, both of which can be problematic. Thus,

TTR = max(TTR
min

;min(TTR
max

; TTR)) (3)

This TTR value is used to determine the time of the next

poll. Such an adaptive TTR technique has the following

advantages: (1) A peer can tune parameters C and D to de-

termine how quickly the TTR is increased or decreased after

each poll; (2) Only the most recent TTR and the last modi-

fication time (i.e., version number) needs to be stored with

each file, which result in a very small per-file state space

overhead; and (3) The technique can handle dynamic joins

and leaves. Upon rejoining the network, the peer simply

resets the TTRs of all cached files to TTR
min

.

2.3. Hybrid Push and Adaptive Pull Technique

A push-based technique can provide good consistency

guarantees for peers that are online and reachable from the

owner. Pull, on the other hand, is better suited for dynamic

networks but provides weaker guarantees—the consistency

guarantees in pull are crucially dependent on the effective-

ness of polling. Push can be combined with the adaptive

pull approach in a hybrid technique that combines the best

features of the two approaches.

The push part of the hybrid approach works exactly as

the invalidation-based push technique. In addition, the hy-

brid technique requires peers to occasionally poll the owner

to check whether the file was updated. Generally, it is dif-

ficult to achieve the ideal scenario where only peers who

miss an invalidation message poll the owner, but we can

modify the adaptive pull technique to make the polling less

aggressive. Less aggressive polling reduces wasted polls

from peers who are within reach of the owner. We make the

following modifications to the adaptive pull technique:

In addition to adapting the TTR to the update rate, we

take into account the number of active neighbors of a peer

when computing the TTR. In general, a peer should poll

more frequently when the network sees frequent joins and

leaves, since frequent changes to the overlay topology in-

creases the probability of missing an invalidate message.

Similarly, the peer should poll less frequently when the net-

work is stable. We use the number of active neighbors of

a peer as an indicator of the network dynamics. Suppose

that a peer has N
onn

active connections to its neighbors

and let N
avgonn

denote the average connectivity of a peer

in the network (most P2P systems use N
avgonn

as a pre-

defined parameter to ensure good connectivity—upon join-

ing, a peer attempts to create logical links to these many

other peers). In such a scenario, the TTR is chosen more

aggressively when the number of neighbors drops below av-

erage and is made larger when a peer is well-connected and

has more neighbors than the average peer.

Thus, after computing the TTR in Equation 2, the TTR

is further tuned as

TTR = TTR+ (1 +

N

onn

�N

avgonn

N

avgonn

)� � (4)

where � is a constant. The TTR is decreased if the peer has

a small number of neighbors and increased otherwise. Like

before, this TTR value is constrained by the maximum and

minimum allowable TTR values TTR
max

and TTR
min

.

The TTR value can also be updated upon receiving a

push-based invalidation message. The peer can mark the

stored copy as stale and decrease the TTR based on Equa-

tion 2. This TTR is used for future polls if the file is subse-

quently refreshed by the user.

By combining push and poll, the approach is able to pro-

vide good consistency guarantees to reachable peers, while

accommodating the needs of distant peers via pull. Further,

our modified TTR computation technique can adapt the

TTR value to network dynamics and poll more frequently

in the presence of frequent joins and leaves. We have mod-

ified the Gnutella protocol to incorporate these consistency

techniques; implementation details and implementation ex-

periments may be found in [11].

3. Experimental Evaluation

In this section, we demonstrate the efficacy of our tech-

niques using simulations. We first present our experimental

methodology and then our experimental results.

3.1. Experimental Methodology

Simulation Environment: We have designed an event-

based simulator to evaluate our cache consistency tech-

niques. Our simulator simulates an overlay network of

Gnutella peers. We borrow heavily from recent measure-

ments studies [8, 9, 10] to initialize various simulation pa-

rameters such as link bandwidths, network diameter, node

connectivity, session times, file popularity, etc. The de-

fault values of various parameters used in our simulations

is listed in Table 1.

While measurements of query rates and file downloads

are available from recent studies, realistic distributions of

file update rates are not available since current P2P systems

only share static files. Consequently, we use update dis-

tributions of web pages [1, 2] to be a reasonable indicator

3



Parameter Description Default Value

L

sim

Length of simulation 10 hours

F

enable

This flag turns on/off the failure

mode

[FALSE, TRUE]

R

f

Percentage of maximum offline

nodes

50%

I

f

Average time between succes-

sive disconnections

5 seconds

D

f

Average offline duration 2 hours

I

topohk

Average time between succes-

sive topology checks

5 minutes

Table 1. Parameters for the dynamic network

environment

of updates in P2P environments. Specifically, we assume

four types of files: highly mutable, very mutable, mutable,

and immutable. Each category has a different mean update

rates. The percentage of the files in each category and the

mean update rate in each category is (0.5%, 15 sec), (2.5%,

7.5 min), (7%, 30 min), and (90%, 1 day).

