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Abstract

On-line decision making often involves processing significant amount of time-varying data. Examples of time-

varying data available on the Web include financial information such as stock prices and currency exchange rates,

real-time traffic, weather information and data from process control applications. In such environments, typically

a decision is made whenever some function of the current value of a set of data items satisfies a threshold criterion.

For example, when the traffic entering a highway exceeds a pre-specified limit some flow control measure is

initiated; when the value of a stock portfolio goes below a comfort level, an investor might decide to rethink his

portfolio management strategy. In this paper we develop data dissemination techniques for the Web where such

queries access data from multiple sources. Key challenges in supporting such Continuous Threshold Queries

lie in meeting users’ consistency requirements while minimizing network and server overheads, without the loss

of fidelity in the responses provided to users. We also show the superior performance of our techniques when

compared to alternatives based on periodic independent polling of the sources.

1 Introduction

1.1 Motivation

An increasing fraction of data on the web is time-varying (i.e., varies continuously with time). Examples of time-

varying data includes financial information such as stock prices and currency exchange rates, real-time traffic,

weather information and data from process control applications. Time-varying web data is frequently used for

online decision making, and in many scenarios, such decision making involves multiple time-varying data items,

possibly from multiple independent sources. Examples include a user tracking a portfolio of stocks and making

decisions based on the net value of the portfolio. Observe that computing the overall value of the portfolio at any

instant requires up-to-date values of each stock in the portfolio. In some scenarios, users might be holding these

stocks in different (brokerage) accounts and might be using a third-party aggregator, such as yodlee.com, to provide

them a unified view of all their investments. The third-party aggregator assembles a unified view of the portfolio

by periodically gathering and refreshing information from each individual account (source), all of which may be

independent of one another. If the user is interested in certain events (such as a notification every time the value

of the portfolio increases or decreases by $1000), then the aggregator needs to periodically and intelligently refresh

the value of each stock price to determine when these user-specified thresholds are reached. More formally, the

aggregator runs a continuous query over the portfolio by intelligently refreshing the components of the portfolio



from their sources in order to determine when user-specified thresholds are exceeded. We refer to such queries as

Continuous Threshold Queries (CTQ). Other examples of CTQs include: a decrease in the value of a stock portfolio

below a certain level might trigger a review of the portfolio investment strategy, or an increase in the traffic at an

intersection of a busy thoroughfare beyond a pre-specified limit might cause flow control measures to be initiated.

In this paper, we consider techniques for efficiently executing continuous threshold queries at a proxy. Much of the

prior work has assumed that it is difficult to cache time-varying data at a proxy, and consequently, requests for these

data items as well as queries on these data items are handled directly by the server (data source). Such an approach

has two important limitations. First, since continuous threshold queries are compute-intensive (due to the need to

continuously evaluate the query condition), the server could become a bottleneck, and thereby, limit the scalability

of the system. Second, a pure server-based approach makes CTQs on data items from multiple independent sources

impossible (for example, the server-based approach is unfeasible in the case where a user specifies a query on a stocks

held in multiple independent accounts). Executing queries at a proxy eliminates both restrictions—the approach is

scalable, since computations are offloaded from the server to proxies, and queries on data items from multiple

sources become feasible. In addition, a proxy-based approach improves user response times [21, 22]. However,

such an approach raises new research challenges. The key challenge is to ensure that the results of the query are no

different from the case where the query is handled by the server (i.e., correctness of the results should be ensured). To

do so, the proxy should ensure that cached values of time-varying data items are temporally coherent with the source.

In this paper, we address these challenges by presenting (i) a suite of data dissemination algorithms to efficiently

disseminate time-varying data items from servers to proxies (observe that a naive approach that disseminates every

update to a frequently changing data item can have a prohibitive overhead), and (ii) techniques to maintain coherency

of cached, time-varying data items with the server. Together, these techniques enable an efficient implementation of

CTQs at a proxy.

In the rest of this section, we provide a precise definition of the notion of continuous threshold queries and then

outline the research contributions of this paper.

1.2 Continuous Threshold Queries: An Introduction

A CTQ Q(D;N ;T ) operates on data items d

1

, . . . , d
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2 D and informs the invoker whenever the following

inequality holds.
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2 N are the weights attached to the data items. The left hand side of the

inequality is referred to as the value of the CTQ. So using such a CTQ a user can be informed whenever a CTQ value

exceeds the specified threshold.

Thus, in our example of portfolio tracking, the user is notified whenever the value of the stocks at the source

exceeds a specified threshold. That is, whenever

X

i2portfolio

S

i

(t) � n

i

� threshold (2)

where S

i

(t) denotes the current price of stock i at the source and n

i

denotes the number of stocks of i held in

the portfolio. In the event that this CTQ is executed at a proxy rather than the server (source), then the following

inequality should hold at the proxy whenever the above inequality holds at the server:

X

i2portfolio

P

i

(t) � n

i

� threshold (3)

where P
i

(t) denotes the (cached) value of stock i at the proxy at time t. Hence the proxy needs to dynamically track

changes in the stock price to successfully execute the CTQ.
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1.2.1 Fidelity of CTQs

We use a metric refereed to as fidelity to measure the accuracy of the CTQ executed by a proxy with that at the

server. Two kinds of inaccuracies can result when a CTQ is executed by a proxy: (i) false positives, where the proxy

detects that the threshold has been exceeded when, if fact, it hasn’t, and (ii) false negatives, where the threshold is

exceeded at the server but the proxy fails to detect it. Between the two, it is more challenging and more important to

eliminate (or at least minimize) false negatives—false positives can always be re-verified by simply refreshing the

values of all cached data items from their sources, but no such solution is available for false negatives.

