
Resource Overbooking and Application Profiling in

Shared Hosting Platforms �

Bhuvan Urgaonkar, Prashant Shenoy and Timothy Roscoey

Department of Computer Science, yIntel Research at Berkeley

University of Massachusetts 2150 Shattuck Avenue Suite 1300

Amherst MA 01003 Berkeley CA 94704

fbhuvan, shenoyg@cs.umass.edu troscoe@intel-research.net

Abstract

In this paper, we present techniques for provisioning

CPU and network resources in shared hosting platforms

running potentially antagonistic third-party applications.

The primary contribution of our work is to demonstrate

the feasibility and benefits of overbooking resources in

shared platforms, to maximize the platform yield: the

revenue generated by the available resources. We do

this by first deriving an accurate estimate of applica-

tion resource needs by profiling applications on dedi-

cated nodes, and then using these profiles to guide the

placement of application components onto shared nodes.

By overbooking cluster resources in a controlled fash-

ion, our platform can provide performance guarantees to

applications even when overbooked, and combine these

techniques with commonly used QoS resource allocation

mechanisms to provide application isolation and perfor-

mance guarantees at run-time. When compared to provi-

sioning based on the worst-case, the efficiency (and con-

sequently revenue) benefits from controlled overbooking

of resources can be dramatic. Specifically, experiments on

our Linux cluster implementation indicate that overbook-

ing resources by as little as 1% can increase the utiliza-

tion of the cluster by a factor of two, and a 5% overbook-

ing yields a 300-500% improvement, while still providing

useful resource guarantees to applications.

1 Introduction and Motivation

Server clusters built using commodity hardware and soft-

ware are an increasingly attractive alternative to tradi-

tional large multiprocessor servers for many applications,

in part due to rapid advances in computing technologies

and falling hardware prices.

�Portions of this research were done when Timothy Roscoe was a

researcher at Sprint ATL and Bhuvan Urgaonkar was a summer intern

at Sprint ATL. This research was supported in part by NSF grants CCR-

9984030, EIA-0080119 and a gift from Sprint Corporation.

This paper addresses challenges in the design of a

type of server cluster we call a shared hosting platform.

This can be contrasted with a dedicated hosting platform,

where either the entire cluster runs a single application

(such as a web search engine), or each individual pro-

cessing element in the cluster is dedicated to a single

application (as in the “managed hosting” services pro-

vided by some data centers). In contrast, shared hosting

platforms run a large number of different third-party ap-

plications (web servers, streaming media servers, multi-

player game servers, e-commerce applications, etc.), and

the number of applications typically exceeds the number

of nodes in the cluster. More specifically, each application

runs on a subset of the nodes and these subsets may over-

lap. Whereas dedicated hosting platforms are used for

many niche applications that warrant their additional cost,

economic reasons of space, power, cooling and cost make

shared hosting platforms an attractive choice for many ap-

plication hosting environments.

Shared hosting platforms imply a business relationship

between the platform provider and application providers:

the latter pay the former for resources on the platform.

In return, the platform provider gives some kind of guar-

antee of resource availability to applications [17]. The

central challenge to the platform provider is thus one of

resource management: the ability to reserve resources for

individual applications, the ability to isolate applications

from other misbehaving or overloaded applications, and

the ability to provide performance guarantees to applica-

tions.

Arguably, the widespread deployment of shared host-

ing platforms has been hampered by the lack of effec-

tive resource management mechanisms that meet these

requirements. Most hosting platforms in use today adopt

one of two approaches.

The first avoids resource sharing altogether by employ-

ing a dedicated model. This delivers useful resources

to application providers, but is expensive in machine re-

sources. The second approach shares resources in a best-

effort manner among applications, which consequently

receive no resource guarantees. While this is cheap in

resources, the value delivered to application providers is

limited. Consequently, both approaches imply an eco-

nomic disincentive to deploy viable hosting platforms.

Recently, several resource management mechanisms

for shared hosting platforms have been proposed [1, 3,

7, 23]. This paper reports work performed in this context,

but with two significant differences in goals.

Firstly, we seek from the outset to support a diverse

set of potentially antagonistic network services simulta-

neously on a platform. The services will therefore have

heterogeneous resource requirements; web servers, con-

tinuous media processors, and multiplayer game engines

all make different demands on the platform in terms of

resource bandwidth and latency. We evaluate our system

with such a diverse application mix.