Performance Metrics: We use a metric called the false

valid ratio to evaluate various consistency techniques. The

false valid ratio is the fraction of query responses or down-

loaded files that return a stale file (i.e., are falsely reported

as valid by their peers). The query false valid ratio (QFVR)

is the fraction of query responses that list stale files. The

download false valid ratio (DFVR) is the fraction of the

downloaded files that are stale. The false valid ratio for

queries and downloads should be as close to zero as pos-

sible.

Simulated Network Environment: Our simulations are

performed in a dynamically changing P2P network. We as-

sume peers leave and rejoin the network randomly, based

on the three parameters R
f

, I
f

, and D
f

, as defined earlier.

This situation is close to the Gnutella network in use to-

day. Since the memory and computation overhead required

to run large-scale simulations are prohibitive. Unless spec-

ified otherwise, we assume a smaller network consisting of

500 peers and 5000 objects. While a 500 peer network is

small for many P2P studies, it is adequate for studying con-

sistency techniques.

In a dynamic network, peers will frequently leave and re-

join the network. When a peer leaves the Gnutella network,

it tears down all connections to its neighbors. This causes

each of its neighbor to lose one of their active connections.

In the scenario where many peers leave the network, the

network may become partitioned. To overcome this draw-

back, actual Gnutella implementations [12, 5, 13] let a peer

form new links with other active peers if a neighbor leaves

the network. To simulate this behavior, we implement a

topology checking process that periodically checks the con-

nectivity of each peer and constructs new logical links if a

peer has fewer neighbors than a threshold.

3.2. Simulation Results

3.2.1. Impact of Interval Between Successive Topology

Checks. In this section, we study the effects of topology

checking process by varying the I
topohk

values from 5 sec-

onds to 170 seconds. This parameter effectively determines

the delay between a broken connection and the instant when

a new connection is formed by a peer. Observe that this pa-

rameter only impacts push, since other experiment in [11]

showed that the connectivity of the overlay does not impact

pull. Hence, we focus on the push and the hybrid push-

pull approach. Figure 1(a) and 2(a) show the query FVR

and the download FVR for the two approaches. As shown,

the longer the delay for replacing broken links with new

neighbors, the worse the performance of push. In contrast,

the hybrid approach is unaffected by the topology changes,

since the approach can resort to pulls when invalidates do

not reach a peer.

3.2.2. Impact of the Dynamics of the Gnutella Net

work. To understand the effects of the dynamics of the

Gnutella network, we first vary the fraction of offline peers

R

f

from 5% to 50% and measure the impact on the QFVR

and DFVR. As shown in Figure 1(b) and 2(b), push can

provide better consistency guarantees than a pure pull ap-

proach, even in a dynamic network. The FVRs degrade as

the fraction of offline nodes increases. However, the hybrid

approach outperforms both push and pull, since it employs

a combination of the two and can employ pull in scenarios

where push is ineffective. The approach can provide good

fidelity and is relatively unaffected even when the fraction

of offline nodes is as high as 50%.

Next, we vary the time between successive disconnec-

tions I
f

. Intuitively, as I
f

increases, fewer nodes leave the

network. The results are similar to the previous scenario

(see Figure 1(c) and 2(c)). Push outperforms a pure-pull ap-

proach; both techniques yield better consistency guarantees

in more stable networks. Like before the hybrid approach

performs well and is relatively unaffected by the dynamics

of the network.

Overall, our results demonstrate that a hybrid push-pull

approach works well in highly dynamic P2P networks and

can provide good fidelity at a cost that is comparable to a

pure push approach.