To quantify the misperceptions, we define fidelity of the portfolio to be the total length of time for which the CTQ

state at the client is correct, normalized by the total length of time for which the CTQ is executed In addition to

fidelity, another measure of evaluating the mechanism is to measure the number of false positives and false negatives

that have occurred.

1.3 Coherency of Data Items

Notice that if the CTQ at the server (i.e., Eq 1) is not satisfied at a particular instant t, then the exact values of data

items cached at the proxy, P
i

(t), need not correspond to S
i

(t), the values at the server (it is sufficient for the proxy

to know that the CTQ is not satisfied). In other words, the proxy needs to be aware of only those updates to the

data items that cause the CTQ value to exceed the threshold at the server. This key observation allows us to reduce

the number of updates to data items that need to be propagated from the server to the proxy—by only propagating

“interesting” updates, i.e., those likely to cause the CTQ’s value to exceed the threshold, a proxy can efficiently

execute CTQs with a minimal loss of accuracy. Further, the coherency requirements of individual data items can be

derived from the specification of the T associated with the CTQ, where the derived data coherency requirements are

sufficient to satisfy the CTQ’s threshold specifications.

1.4 Contributions of this Paper

In this paper, we introduce a new class of continual queries, referred to as continual threshold queries, and present

efficient techniques to implement CTQs at a proxy. To achieve this objective, we address the following important

questions.

1. How should one derive the coherency requirement of each of the cached data items used by the CTQ ?

The coherency requirement associated with a data item depends on (a) the overall contribution of the data item

to the CTQ’s result and (b) the threshold value associated with the CTQ. In this paper we develop techniques

to determine the data coherency requirements to ensure correct execution of the CTQs.

2. How should the (derived) coherency requirement associated with each item be ensured?

To maintain coherency of the cached data so that, each cached item must be periodically refreshed with the

copy at the server. In this paper we demonstrate that, in the case of CTQs, using standard techniques, such as

pull and push, for individually retrieving each of the data items is not efficient - additional mechanisms must

be employed which exploit the fact that the data items that are needed to execute a CTQ form a semantic unit.

Note that a user is interested only in the fidelity of the CTQ and not the exact values of the d
i

’s. Hence as long as a

proxy is correctly informed about the value of a CTQ, even if a d
i

is changing very rapidly there is no need to follow

these changes frequently. This is a key observation that is exploited by our novel techniques.

The Pull-Based CTQ Execution Approach (PullCEA) outlined in Section 2 makes use of this fact to reduce the

network overhead without loss of fidelity. Here, a proxy dynamically changes the coherency requirement of a data

item so that, indirectly, the TTR calculated by the Adaptive TTR algorithm is adjusted based on whether or not the

value of the CTQ is close to the threshold. That is, one possible approach to the two problems mentioned earlier in
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this section is to use the proxy-based PullCEA to dynamically choose the coherency of individual data items and

use the Adaptive TTR Algorithm to maintain the coherency requirements.

An alternative is to use a Push-Based CTQ Execution Approach (PushCEA) with push-based sources, outlined

in Section 3. Here a proxy calculates the coherency requirement of data items and communicates them to the data

sources. In contrast with pull-based techniques, these offer better fidelity for individual data items and hence for the

CTQs.

Unfortunately, a push based approach requires that a source should maintain the coherency requirements of the

data items that it serves. This consumes state space at the server and is also prone to scalability and resiliency

problems. An intelligent combination of these two is hence called for and is the subject of Section 4. We develop

a high performance Hybrid CTQ Execution Approach (HyCEA) that dynamically categorizes CTQ’s data items into

those needing pull vs. those needing push. These are aimed at reducing the state space requirements and resiliency

and scalability problems of a push based approach while retaining its fidelity maintenance properties.

In Sections 2 through 4 we describe the three approaches and experimentally evaluate their performance using

CTQs defined over real-world traces of dynamically changing data (specifically, stock prices). Our evaluations show

that by dynamically tracking the changes to data item values and by judicious combination of push and pull ap-

proaches we can obtain the best of all possibilities and achieve high fidelity and scalability at low network overheads

and source loads.

We end the paper with a discussion of related work in Section 5 and a summary of this paper in Section 6.

2 The Pull-Based CTQ Execution Approach (PullCEA)

PullCEA is entirely pull-based and does not need any special support at servers (and hence, is compatible with

any HTTP server). The algorithm dynamically computes the coherency requirements of each data item based on its

“contribution” to the overall value of the CTQ—data items that contribute a larger fraction of the overall value are

given a tighter coherency requirement, denoted henceforth as C, which enables the proxy to track that data item with

greater accuracy. The algorithm uses Cs to determine how frequently to refresh (pull) the new value of each data

item—data items with tighter (smaller) coherency requirements are refreshed more frequently.

