
Efficiently Maintaining Stock Portfolios Up-To-Date On The Web

Manish Bhide, Krithi Ramamritham
Laboratory for Intelligent Internet Research

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai, India 400076
manishb,krithi@cse.iitb.ac.in

Prashant Shenoy
University of Massachusetts

Amherst, MA 01003
shenoy@cs.umass.edu

Abstract

Consider a continuous query where a user wants to
be informed when the net worth of his/her stock portfolio
changes by more than a specified threshold. In this paper we
develop a data dissemination technique for the Web where
(a) such queries access data from multiple sources and (b)
the HTTP protocol – which is inherently pull based – is used
for accessing the sources. Key challenges in supporting
such queries – which also arise in a diverse set of contexts
including monitoring of patients, network traffic, and ex-
periments – lie in meeting users’ consistency requirements
while minimizing network and server overheads, without
the loss of fidelity in the responses provided to users. We
also show the superior performance of our technique when
compared to alternatives based on periodic independent
polling of the sources.

1. Introduction

Many popular financial sites cater to the dissemination
of stock prices to users (e.g., finance.yahoo.com). Users
accessing these sites typically track a group of stocks that
are of interest (referred to as their portfolio). Any query
on the portfolio, such as the computation of the total value
of the portfolio, requires these sites to first query a stock
quote server to determine the most up-to-date value of each
stock in the portfolio. Since financial data such as stock
prices vary with time, such sites do not cache such informa-
tion and prefer to poll the server for the most recent value of
each data item. These sites are further hampered by the lack
of effective mechanisms to maintain coherency of a cached,
time-varying data item with its server version. A server-
based approach is not viable because it is not scalable. To
alleviate this drawback, in this paper, we consider an ap-
proach where time-varying data items such as stock prices
are cached either at a proxy or by financial web sites. We

then propose techniques to maintain coherency of cached
data with the origin servers. Specifically, we consider co-
herency for a class of user queries that we refer to as port-
folio queries, where we attempt to track the total value of a
portfolio with a specified accuracy. Whereas developed in
the context of financial information such as stock prices, our
approach can also be used to answer similar queries on any
kind of dynamic data (e.g., traffic conditions, sensor data).
Our technique is entirely pull based and it requires no spe-
cial support from the server. Hence it can be readily used
with any server adhering to the HTTP protocol.

In the rest of the section, we (a) describe the problem
of temporal coherency related to portfolio queries, (b) show
the limitations imposed by HTTP protocol to process such
queries and then outline the key contributions of this paper,
namely, a technique to minimize the network overhead for
such kind of queries, with minimal loss of fidelity in the
responses provided to the users.

1.1. Maintaining the Temporal Coherency for Port-
folio Queries

Suppose users obtain their time-varying data from a
proxy cache. The caches that are deployed to improve user
response times [2, 3] must track such dynamically changing
data so as to provide users with temporally coherent infor-
mation. To maintain coherency of the cached data, each
cached item must be periodically refreshed with the copy at
the server. In the context of the HTTP protocol, which is
pull-based, several techniques, such as, Time To Live (TTL)
[8] and client polling [6] have been developed to to main-
tain coherency of cached data. In this paper we demonstrate
that, in the case of portfolio queries, using these techniques
for individually retrieving each of the data items is not effi-
cient - additional mechanisms must be employed which ex-
ploit the fact that the stocks constituting the portfolio form
a semantic unit.

Typically a user is interested in changes to his/her port-

folio that exceed a certain threshold. We call this threshold
the coherency requirement (). To illustrate, a user may
have 50 stocks of company A and 200 stocks of company B
and he may be interested in monitoring changes greater than
$100 in the portfolio. This $100 denotes the maximum de-
viation of the value of the portfolio known to the user com-
pared to its actual value at the server in the beginning. So,
the proxy from which a user’s needs are served 1 need not
keep track of each and every change in the individual stock
prices. Still, since the stock portfolio’s current value is de-
termined from the value ed for each of the stocks in the
portfolio, the technical question we answer in this paper is:
How should one derive the coherency requirement of each
of the stocks constituting a portfolio, given the coherency
requirement for the portfolio? The coherency requirement
associated with a data item depends on (a) the overall con-
tribution of the stock to the portfolio and (b) the coherency
requirement for the portfolio.