Secondly, we aim to support resource management

policies based on yield management techniques such as

those employed in the airline industry [19]. Yield man-

agement is driven by the business relationship between

a platform provider and many application providers, and

results in different short-term goals. In traditional ap-

proaches the most important aim is to satisfy all re-

source contracts while making efficient use of the plat-

form. Yield management by contrast is concerned with

ensuring that as much of the available resource as possi-

ble is used to generate revenue, rather than being utilized

“for free” by a service (since it would otherwise be idle).

An analogy with air travel may clarify the point: in-

stead of trying to ensure that every ticketed passenger gets

to board their chosen flight, we try to ensure that no plane

takes off with an empty seat (which is achieved by over-

booking seats).

An immediate consequence of this goal is our treat-

ment of “flash crowds”—a shared hosting platform should

react to an unexpected high demand on an application

only if there is an economic incentive for doing so. That

is, the platform should allocate additional resources to an

application only if it enhances revenue. Further, any in-

crease in resource allocation of an application to handle

unexpected high demands should not be at the expense

of contract violations for other applications, since this is

economically undesirable.

1.1 Research Contributions

The contribution of this paper is threefold. First, we

show how the resource requirements of an application

can be derived using online profiling and modeling. Sec-

ond, we demonstrate the efficiency benefits to the plat-

form provider of overbooking resources on the platform,

and how this can be usefully done without adversely im-

pacting the guarantees offered to application providers.

Thirdly, we show how untrusted and/or mutually antag-

onistic applications in the platform can be isolated from

one another. The rest of this section presents these contri-

butions in detail.

Automatic derivation of QoS requirements: We dis-

cuss techniques for empirically deriving an application’s

resource needs. The effectiveness of a resource man-

agement technique is crucially dependent on the ability

to reserve appropriate resources for each application—

overestimating an application’s resource needs can result

in idling of resources, while underestimating them can de-

grade application performance. Consequently a shared

hosting platform can significantly enhance its utility to

users by automatically deriving the QoS requirements of

an application. Automatic derivation of QoS requirements

involves (i) monitoring an application’s resource usage,

and (ii) using these statistics to derive QoS requirements

that conform to the observed behavior.

We employ kernel-based profiling mechanisms to em-

pirically monitor an application’s resource usage and pro-

pose techniques to derive QoS requirements from this ob-

served behavior. We then use these techniques to ex-

perimentally profile several server applications such as

web, streaming, game, and database servers. Our results

show that the bursty resource usage of server applications

makes it feasible to extract statistical multiplexing gains

by overbooking resources on the hosting platform.

Revenue maximization through overbooking: We dis-

cuss resource overbooking techniques and application

placement strategies for shared hosting platforms. Pro-

visioning cluster resources solely based on the worst-case

needs of an application results in low average utilization,

since the average resource requirements of an application

are typically smaller than its worst case (peak) require-

ments, and resources tend to idle when the application

does not utilize its peak reserved share. In contrast, pro-

visioning a cluster based on a high percentile of the ap-

plication needs yields statistical multiplexing gains that

significantly increase the average utilization of the cluster

at the expense of a small amount of overbooking, and in-

creases the number of applications that can be supported

on a given hardware configuration.

A well-designed hosting platform should be able to

provide performance guarantees to applications even

when overbooked, with the proviso that this guarantee is

now probabilistic (for instance, an application might be

provided a 99% guarantee (0.99 probability) that its re-

source needs will be met). Since different applications

have different tolerance to such overbooking (e.g., the la-

tency requirements of a game server make it less toler-

ant to violations of performance guarantees than a web

server), an overbooking mechanism should take into ac-

count diverse application needs.

We demonstrate the feasibility and benefits of over-

booking resources in shared hosting platforms, and pro-

pose techniques to overbook (i.e. under-provision) re-

sources in a controlled fashion based on application re-

source needs. Although such overbooking can result

in transient overloads where the aggregate resource de-

mand temporarily exceeds capacity, our techniques limit

the chances of transient overload of resources to pre-

dictably rare occasions, and provide useful performance

guarantees to applications in the presence of overbook-

ing. The techniques we describe are general enough to

work with many commonly used OS resource allocation

mechanisms.

Placement and isolation of antagonistic applications:

We describe an additional aspect of the resource manage-

ment problem: placement and isolation of antagonistic

applications. We assume that third-party applications may

be antagonistic cannot be trusted by the platform, due ei-

ther to malice or bugs. Our work demonstrates how un-

trusted third-party applications can be isolated from one

another in shared hosting platforms in two ways. Lo-

cal to a machine, each processing node in the platform

employs resource management techniques that “sandbox”

applications by restricting the resources consumed by an

application to its reserved share. Globally, we present

automated placement techniques that allow a platform

provider to exert sufficient control over the placement of

application components onto nodes in the cluster, since

manual placement of applications is unfeasibly complex

and error-prone in large clusters.