2.1 Initial Allocation of Coherency Requirements to Data Items

After a new CTQ is specified to the proxy, our algorithm first determines the coherency requirement for CTQ’s data

items. To do so, our algorithm determines the potential amount by which each data item needs to change in order to

contribute to an overall change of T in the value of the CTQ. Thus, given the threshold T , our algorithm apportions

a part 
i

to each data item such that



1

� n

1

+ 

2

� n

2

+ : : :+ 

N

� n

N

= T (4)

The parameter 
i

is the C of data item i. Intuitively, if each data item changes by amount 
i

, CTQ’s value changes

by T . The challenge then is to determine an appropriate 
i

for each data item such that Equation 4 is satisfied. Our

algorithm determines 
i

based on the overall contribution of the data items to the value of the CTQ—data items that

have a larger contribution are given a smaller coherency requirement, implying that the proxy tracks those data items

with greater accuracy. Assuming a weight n
i

for data item i and p

i

as its value at the proxy, the weighted value of

the item is

v

i

= n

i

� p

i

(5)

In our stock portfolio example, v
i

denotes the total value of the ith stock, assuming that n
i

stocks, each with a value

p

i

are held.
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In such a scenario, the coherency requirement 
i

is computed as



i

=

P

n

j=1

v

j

� v

i

P

n

j=1

v

j

�

T

n

i

� (N � 1)

(6)

The larger the contribution of data item i (i.e., v
i

), the smaller the quantity

P

n

j=1

v

j

�v

i

P

n

j=1

v

j

, and the smaller the

resulting tolerance 
i

. The second factor T

n

i

�(N�1)

ensures that the computed 
i

s satisfy Equation 4.

To illustrate this process, consider a stock portfolio CTQ with T = 90.

Company A Data Company B Data

Number of stocks held n1 = 100 Number of stocks held n2 = 200

Price of each stock p1 = $10 Price of each stock p2 = $20

Using the above formula the coherency requirements are computed as follows:



1

=

20�200

10�100+20�200

�

90

100

= 0:72



2

=

10�100

10�100+20�200

�

90

200

= 0:09

Since the portfolio comprises of a larger number of stocks of company B, each of which is also priced higher, the

coherency requirement of stock B is more stringent than that of stock A.

2.2 Dynamic Adjustment of Coherency Requirements

After computing the initial coherency requirement 
i

for each data item, our algorithm adapts the coherency require-

ment to the dynamics of the data. Thus, the coherency requirement is decreased or increased depending on whether

the updates to the data item takes the CTQ towards or away from its threshold (i.e., T ). The algorithm consider four

possible scenarios.

� Scenario 1: The value of a data item increases by more than its coherency requirement 
i

. This triggers a

recomputation of the coherency requirements of all data items as outlined in Section 2.1 using a new threshold

T � 

i

� n

i

— since the query is closer to its threshold T by an amount 
i

� n

i

, all coherency requirements are

made more stringent to enable more accurate tracking. This also reduces the chances of false negatives.

� Scenario 2: Changes to a data item take the query away from its threshold T . Such changes are less interesting

to a proxy, since it will take longer for the threshold T to be triggered. Specifically, the accuracy with which

the object is tracked is reduced by making the coherency requirement less stringent. Thus, 
i

is assigned



i

� , where  > 1.

� Scenario 3: The data item is changing very slowly. Since there are relatively few changes to the data item,

the proxy can relax the coherency requirement for the data item. Specifically, if the change in the value of the

data item has not exceeded its coherency requirement even once within a timeout interval Æ, then its coherency

requirement is increased as 
i

= 

i

� , where  > 1.

� Scenario 4: The data item sees a sudden change after a long period of no changes. Since the coherency

requirement is gradually relaxed when an object changes slowly, a subsequent sudden change causes the

proxy to sharply reduce the coherency requirement. Thus, the requirement is decreased as 
i

= 

i

��, where

0 � � � 1.

To ensure that the coherency requirement does not take very large values (which can cause a proxy to miss changes

of interest), our algorithm imposes an upper bound on the value of 
i

. Hence, after each of the above scenarios, the

algorithm ensures that 
i

= min(

i

; 

max

), where 
max

is a pre-specified upper bound.

After computing the coherency requirements, the proxy uses these requirements to determine how frequently to

refresh (poll) each data item from the server. The more stringent the requirement, the more frequent the refresh. This

is achieved using the following algorithm proposed in an earlier work [19].
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2.3 The Adaptive TTR Algorithm

To maintain coherency of individual data items, a proxy computes a Time To Refresh (TTR) for each data item. The

TTR denotes the next time that the proxy should refresh the data item from the server. The algorithm ensures that

the difference in the value of a data item at the server and a proxy is bound by the coherency requirement 
i

. That

is, 8t; jS
i

(t)� P

i

(t)j < 

i

. Our algorithm [19] provides these guarantees by polling the server every time the value

of the data changes by 
i

. This is achieved by computing the rate at which the data value changed in the recent past

and extrapolating from this rate to determine how long it would take for the value to change by 

i

. Thus, the TTR

is estimated as

TTR = 

i

=r (7)

where r denotes the rate of change of the data value and is computed as r =

jP

i

(t

urr

)�P

i

(t

prev

)j

t

urr

�t

prev

; t
urr

and t

prev

denote the times of the two most recent polls and P
i

(t) denotes the data values obtained from those polls. This TTR

estimate can be improved by accounting for changes that occurred prior to the immediate past; this is achieved using

an exponential smoothing function to refine the TTR value. That is, TTR = w � TTR+ (1�w) � TTR

prev

, where

w determines the weight accorded to the current and past TTR estimates. This TTR value is then constrained using

static upper and lower bounds and weighed against the smallest observed value of TTR thus far. Thus,

TTR = max(TTR

min

;min(TTR

max

; f � TTR+

(1� f) � TTR

observed�min

)) (8)

where f is a tunable parameter, 0 � f � 1.

Since this algorithm provides good fidelity for individual items and incurs a low network overhead [19], we use it

in our PullCEA algorithm.

In the next two sections we present the results of experiments conducted to evaluate the efficiency of our approach.

We first present our experimental methodology and then our experimental results.