Let , and denote the value of an in-
dividual stock at the server, proxy cache and the user,
respectively. Then, to maintain coherency we should have

for each of the stocks, where is the
constraint allocated to each individual stock. Further in the
realm of portfolio queries, whenever the stock prices at the
source(s) are such that a user’s portfolio value exceeds the
specified threshold, the user should also be aware of this
fact. That is, the following equation should be satisfied

then

where is the current stock price at the server, is
the initial stock price at the server, is the current stock
price at the client, is the number of stocks.

It may happen that due to loss of coherency, the user may
perceive the wrong state for his/her portfolio. There are two
classes of misperceptions: (i) false positive, when a user
thinks that the threshold has been exceeded, whereas it is
well within the threshold, and (ii) false negative, when the
portfolio change has actually exceeded the threshold but the
user is unaware of this. In some sense, the latter could be
more harmful than the former because in the case of a false
positive the proxy can always verify the value of the port-
folio by polling all the stocks. But no such solution exists
in case of false negatives. So it is important to avoid or at
least minimize false negatives. To quantify the mispercep-
tions, we define fidelity of the portfolio to be the total length

1Techniques for disseminating data from proxies to end-users are not
considered here, since resources such as network bandwidth are often plen-
tiful on the proxy-user data path.

of time that the user correctly knew that the threshold was
reached (normalized by the total length of the observation)
i.e., the total time duration when there were neither false
positives nor false negatives. In addition to fidelity, another
measure of evaluating the algorithm is to measure the num-
ber of false positives and false negatives that have occurred.

1.2. Challenges in using HTTP to Maintain Co-
herency of a Portfolio

The HTTP protocol is inherently pull based. The prox-
ies need to frequently pull the data from the server based
on the dynamics of the data and the coherency requirement
of the user. The proxy can use the if-modified-since bit in
the HTTP header to track changes in the data value at the
server. Very few servers provide push support and this ser-
vice often comes at a price, namely space and computation
overheads at the server. Using push, the number of false
positives and false negatives can be made small, barring net-
work and computational delays. However, the servers have
to be re-engineered to deal with portfolio queries. In addi-
tion, if a portfolio consists of stock information served by
different servers, then the push approach will require coop-
eration between these servers, a requirement that may not
always be satisfiable. So, our goal is to work within the
standard HTTP protocol and use pulls intelligently to main-
tain the coherence of portfolios within user allowed thresh-
olds values.

As outlined earlier, the coherency requirement imposed
on each of the data items constituting a portfolio will de-
pend on (a) the overall contribution of the data item to the
portfolio and (b) the coherency requirement of the portfo-
lio itself. A very naive way to assign s to individual data
items would be to assign a small (i.e., stringent) coherency
to a data item that makes the greatest contribution to the
portfolio (and hence such a data item will be polled more
often). But the problem with this approach is that it does not
consider the dynamics of the data items. Depending on the
way the values of the various data items are changing the

s of each of the data items can be manipulated, thereby
saving a lot of network overhead. For example, consider a
portfolio consisting of 100 stocks of company A and 400
stocks of company B. Now if the company B stock hasn’t
changed for a long time and the company A stock sees a lot
of trading and hence its price fluctuates a lot, then the of
company A should be low and that of company B can be
high. This will help in reducing the false negatives and it
will also help in saving unnecessary pulls of the B’s stock.
Hence there is a need to judiciously assign the to each of
the data items depending on the dynamics of the data. How
to achieve this is the crux of the paper.

But this begs the following question: Given the of a
single data item, how and when should it be polled so that

the of this data item is maintained? We briefly answer
this question first and then move on to the problem of as-
signing s to the entities constituting the portfolio. Finally,
we provide experimental evidence for the efficiency of the
proposed approach.

2. The Adaptive TTR Algorithm

To maintain coherency of individual data items, a proxy
computes a Time To Refresh (TTR) for the data item.
denotes the next time that the proxy should poll the server
so as to refresh the data item if it has changed in the in-
terim. The success of the pull-based technique hinges on
the accurate estimation of the TTR value. We use the Adap-
tive TTR Algorithm[9], to calculate the TTR associated with
each data item. This algorithm allows the proxy to adap-
tively vary the TTR value based on the rate of change of
the data item. The TTR decreases dynamically when a data
item starts changing rapidly and increases when changes are
smaller and slower. To achieve this objective, the Adaptive
TTR approach takes into account

static bounds so that TTR values are not set too high
or too low,

the most rapid changes that have occurred so far and

most recent changes to the polled data.