1.2 System Model and Terminology

The shared hosting platform assumed in our research con-

sists of a cluster of nodes, each of which consists of pro-

cessor, memory, and storage resources as well as one

or more network interfaces. Platform nodes are allowed

to be heterogeneous with different amounts of these re-

sources on each node. The nodes in the hosting platform

are assumed to be interconnected by a high-speed LAN

such as gigabit ethernet (see Figure 1). Each cluster node

is assumed to run an operating system kernel that supports

some notion of quality of service such as reservations or

shares. In this paper, we focus on managing CPU and

network interface bandwidth in shared hosting platforms.

As [1] points out, management of other resources which

are inherently temporal in nature, such as disk bandwidth,

can be performed by similar mechanisms. Spatial re-

sources, in particular physical memory, present a different

challenge. A straightforward approach is to use static par-

titioning as in [1], although recently more sophisticated

approaches have been implemented [5].

We use the term application for a complete service run-

ning on behalf of an application provider; since an appli-

cation will frequently consist of multiple distributed com-

ponents, we use the term capsule to refer to the compo-

App A

App E

App B

App F App G

App C

App H

Cluster Interconnect (gigabit ethernet)

cpu

NIC

Figure 1: Architecture of a shared hosting platform.

Each application runs on one or more nodes and shares

resources with other applications.

nent of an application running on a single node. Each

application has at least one capsule, possibly more if the

application is distributed. Capsules provide a useful ab-

straction for logically partitioning an application into sub-

components and for exerting control over the distribution

of these components onto different nodes. To illustrate,

consider an e-commerce application consisting of a web

server, a Java application server and a database server.

If all three components need to be colocated on a single

node, then the application will consist of a single capsule

with all three components. On the other hand, if each

component needs to be placed on a different node, then

the application should be partitioned into three capsules.

Depending on the number of its capsules, each application

runs on a subset of the platform nodes and these subsets

can overlap with one another, resulting in resource shar-

ing (see Figure 1).

The rest of this paper is structured as follows. Sec-

tion 2 discusses techniques for empirically deriving an ap-

plication’s resource needs, while Section 3 discusses our

resource overbooking techniques and capsule placement

strategies. We discuss implementation issues in Section 4

and present our experimental results in Section 5. Section

6 discusses related work, and finally, Section 7 presents

concluding remarks.

2 Automatic Derivation of Application
QoS Requirements

The first step in hosting a new application is to derive its

resource requirements. While the problem of QoS-aware

resource management has been studied extensively in the

literature [4, 12, 13], the problem of how much resource

to allocate to each application has received relatively little

attention. In this section, we address this issue by propos-

ing techniques to automatically derive the QoS require-

ments of an application (the terms resource requirements

and QoS requirements are used interchangeably in this pa-

per.) Deriving the QoS requirements is a two step process:

(i) we first use profiling techniques to monitor application

behavior, and (ii) we then use our empirical measurements

to derive QoS requirements that conform to the observed

behavior.

2.1 Application QoS Requirements: Defini­
tions

The QoS requirements of an application are defined on

a per-capsule basis. For each capsule, the QoS require-

ments specify the intrinsic rate of resource usage, the vari-

ability in the resource usage, the time period over which

the capsule desires resource guarantees, and the level of

overbooking that the application (capsule) is willing to

tolerate. As explained earlier, in this paper, we are con-

cerned with two key resources, namely CPU and network

interface bandwidth. For each of these resources, we de-

fine the QoS requirements along the above dimensions in

an OS-independent manner. In Section 4.1, we show how

to map these requirements to various OS-specific resource

management mechanisms that have been developed.

More formally, we represent the QoS requirements of

an application capsule by a quintuple (�; �; �; U;O):

Token Bucket Parameters (�; �): We capture the basic

resource requirements of a capsule by modeling resource

usage as a token bucket (�; �) [22]. The parameter � de-

notes the intrinsic rate of resource consumption, while �

denotes the variability in the resource consumption. More

specifically, � denotes the rate at which the capsule con-

sumes CPU cycles or network interface bandwidth, while

� captures the maximum burst size. By definition, a token

bucket bounds the resource usage of the capsule to � �t+�

over any interval t.

Period � : The third parameter � denotes the time pe-

riod over which the capsule desires guarantees on re-

source availability. Put another way, the system should

strive to meet the QoS requirements of the capsule over

each interval of length � . The smaller the value of � , the

more stringent are the desired guarantees (since the cap-

sule needs to be guaranteed resources over a finer time

scale). In particular, for the above token bucket parame-

ters, the capsule requires that it be allocated at least ���+�

resources every � time units.