2.4 Experimental Methodology

2.4.1 Simulation environment

Our experiments are conducted with stock portfolio tracking as examples of CTQs. All algorithms were evaluated

using a prototype server/proxy that employed trace replay. Our experiments assume that the proxy has an infinitely

large cache to store data and that the network latency in polling and fetching data items from the server is fixed (this is

because we are primarily interested in comparing network overheads based on the number of messages transmitted).

We assume that the value of C
max

for PullCEA is specified by the user. The proxy can keep track of the maximum

change in the data value seen so far and that can also be used for C
max

.

2.4.2 Traces used

The performance of the algorithm was evaluated using real-world traces. The presented results are based on data

value traces (i.e., history of data values) of a few companies (Table 1) obtained from http://finance.yahoo.com. The

traces were collected at a rate of 2-3 stock traces per second and can be considered to be real time traces. All the

experiments were done on the local intranet. To get some consistency with the results, synchronization was done

between access to different data sources. The number of stocks per portfolio was varied from 3 to 8 stocks.

2.4.3 Metrics

The algorithm was evaluated using the following metrics (i) number of polls (normalized by the length of the trace)

(ii) Fidelity of the portfolio. Fidelity can be measured based on the total time duration for which the proxy was
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Table 1: Traces used for the Experiment

Company #Items Max Value Min Value

Microsoft 7078 65.875 64.625

Veritas 10000 135.75 131.50

DELL 6852 43.75 42.87

CBUK 10000 8.625 8.25

INTC 10000 134.50 132.50

Cisco 10000 65.0 63.5

UTSI 4136 22.25 21.0

oblivious of the correct state of the portfolio.

f = 1�

Total out of syn time

Total trae duration

where the Total out of sync time is the time duration for which the proxy was oblivious of the right state of the

portfolio i.e., the time duration for which there were false negatives or false positives.

2.5 Experimental Results of PullCEA

The PullCEA was evaluated using the traces mentioned in table 1. To do so (unless otherwise stated) the algorithm

was configured using the parameters stated in table 2. The results were also compared with an approach in which

the Cs were calculated only initially and were kept unchanged irrespective of the relative changes in the values of the

data items. For evaluation of the algorithm the median of the portfolio was found offline and the threshold was set to

the median of the portfolio. The portfolio value crosses the median value maximum number of times and evaluating

the portfolio at this threshold helps us understand the behaviour of the algorithms in a better way.

We begin considering a simple portfolio comprising stocks of two companies, with 200 stocks of the first and 300

stocks of the second, with the total value being :

200 � prie of stok1 + 300� prie of stok2

Figure 1 shows shows the variation of the C with time for the two stocks. Also shown in the two figures are the

points in time when the portfolio (a) actually crosses the threshold (dots) and (b) the points in time when the portfolio

crossed the threshold at the proxy as per the PullCEA algorithm (For these two curves there is no significance to

Y-axis).

Symbol Meaning Value

Æ The time in seconds that governs the change in C value 60 seconds

 Factor by which the C is increased if 1.15

(a) Changes to a data item take the CTQ away from T and

(b) The data item is changing very slowly

� Factor by which the C is reduced if the CTQ 0.75

exceeds T after a long time

C

max

The maximum value of C $1

TTR

min

The minimum value of TTR 1 second

TTR

max

The maximum value of TTR 60 seconds

Table 2: Value of Parameters used in the experiments
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Figure 1: CTQ Changes and Variation of C with Time

We see that in this trace the portfolio exceeds the threshold at the beginning and towards the end of the observed

time interval. In the middle part i.e., from time = 600 to time = 2700 the portfolio does not exceed the threshold.

Hence the Cs of both the stocks gradually reach the C
max

value of $1. As the C reaches the C
max

value the polling

frequency is reduced and this reduces the network overhead. Around time = 2700, when the portfolio exceeds the

threshold after a long duration the C is reduced by the factor � (0.75). As the C decreases, the polling frequency

increases and this helps in tracking the state of the portfolio correctly. If the change in data value is less than the

C (for that stock) then C will again increase till it reaches the C
max

value. Thus the PullCEA tries to reduce the

network overhead by increasing the C (which in effect will reduce the polling frequency) when there is a lower

chance of the CTQ exceeding the threshold. However, at the same time it does not compromise on the fidelity by

reducing the C once it detects that the CTQ has exceeded the threshold.

In the experiments, the PullCEA detected that the portfolio had exceeded the threshold for about 1159 seconds

when the portfolio had actually crossed the threshold for 1016 seconds. This implies that there were a few false

positives but they are not as harmful as false negatives.

When the C is not adjusted dynamically, an additional 101 false positives were observed. The network overhead

of the latter was about 971 messages whereas the number of messages for PullCEA were only 551, a gain of about

43% in the network efficiency. Figure 2 shows the comparison of the network overhead incurred by PullCEA and

that when C is not adjusted dynamically. The network overhead has been normalized with respect to the total length

of the trace. The graph shows that the PullCEA has around 40% less network overhead. The graphs further reveal

that as the threshold value of the portfolio is increased, the network overhead goes on decreasing. As the threshold

of the portfolio increases the number of times that the portfolio crosses the threshold decreases. In the PullCEA the

number of pulls increases only when the threshold is reached. For the rest of the duration the PullCEA increases the

C of the data items so that the number of pulls is reduced. Hence as the threshold increases the pulls (i.e. the network

overhead) decrease due to reduced number of threshold crossings. In case where the Cs are allocated statically, the C

allocated to each of the data item increases with the increase in the threshold. With an increase in the C the value of

TTR calculated by the Adaptive TTR Algorithm increases and hence the network overhead reduces to some extent.