This algorithm provides good fidelity and incurs low net-
work [9] overheads and hence we use it in our algorithm.

3. CBA: The Balancing Algorithm

The Balancing Algorithm (CBA) continuously
changes the associated with each of the data items con-
stituting the portfolio based on the dynamics of the data,
as well as the relative contribution of the data item to the
portfolio with respect to the other items.

Mutual consistency in the value domain [9] is defined as
follows. Cached versions of objects and are said to be
mutually consistent in the value domain if some function of
their values at the proxy and server are bound by . That is,

Depending on the nature of the function , the tolerance
can be partitioned into two parts and such that

and consistency of each individual object can be
ensured by using the Adaptive TTR Approach.

CBA achieves this while aiming to reduce the network
overhead – by pulling very rarely when there is very lit-
tle chance of the threshold being exceeded. How this is
achieved is explained in the rest of this section.

3.1. Initial allocation of s to stocks

Initially the of each constituent of the portfolio is
calculated as follows (here the constituent data items are
stocks). Let

where
is the of the data item

is the number of stocks of each of the “N”
stocks.

is the initial price of the stock
is the value of the stock
is the of the portfolio (e.g., the threshold $100).
The formula for the is madeup of two factors. The

first factor i.e.

takes into consideration the contribution of the stock to the
overall portfolio. If the stock has a large contribution then
that stock price should be maintained more accurately at the
proxy. For this to happen, the stock should be polled more
often. Smaller is the , smaller will be the calculated
by the Adaptive TTR Algorithm. Hence the contribution of
the stock to the portfolio should be inversely proportional
to the . If the contribution of the stock is more then the
numerator of the first factor will be less and hence the
will be less. As a result the first factor of the is inversely
proportional to the contribution of the stock to the entire
portfolio.

Multiplying the first factor by apportions the of the
portfolio for the individual stock. Since this applies to a
total of stocks, it is normalized by the number of stocks,
giving the to be achieved by each stock. The factor
is needed to normalize the constraints so that the following
equation is satisfied -

Let us consider an example:
Company A Stock Company B Stock

Number of stocks n1 = 100 Number of stocks n2 = 200
Price of the stock p1 = $10 Price of the stock p2 = $20

The change to be tracked is of $90. Using the above
formula the is calculated as follows:

Company B has a greater effect on the portfolio and hence
the of Company B stock is smaller. In effect, Company B
stock will be polled more often than the Company A stock.
This initial allocated to each of the data items (stocks in
this case) should be changed dynamically depending on the
change that occurs in the stock price. How tries to
achieve this is discussed next.

3.2. Dynamic adjustment of s of stocks

In the above example, according to the initial alloca-
tion, from a total of $90 for the portfolio, Company A
stock is allocated $72 and Company B stock is given $18.
The main idea behind the is to poll more often when
the threshold is more likely to be exceeded and to reduce
the polling frequency when the opposite is the case. When
a stock achieves the threshold allocated to it, it should be
polled more often.

In the above example, if the price of Company B changes
by $0.09 then the of the portfolio reduces to $72. As the
Company B stock has attained its threshold it should be as-
signed a new . Company B stock is changing such that
it is taking the portfolio towards meeting its coherency re-
quirement, hence it should be polled more often. Therefore
the new assigned to the Company B stock should be less
than the earlier one. The fact that the of the portfolio
is reduced should also be reflected in the new threshold as-
signed to Company A stock. To achieve all this, the s
of all the stocks are re-evaluated using the same formula as
the one used in the initial calculation of the s, but taking
the new portfolio threshold into consideration. As the of
the portfolio has decreased, the of both the stocks gets
reduced, thereby they are polled more often.

If the change in the stock price is such that it is taking
the portfolio away from the threshold then the polling for
the stock should be reduced. Hence the of the stock is
increased. If the change in the stock price is less than the
allocated to the stock then the following actions are taken:

If the threshold was crossed within time interval be-
fore the current time, then the is reduced by a small
factor :

Here, as in the Adaptive TTR algorithm we assume that
the changes in the stock price in the recent past will be
reflective of the changes in the near future. Applied to
portfolio queries this implies that if the portfolio value
changed more than the threshold within time interval
of the current time then it is highly likely that this will
recur in the near future.

If the change did not exceed the threshold within time
units of the current time then the chances of this hap-

pening soon are less. Hence the of the stock in ques-
tion is increased by a factor :

Consequently if the portfolio value does not exceed the
threshold for a long enough time then the will grad-
ually increase to .