4. Concluding Remarks

While current of peer-to-peer systems share predomi-

nantly static files, we argued that future peer-to-peer net-

works will support sharing of files that are modified fre-

quently by their users. We presented techniques to maintain

temporal consistency of replicated files in a peer-to-peer

network. We considered Gnutella and presented techniques

4



0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120 140 160 180

Q
ue

ry
 F

al
se

 V
al

id
 R

at
io

Time between successive topology checks (secs)

Npeers=500, TTL=8, 
Iquery=1sec, Iupdate=2secs, If=5secs, Rf=50%, Df=2hrs

Push
Push with Adaptive Pull

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50
Q

ue
ry

 F
al

se
 V

al
id

 R
at

io

Percentage of Maximum Offline Nodes

Npeers=500, TTL=8, Iquery=1sec, Iupdate=2secs, If=5secs, Df=2hrs

Adaptive Pull
Push

Push with Adaptive Pull

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250 300

Q
ue

ry
 F

al
se

 V
al

id
 R

at
io

Average time between successive node disconnections (secs)

Npeers=500, TTL=8, Iquery=1sec, Iupdate=2secs, Rf=50%, Df=2hrs

Adaptive Pull
Push

Push with Adaptive Pull

(a) Topology Checks (b) Maximum Offline Nodes (c) Node Disconnections

Figure 1. Query False Valid Ratio

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140 160 180

D
ow

nl
oa

d 
F

al
se

 V
al

id
 R

at
io

Time between successive topology checks (secs)

Npeers=500, TTL=8, 
Iquery=1sec, Iupdate=2secs, If=5secs, Rf=50%, Df=2hrs

Push
Push with Adaptive Pull

0

0.005

0.01

0.015

0.02

0.025

0.03

0 5 10 15 20 25 30 35 40 45 50

D
ow

nl
oa

d 
F

al
se

 V
al

id
 R

at
io

Percentage of Maximum Offline Nodes

Npeers=500, TTL=8, Iquery=1sec, Iupdate=2secs, If=5secs, Df=2hrs

Adaptive Pull
Push

Push with Adaptive Pull

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300

D
ow

nl
oa

d 
F

al
se

 V
al

id
 R

at
io

Average time between successive node disconnections (secs)

Npeers=500, TTL=8, Iquery=1sec, Iupdate=2secs, Rf=50%, Df=2hrs

Adaptive Pull
Push

Push with Adaptive Pull

(a) Topology Checks (b) Maximum Offline Nodes (c) Node Disconnections

Figure 2. Download False Valid Ratio

for maintaining consistency in Gnutella even when peers

containing replicated files dynamically join and leave the

network. We presented extensions to the Gnutella protocol

to incorporate our consistency techniques and implemented

them into a Gtk-Gnutella prototype. An experimental eval-

uation of our techniques showed that: (i) a hybrid approach

based on push and pull achieves high fidelity in highly dy-

namic P2P networks and (ii) the run-time overheads of our

techniques are small, making them a practical choice for

P2P networks.

References

[1] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Leases: A

Strong Consistency Mechanism for the World Wide Web.

In Proceedings of the IEEE Infocom’00, Tel Aviv, Israel,

March, 2000.
[2] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache

Consistency in a WAN. In Proceedings of the USENIX Sym-

posium on Internet Technologies (USEITS’99), Boulder, CO,

October 1999.
[3] J Chu, K Labonte, and B Neil Levine, Availability and Lo-

cality Measurements of Peer-to-Peer File Systems, Proc.

SPIE ITCom: Scalability and Traffic Control in IP Networks

II Conference, July 2002.
[4] The Gnutella Protocol Specification v0.4, Clips2 Distributed

Search Solutions, http://dss.clip2.com.

[5] The KaZaA website, http://www.kazaa.com/

[6] R. Srinivasan, C. Liang, and K. Ramamritham, Maintain-

ing Temporal Coherency of Virtual Data Warehouses, The

19th IEEE Real-Time Systems Symposium, Madrid, Spain,

December 2-4, 1998

[7] B. Urgaonkar, A. Ninan, M. Raunak, P. Shenoy and K. Ra-

mamritham, Maintaining Mutual Consistency for Cached

Web Objects, In Proceedings of the 21st International Con-

ference on Distributed Computing Systems (ICDCS-21),

Phoenix, AZ, April 2001

[8] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the

gnutella network: Properties of large-scale peer-to-peer sys-

tems and implications for system design. IEEE Internet

Computing Journal, 6(1), 2002.

[9] S. Saroiu, P. Gummadi, and S. Gribble, A measurement

study of peer-to-peer file sharing systems, In Proceedings

of Multimedia Computing and Networking 2002, January,

2002.

[10] K. Sripanidkulchai, The popularity of Gnutella queries and

its implications on scalability, Technical Report, February

2001.

[11] J. Lan, X. Liu, P. Shenoy and K. Ramamritham, Cache Con-

sistency Techniques for Peer-to-Peer File Sharing Networks,

Technical Report, University of Massachusetts, June 2002.

[12] Limewire web site, http://www.limewire.com/

[13] GTK-gnutella web site, http://gtk-gnutella.sourceforge.net/

5