But the added decrease observed with PullCEA is not observed here. Since the static algorithm does not consider

the dynamics hence it is not as efficient as the PullCEA. The PullCEA was also evaluated with more data items

per CTQ and the results observed were consistent with that seen with a CTQ of two stocks.
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Figure 2: Comparison of the network overhead of PullCEA and static C Algorithm

2.6 Effect of varying the parameters of PullCEA

The PullCEA provides several tunable parameters, namely Æ; � and  that can be used to control the algorithms

behavior. This section illustrates the effects of varying these parameters on the fidelity offered by the algorithm and

on the network overhead.

If the portfolio value exceeds the threshold after remaining in the same state for Æ time then the C is pulled down

by factor �. If the factor Æ is increased then a larger amount of history will influence the C and the C will be decreased

more often. The figure 3 shows the comparison of the variation of the C for two different values of the Æ. As can be

seen in the figure 3(a) with larger Æ, the value of C increases gradually (observe the C values at the first two arrows).

In Figure 3(b) the C value increases more often (notice the C value near the second arrow). Thus with an increase in

the value of Æ the fidelity increases at the expense of larger network overhead.
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(a) Variation of the C with Æ = 120
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(b) Variation of the C with Æ = 60

Figure 3: Effect of change in Æ on C

If the portfolio exceeds the threshold after a long duration the C is decreased by the factor �. The portfolio can

exceed the threshold by either (a) a sudden momentary change in the data value of any of the stocks or (b) a change

in the data value that persists for a long duration. If the polling is infrequent then the first case will lead to false

positives. The factor � helps to avoid this. If the value of � is reduced then the C will reduce by a larger amount

and the chances of false positives will reduce. But if the change in the data value persists for a long duration then an

increase in the value of � will lead to unnecessary polling resulting in an increase in the network overhead. Figure

4 shows the effect of decreasing the value of �. A comparison of the two graphs reveals that in the figure 4(b) (with

9



smaller �) when the portfolio threshold is exceeded there is a sharp decrease in the C (compare the C values near the

arrow). It was observed that in the second case when the � was set to 0.65 the number of false positives decreased

sharply.
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Figure 4: Effect of variation of � on C

Having examined a pull-based approach to executing CTQs, we now move on to a push-based approach.

3 Push-Based CTQ Execution Approach (PushCEA)

In this section we present and evaluate PushCEA. For reasons that will become clear shortly, in addition to using a

push-based approach, here, Cs are represented in terms of coherency windows. A coherency window denotes the

upper and lower limit within which the value of data item may vary at the server without being updated to the proxy.

3.1 Algorithm

The algorithm is made up of the following steps:

� Initially each proxy calculates the coherency window for every data item depending on its contribution to

the CTQ as there is no history corresponding to the dynamics of the data. These coherency windows are

then informed to the corresponding sources. Whenever the value of a data item moves outside its coherency

window at the server, the server pushes the new value to the proxy. Section 3.1.1 explains this.

� When a new data value is pushed by a source to a proxy, the proxy adjusts its coherency window.This is

described in section 3.1.2 and does a fidelity check to ensure that the CTQ’s threshold specifications are met.

Let w
i

denote the coherency window of ith data item d

i

of the CTQ:

w

i

= < l

i

; u

i

>

where l

i

is the lower end of w
i

and u

i

is the upper end of w
i

. Thus if p
i

is the value of the data i at the proxy,

l

i

� p

i

< u

i

.

3.1.1 Initial allocation of coherency windows to data items

Given a coherency window, w
i

, its l
i

is initialised as (p
i

- 
i

) and u
i

is initialised as (p
i

+ 

i

) where 
i

is calculated as

in Section 2.1. The w
i

of each data item is adapted dynamically as the value of the data changes. How we achieve

this, is discussed next.
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Table 3: Parameters used in PushCEA

Parameter Purpose Value

� Determines the extent by which a C should be increased if the 1.5 - 2.5

new data value takes the CTQ in a direction away from the threshold

�

0

Determines the extent by which C should be changed if the 0.5 - 1.5

new data value takes a CTQ in a direction towards the threshold

� Used to determine fidelity. If it is close 1 - 2.5

to 1, it leads to high fidelity 1 for maximum fidelity

3.1.2 Dynamic redistribution of w
i

Whenever the value of a data at its source is updated and is not within its w
i

, the source pushes the new value to

the proxy. The recency in changes of the value of the data item signifies that the coherency window allocated to the

data item is not large enough to cover the variations in its value and hence needs to be given a larger window. This

will help in reducing the network overhead. However arbitrary increase in the coherency window is constrained by

the need to maintain fidelity. This problem can be analysed in the form of following cases: if the value of the CTQ

(a) moves away from the threshold (case 1),(b) moves towards the threshold and does not cross it (case 2) and (c)

moves towards the threshold and also crosses it (case 3). It is evident that the above cases cover all the possibilities.

1. When the CTQ moves away from the threshold (Case 1):

If the new value of the data moves the CTQ value away from the threshold (as shown in fig 5) the w

i

is

increased symmetrically. This will happen if

� The initial value of the CTQ was less than the threshold and the change in the data value reduces the

value of the CTQ further or

� The initial value of CTQ was more than threshold and the change in data value has increased the value

of CTQ further.

If the w
i

was initially < l

i

; u

i

>, it is changed to < � � l

i

; � � u

i

>. The client is interested in knowing only

the correct state of the CTQ. In the above two cases the client is correctly informed about the state of the CTQ.