The is not allowed to move outside a static win-
dow defined by two parameters - and . These
bounds ensure that the computed by the is neither
too large neither too small - values that fall outside these
bounds are set to = . The
value of and depend on the stock trace be-
ing considered. should be set such that it should be
smaller than the maximum change seen in the stock trace.
Both and are defined statically.

If the portfolio value change exceeds the threshold after
a long time then the will have reached the value.
Such a situation may arise if some stock price changes sud-
denly after being constant for a long time. Once the port-
folio value change exceeds the threshold, according to the
principle stated earlier, there is a high probability that it will
remain so in the near future. To verify this, the data item that
has changed must be polled more often. Hence the of the
stock in question is reduced by a factor :

In the next section, we evaluate the above technique to
determine how well it meets the stated goals of threshold
based portfolio tracking.

4. Experimental Evaluation

In this section we present the results of experiments con-
ducted to evaluate the efficiency of our approach. We first
present our experimental methodology and then our experi-
mental results.

The algorithm was evaluated using a prototype
server/proxy that employed trace replay. Our experiments
assume that the proxy has an infinitely large cache to store
objects and that the network latency in polling and fetching
objects from the server is fixed (this is because we are pri-
marily interested in comparing network overheads based on
the number of messages transmitted). We assume that the
values of and are specified by the user. The
proxy can keep track of the maximum change in the stock
price seen so far and that can also be used for .

As detailed in [1], the performance of the algorithm
was evaluated using real-world traces . The algorithm
was evaluated using the following metrics (i) number of
polls (normalized by the length of the trace) (ii) Fidelity of

the portfolio. Fidelity can be measured based on the total
time duration for which the proxy was oblivious of the
portfolio value change exceeding the threshold at the server.

where the Total out of sync time is the time duration for
which the proxy was oblivious of the correct state of the
portfolio.

The efficiency of the algorithm can also be measured in
terms of the number of false positives and false negatives
experienced. The algorithm should strive to keep the num-
ber of false negatives to a minimum, though a few false
positives can be tolerated. The number of messages is ex-
pressed in terms of the number of pulls required per hundred
entries in the source trace. We configured the algorithm us-
ing the parameters shown in Table 1

The results were compared with an approach in which
the was calculated once initially and was kept unchanged
irrespective of the relative changes in the value of the data
item. This approach is the simple TTR approach which sim-
ply uses the Adaptive TTR Algorithm to calculate the TTR
based on the initial allocation of to the stocks.

We begin considering a portfolio comprising stocks of
two companies, with 200 stocks of the first and 300 of the
second, with the total value being:

We also experimented with portfolios with more than two
stocks and the observations made for portfolios with two
stocks are valid for all the experimented portfolios. Figure
1 shows the variation of the with time for the two stocks.
Also shown in the two figures are the points in time when
the portfolio (a) actually crossed the threshold (dots) and (b)
the points in time when the portfolio crossed the threshold
as per the CBA algorithm (For these two curves there is no
significance to Y-axis).

Figure 1 shows that in this trace the portfolio is satisfied
at the beginning and towards the end of the observed time
interval. In the middle part i.e. from time = 600 to time =
2700 the portfolio is not satisfied. Hence the s of both
the stocks gradually reaches the value of $1. As the

reaches the value the polling frequency is reduced
and this helps is saving a lot of network overhead. Around
time = 2700, when the portfolio is satisfied after a long du-
ration the is reduced by the factor (0.75). Thereafter
as the portfolio remains satisfied the is decreased fur-
ther. As decreases the polling frequency increases and
this continues till the portfolio value change exceeds the
threshold. If the change in the value of the data item is
less than the threshold for time duration then will again
increase till it reaches the value. Thus the tries

to reduce the network overhead by reducing the polling fre-
quency when there is a lower chance of the change exceed-
ing the threshold, but at the same time it does not compro-
mise the fidelity by increasing the polling frequency once it
detects that the change has exceeded the threshold.

In the experiments, the detected that the portfolio
was satisfied for about 1159 seconds when the portfolio was
actually satisfied for 1016 seconds. This implies that there
were a few false positives but they are not as harmful as false
negatives. There were a further 101 false positives when
the is not adjusted dynamically. These are a lot more as
compared to . The network overhead of the latter was
about 971 messages whereas the number of messages for

were only 551, a gain of about 43% in the network
efficiency.