As the data values are taking the CTQ away from changing its state, the source can afford to be less accurate.

Hence we increase the w
i

size to reduce the network overhead.

2. The CTQ value moves towards the threshold (Case 2):

If the new data value moves the CTQ towards the threshold the w
i

is not increased symmetrically.

If the most dynamic data (the one that has most recently changed) has changed to bring the CTQ close to the

threshold (as in fig 5), we can’t afford to increase its w
i

. Initially if the w
i

was < l

i

; u

i

> and p
i

has increased

to bring the CTQ closer to the threshold, the new w

i

is < � � l

i

; �

0

� u

i

> where �
0

is less than � so as to

maintain more accuracy in the upper limit of the data value. Similarly if the w
i

was < l

i

; u

i

> and p

i

has

decreased to bring the CTQ closer to the threshold, the new w

i

is < �

0

� l

i

; � �u

i

>. The effect of parameters

� and �

0

have been experimentally determined and the performance of the algorithm with variation in their

values is discussed in section 3.2.

3. The CTQ value crosses the threshold (Case 3): If the CTQ value crosses the threshold as a consequence of

the most recent change (as in fig 5) we stretch the w
i

so that the bound that is now closer to the threshold, is
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Figure 5: Different Cases for the Dynamic Redistribution of w
i

stretched by �

0

and the one that is now away from the threshold is stretched by �. Note that in this case we

swap � and �

0

with respect to case 2 because now the other bound is closer to the threshold. For instance,

if the initial w
i

was < l

i

; u

i

> and p

i

has increased to make the CTQ cross the threshold, the new w

i

is

< �

0

� l

i

; ��u

i

>. Since �
0

is less than � we maintain more accuracy near the threshold. Similarly if the w
i

was < l

i

; u

i

> and p
i

has decreased to bring the CTQ closer to the threshold, the new w

i

is < ��l

i

; �

0

�u

i

>.

Note that the new coherency windows are determined without taking the CTQ’s threshold specification. So,

before conveying the the recomputed window values to the sources, the proxy checks to make sure that CTQ value

is not above the threshold. If it is, then it chooses one or more data items and modifies their coherency windows so

that with the resulting windows, 100% fidelity is assured. The chosen data items are the largest contributors to the

excess in the CTQ value beyond the threshold.

Note that this 100% fidelity is ensured even with the worst case value of a data item, i.e., when the data item has

a value equal to one of the the extremum values of the window. This observation provides us some leeway in trading

off fidelity for network overheads. Specifically, even if we allow some coherency windows to be slightly larger than

is needed to maintain 100% fidelity, we may yet achieve close to 100% CTQ fidelity. This is achieved by using a

factor � (� 1) such that the effective CTQ threshold value is set to � times the specified value and the coherency

windows are determined (as discussed above) with this new relaxed threshold value. In Section 3.2 we study the

effect of � on fidelity and overheads and show that we can achieve a large drop in network overheads (and server

load) without any significant drop in fidelity by using this simple technique.
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3.2 Analysis of the PushCEA
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Figure 6: Variation with size of CTQ

  σ

0

5

10

15

20

1 1.5 2 2.5 3 3.5 4 4.5

N
o
rm

al
is

ed
 n

u
m

b
er

 o
f 

P
u
sh

 f
ro

m
 S

er
v
er

CTQ with 3 data items
CTQ with 7 data items

(a) Number of Pushes from Servers
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Figure 7: Nature of Network Overheads

In this section we evaluate the performance of PushCEA. Fig 6 shows the fidelity and network overheads of

two different CTQs, one using 7 data items and the other 3 data items, under changing �. From Fig 6(b) we see that

PushCEA can achieve very high fidelity for smaller values of � upto 1.5. However, in terms of network overhead,

the algorithm works wells only for small CTQ’s. As we increase the size of the CTQ, the network overhead for the

same fidelity level increases. Fig 7(a) explains why this is so. With an increase in number of stocks, the number

of pushes increase. Consequently, for every push from server the proxy recalculates the coherency windows for the

stocks and informs the new windows to the server. The number of coherency windows that need to be recalculated by

the proxy depends on the strategy explained above. From Fig 7(a) and 7(b), we observe that the ratio of the number

of messages from proxy to server and push messages from the server suffers a marginal increase with increase in

the size of the CTQ. This ratio signifies the number of coherency windows that need to be recalculated at the proxy

for every push from the server. This ratio is between 1 to 2 due to proper selection of data items whose coherency

window is decreased during fidelity check. In case the stocks are selected randomly, this ratio could be much greater

than 1 to 2.

This approach has an edge over the pull based approach because of the following:
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� It can be tuned to achieve very high fidelity as per individual needs. Values of � closer to 1 lead to high fidelity.

In case of network bottlenecks, we can use higher values of � and yet obtain close to 100% fidelity.

� It can be deployed over a multiple layer network where there are multiple proxies, one proxy serving the

other. If PullCEA is deployed in such a network, the fidelity experienced by an end user at level “n” will

be 92 � (0:92)

n% assuming that fidelity of PullCEA is 92%. Whereas in case of PushCEA, which can

achieve fidelity as high as 99%, the corresponding fidelity will be 99 � (0:99)

n% which is much higher.

� This approach takes care of abrupt changes in the price of a stock at the server because these will be notified

to the proxy if the latest price of a stock does not lie within its coherency window.

However this approach is not scalable. If the CTQ’s data set is very large, the network overhead increases. To

overcome the scalability problem, the proxy can resort to the use of pull based service for some of the data items

and push for the rest. This leads to the idea of combining pull and push based approaches for the efficient execution

of CTQs.

4 A Hybrid CTQ Execution Approach (HyCEA)

A simple way to combine the PullCEA with the PushCEA is to split the CTQ’s data items into two parts. The

PullCEA will then have a fraction of the threshold corresponding to data items allocated to it. But the problem

with this approach is that it can lead to unnecessary network overhead. Consider a case when the value of the data

items using the PushCEA is moving toward the threshold. Due to this the coherency windows will reduce and

a lot of changes in the data value will be notified to the proxy. At the same time if the value of the data items

using PullCEA moves in the opposite direction then as a whole the CTQ will not exceed the threshold. Hence the

advantage of considering the data items constituting the CTQ as a semantic unit is lost because unnecessarily the

data items using PushCEA incur overheads. Hence a better approach is needed. Such an approach is the HyCEA.

4.1 Calculation of Coherency Constraints for HyCEA

For the PushCEA, � and �
0

are instrumental in shaping the coherency window. Whereas for the PullCEA, � and

 are instrumental in shaping the C. In PullCEA, � is used to reduce the C of the data item if a change in its value

causes the CTQ to cross the threshold. This job is quite similar to that served by �

0

in PushCEA as it prevents

the coherency window from increasing inspite of a change in the data item value because the CTQ is close to the

threshold. Similarly we can draw a parallel between � and  as they both help in increasing the coherency window

(or C in case of pull) in case of increased changes in the value of the data item. This relation can be expressed as

follows:

� = (some scaling factor) � 

�

0

= (some scaling factor) � �

Let us see what happens if we keep this scaling factor as unity. In this case, we can calculate the Cs and coherency

windows directly from each other. Whenever there is a change in C or the coherency window we calculate the other

from it.

� for a change in the C of a data item under PullCEAwe assign it a new coherency window as < p

i

�C; p

i

+C >

where p
i

is the data value for the ith data item at the proxy.

� for a change in the coherency window of a data item under PushCEA we assign C as half of the coherency

window.
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Thus in HyCEA the coherency window of a data item using PushCEA is changed under the following circum-

stances

� The data value at the server moves out of the coherency window thereby increasing the interval

� It may be changed by the proxy

� If the C of the data item (calculated by the PullCEA) changes then this change is reflected, and the coherency

window is changed accordingly.

The C of a data item using PullCEA can be changed, if the coherency window assigned to it by the PushCEA

changes. Thus there is a perfect blend of the two approaches.

The Adaptive TTR Algorithm places an upper limit on the TTR. This ensures that the data items that use

PullCEA will be out-of-sync with the server by maximum TTR

max

seconds. Such a limit is also required for

the data items using PushCEA. Consider a scenario where the CTQ value is away from the threshold. The

PullCEA will increase the C value to reduce the network overhead. If this C influences the coherency window

then the window so obtained will be very large. In the absence of any upper limit on the inter-push duration, the

data value may never move out of the coherency window. This will have an adverse effect on the fidelity when the

value of the CTQ moves near the threshold. Hence to prevent fidelity reduction and to increase resiliency, we set

a maximum limit on the duration for which a proxy may not be informed about the latest value of a data item. In

case this limit L is reached, the server forces a data value to the proxy. This results in recalculation of the coherency

windows and thus better coherency results.

4.2 Distribution of data items between PullCEA and PushCEA

The Push connections will have a higher fidelity and hence it makes sense to give this service to the data items

with maximum fluctuation (hot data items). This helps in reducing the network overhead as the hot data items have

a greater contribution to the network overhead. In the simplest approach the allocation of the data items that use

PushCEA can be done statically depending on the contribution of the data item to the entire CTQ; those data items

that have a higher initial value or whose number of data items are larger have a greater influence on the CTQ. Such

data items should be maintained more accurately and hence are given push connections. But the main drawback in

this method is that it does not consider the dynamics of the data. It can happen that initially the value of a data item

may be larger but later due to fluctuations the value may drop resulting in the contribution of the data item getting

reduced. Hence there is a need to periodically adjust the data items that use PushCEA to cater to the varying

dynamics of the data. The proxy can keep track of the changes during a learning period. PullCEA calculates the

C’s of all the data items. The proxy keeps track of the average C’s for all the data items during the learning period.

At the end of this period those data items whose C is below the threshold defined by

C

min

+ pp� (C

max

�C

min

)

where C

min

is the minimum C seen during the evaluation period, C
max

is the maximum C seen during the

evaluation period and pp is the percentage of push connections for the CTQ.

If none of the data items of the CTQ have C below this threshold then all the data items will get a pull connection

thereby saving a few push connections which can now be allocated to some other more deserving data items of the

same proxy (but for a different CTQ). Thus this approach adapts to the dynamics of the data, but it requires additional

history of the data items to be maintained at the proxy.
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4.3 Experimental results

In this section we evaluate the different approaches and show how each approach fares in terms of fidelity and

network overhead. The x-axis of the graph signifies the offset from the median. There were 7 to 8 data items in the

CTQ’s used for these experiments.