Our technique provides several tunable parameters,
namely, and that can be used to control the algo-
rithms behavior. In [1] we discuss the effects of varying
these parameters on the fidelity offered by the algorithm and
on the network overhead. In [1] we present results which
show that by considering the dynamics of the data the
succeeds in reducing the network overhead compared to the
case when the is statically allocated.

5. Concluding Remarks

In this paper, we presented a new technique for moni-
toring the stock quotes in the case where the user is inter-
ested in a group of stocks. Our algorithm is entirely proxy
based and it assumes no push support from the server[7].
The algorithm requires some amount of history to be kept,
which can be easily supported by the proxy, as the proxy
caters to less number of clients vis-a-vis the server. A use-
ful feature of our technique is that it has several adjustable
parameters which can be used to tune to algorithm to get
the desired fidelity and network overhead characteristics.
The network overhead offered by the is around 40%
less than that offered by the static approach. The
achieves this objective by considering the stocks in a portfo-
lio as a semantic unit, in the sense that it reduces the polling
frequency of all the stock of the portfolio if the stock prices
are changing such that there is very little chance of the port-
folio being satisfied.
Portfolio queries can be considered as type of continuous
queries.These queries can also be implemented by using
other techniques such as PAP [4] and leases[5, 10]. This
will require push support at the server and is left as future
work.

Symbol Meaning Value

The time in seconds that governs the change in value 60 seconds
Factor by which the is increased if 1.15

(a) The change in stock price is less than its and
(b) the value of the portfolio did not exceed its threshold within time

Factor by which the is reduced if 0.85
(a) The change in the stock price is less than its and

(b) the value of the portfolio exceeded its threshold within time
Factor by which the is reduced if the portfolio 0.75

exceeds the threshold after a long time
The minimum value of $0.05
The maximum value of $1

Table 1. Value of Parameters used in the experiments

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500 4000

C
on

st
ra

in
t

Time

Time instances where the portfolio actually crosses the threshold
Time instances where the algorithm detects the threshold crossing

constraint

(a) For stock 1

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500 4000

C
on

st
ra

in
t

Time

Time instances where the portfolio actually crosses the threshold
Time instances where the algo detectes the threshold crossing

constraint

(b) For stock 2

Figure 1. Portfolio Changes and Variation of with Time

ACKNOWLEDGEMENTS

This research was supported in part by Tata Consultancy
Services, Intel, IBM, and Microsoft, as well as NSF
grants IRI-9619588, CDA-9502639, CCR-0098060, CCR-
9984030, CDA-9502639, and EIA-0080119.

References

[1] M. Bhide, K. Ramamritham, and P. Shenoy, Efficiently
Maintaining Stock Portfolios up-to-date on the Web,
available at (www.cse.iitb.ac.in/ krithi/papers/portfolio.ps),
March 2002.

[2] P. Cao and S. Irani, Cost-Aware WWW Proxy Caching Al-
gorithms., Proceedings of the USENIX Symposium on Inter-
net Technologies and Systems, December 1997.

[3] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz and K. J. Worrel A Hierarchical In-
ternet Object Cache., Proceedings of the 1996 USENIX
Technical Conference, January 1996.

[4] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy, Adaptive Push-Pull: Dissemination of Dy-

namic Web Data 10th International World Wide Web Con-
ference , Hong Kong, May 2001.

[5] V. Duvvuri, P. Shenoy and R. Tewari, Adaptive Leases: A
Strong Consistency Mechanism for the World Wide Web. In-
foCom March 2000.

[6] J. Gwertzman and M. Seltzer, World-Wide Web Cache Con-
sistency., In Proceedings of 1996 USENIX Technical Confer-
ence, January 1996.

[7] A. Iyengar and J. Challenger, Improving Web Server Per-
formance by Caching Dynamic Data., Proceedings of the
USENIX Symposium on Internet Technologies and Systems
(USEITS), December 1997.

[8] J.C.Mogul Squeezing More Bits Out Of HTTP Caches IEEE
Network Magazine, 14(3):6-14, May 2000.

[9] R. Srinivasan, C. Liang and K. Ramamritham, Maintain-
ing Temporal Coherency of Virtual Data Warehouses, The
19th IEEE Real-Time Systems Symposium, Madrid, Spain,
December 2-4, 1998.

[10] J. Yin, L. Alvisi, M. Dahlin and C. Lin, Hierarchical Cache
consistency in a WAN., Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems, October 1999.