Figure 8 compares the fidelity and network overhead of the three algorithms namely PullCEA, PushCEA and

the HyCEA. From figure 8 it is evident that the HyCEA is able to maintain the network overhead to minimum

amongst all the approaches. In PushCEA, because of the state information at the server none of the interesting

changes are missed by the proxy. Hence the fidelity offered by PushCEA is maximum. HyCEA misses out

on some interesting changes, resulting in decreased fidelity than PushCEA. Because of these missed changes

the network overhead of HyCEA is the least. The other extreme to this approach is PullCEA which does a

lot of unnecessary pollings, as is evident from the high network overhead. With an increase in the threshold, the

network overhead of HyCEA is same as that offered by PushCEA and the fidelity offered is also comparable to

PushCEA. Hence for large threshold values HyCEA is most resilient approach and offers very good fidelity and

network characteristics. In all the curves it is observed that as the value of the threshold increases the fidelity goes

on increasing. This can be attributed to the fact that with an increase in the threshold value the number of times

that the CTQ actually crosses the threshold decreases. Hence all the algorithms are able to judge the state of the

CTQ in a better way. If the threshold is nearer to the median then the chances of the proxy being mis-informed are

more. Hence the coherency windows of the data items will be less and the C’s of the pull data items will be reduced

by PullCEA. Smaller coherency windows and C’s result in larger messages and hence the network overhead is

maximum at the median.
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Figure 8: Effect of Threshold Parameter

Figure 9 portrays the change in fidelity and network overhead with an increase in the number of push connections.

As the percentage of push connections is increased the proxy is able to judge the state of the portfolio more accurately

and hence the fidelity increases. A push connection sends data to the proxy only when a change in the data value

moves it outside the coherency window. On the other hand the pull connection has to estimate the data value at the

server and hence can have a lot of unnecessary messages. As a result the network overhead decreases as the number

of push connections is increased.

Figure 10 shows an interesting result about the network overhead and fidelity as the value of the L is changed.

The graphs show that there is little change in the network overhead with an increase in the value of the L, but the

fidelity goes on decreasing. As the value of the L is increased, the server sends periodic messages to the proxy

after larger intervals of time. This increases the chances of the proxy being uninformed for a longer period thereby

causing more fidelity violations.
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Figure 9: Behaviour of the algorithm with increasing push connections
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Figure 10: Performance of the HyCEA under different L

5 Related Work

The problem of consistency maintenance between a data source and cached copies of the data was first studied in

[2]. The paper discusses techniques where a source pushes updates to clients based on expiration times associated

with the data. Since then numerous efforts have investigated push-based dissemination techniques [1, 3, 5, 4, 8, 13],

however none of these techniques explicitly target time-varying data with associated coherency constraints.

More recently, the problem of consistency maintenance has been studied in the context of web caching and

several techniques such as client polling [7], adaptive time-to-live (TTL) values [17], server invalidation [11] and

leases [18, 24] have been proposed. These efforts typically assume that cached data is modified on slow time

scales (e.g., tens of minutes or hours) and are less effective at maintaining consistency of rapidly changing data

cached at proxies. Caching of dynamic content has been studied in [10] wherein a scheme based on push-based

invalidation and dependence graphs is proposed, while another effort has focused on availability and scalability by

adjusting coherency requirement of data items [9]. Neither effort has explicitly addressed coherency maintenance

for efficiently executing queries at a proxy.

Mechanisms for disseminating fast changing documents are proposed in [16, 15, 14]. The difference between

these approaches and ours is that they disseminate all updates to the document using Multicast, while we selectively

disseminate updates based on the coherency requirements of a data item. The concept of approximate data at the
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clients has studied in the context of stock price dissemination [25]; the approach focuses on individual stocks and

does not address the additional mechanisms necessary to track a portfolio of stocks.

Finally, our CTQs are a subset of the general class of continuous queries over dynamically changing data [12, 6].

Continuous queries in the Conquer system [12] are tailored for heterogeneous data, rather than for real time data,

and uses a disk-based database as its backend. NiagraCQ [6] focuses on efficient evaluation of queries as opposed to

temporally coherent data dissemination to proxies (which in turn can execute the continuous queries). A proxy-based

approach leads to better scalability.

In summary, none of the research efforts have focused on the infrastructure necessary for the temporally coherent

dissemination of time-varying data for efficient execution of CTQs at a proxy. Specifically, our approach is proxy-

based and (a) dynamically assigns coherency requirements to data items comprising the CTQ, (b) uses adaptive

dissemination mechanisms for executing the CTQ with high fidelity and a low cost.

6 Conclusions and Future Work

In this paper, we presented new techniques for monitoring and disseminating dynamic data to proxies where a proxy

is interested in executing continuous queries over a group of data items. Our overall approach requires some amount

of history to be kept, which can be easily supported by the proxy, as the proxy caters to less number of clients vis-a-

vis the server. A useful feature of our techniques is that they have several adjustable parameters which can be used

to tune to algorithm to get the desired fidelity and network overhead characteristics. The network overhead offered

by the PullCEA is around 40% less than that offered by the static C approach. ?? say something summarizing the

other approaches also ?? Our algorithms achieve good fidelity at low cost by considering the data items in a CTQ

as a semantic unit, since this reduces the dissemination overheads of all the data items needed for a CTQ if the data

values are changing such that there is very little chance of a CTQ’s threshold being exceeded..

CTQs queries can also be implemented by using other techniques such as PAP [20] and leases[23, 24]. Exploring

these possibilities is left as future work.

In practice a server will cater to many proxies, some of them catering to the same stock. This may result in

multiple coherency windows for the same stock being kept at the server. Another variation that is possible to our

approach is to keep track of the most precise approximation over all the CTQ’s instead of individual CTQ’s. In

such a case any violation in the value of the data at the server with respect to its minimum window forces the server

to broadcast the new value to all the proxies resulting in a network overhead of the order of O(m) where m is the

average number of proxies for each data item. A subsequent check by each proxy will cost O(m) computation (0(1)

for each proxy). In our case the state space required at the server is 0(m) but the network overhead is reduced to

only those which require this data value..
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