Usage Distribution U : While the token bucket pa-

rameters succinctly capture the capsule’s resource re-

quirements, they are not sufficiently expressive by them-

selves to denote the QoS requirements in the presence

of overbooking. Consequently, we use two additional

parameters—U and O—to specify resource requirements

in the presence of overbooking. The first parameter U de-

notes the probability distribution of resource usage. Note

that U is a more detailed specification of resource usage

than the token bucket parameters (�; �), and indicates the

probability with which the capsule is likely to use a certain

fraction of the resource (i.e., U(x) is the probability that

the capsule uses a fraction x of the resource, 0 � x � 1).

A probability distribution of resource usage is necessary

so that the hosting platform can provide (quantifiable)

probabilistic guarantees even in the presence of overbook-

ing.

Overbooking Tolerance O: The parameter O is the

overbooking tolerance of the capsule. It specifies the

probability with which the capsule’s requirements may

be violated due to resource overbooking (by providing

it with less resources than the required amount). Thus,

the overbooking tolerance indicates the minimum level of

service that is acceptable to the capsule. To illustrate, if

O = 0:01, the capsule’s resource requirements should be

met 99% of the time (or with a probability of 0.99 in each

interval �).

In general, we assume that parameters � and O are

specified by the application provider. This may be based

on a contract between the platform provider and the ap-

plication provider (e.g., the more the application provider

is willing to pay for resources, the stronger are the pro-

vided guarantees), or on the particular characteristics of

the application (e.g., a streaming media server requires

more stringent guarantees and is less tolerant to violations

of these guarantees). In the rest of this section, we show

how to derive the remaining three parameters �, � and U

using profiling, given values of � and O.

2.2 Kernel­based Profiling of Resource Us­
age

Our techniques for empirically deriving the QoS require-

ments of an application rely on profiling mechanisms that

monitor application behavior. Recently, a number of ap-

plication profiling mechanisms ranging from OS-kernel-

based profiling to run-time profiling using specially linked

libraries have been proposed.

We use kernel-based profiling mechanisms in the con-

text of shared hosting platforms, for a number of reasons.

Firstly, being kernel-based, these mechanisms work with

any application and require no changes to the application

at the source or binary levels. This is especially impor-

tant in hosting environments where the platform provider

may have little or no access to third-party applications.

Secondly, accurate estimation of an application’s resource

needs requires detailed information about when and how

much resources are used by the application at a fine time-

scale. Whereas detailed resource allocation information

is difficult to obtain using application-level techniques,

kernel-based techniques can provide precise information

about various kernel events such as CPU scheduling in-

stances and network packet transmissions times.

The profiling process involves running the application

on a set of isolated platform nodes (the number of nodes

required for profiling depends on the number of capsules).

time

End CPU quantum/Network transmission

Begin CPU quantum/Network transmission

Idle/ Non capsule

related activity (OFF) Busy period (ON)

Figure 2: An example of an On-Off trace.

By isolated, we mean that each node runs only the min-

imum number of system services necessary for execut-

ing the application and no other applications are run on

these nodes during the profiling process—such isolation

is necessary to minimize interference from unrelated tasks

when determining the application’s resource usage. The

application is then subjected to a realistic workload, and

the kernel profiling mechanism is used to track its re-

source usage. It is important to emphasize that the work-

load used during profiling should be both realistic and

representative of real-world workloads. While techniques

for generating such realistic workloads are orthogonal to

our current research, we note that a number of different

workload-generation techniques exist, ranging from trace

replay of actual workloads to running the application in

a “live” setting, and from the use of synthetic workload

generators to the use of well-known benchmarks. Any

such technique suffices for our purpose as long as it real-

istically emulates real-world conditions, although we note

that, from a business perspective, running the application

“for real” on an isolated machine to obtain a profile may

be preferable to other workload generation techniques.

We use the Linux trace toolkit as our kernel profil-

ing mechanism [14]. The toolkit provides flexible, low-

overhead mechanisms to trace a variety of kernel events

such as system call invocations, process, memory, file sys-

tem and network operations. The user can specify the

specific kernel events of interest as well as the processes

that are being profiled to selectively log events. For our

purposes, it is sufficient to monitor CPU and network ac-

tivity of capsule processes—we monitor CPU scheduling

instances (the time instants at which capsule processes

get scheduled and the corresponding quantum durations)

as well as network transmission times and packet sizes.

Given such a trace of CPU and network activity, we now

discuss the derivation of the capsule’s QoS requirements.

2.3 Empirical Derivation of the QoS Re­
quirements

We use the trace of kernel events obtained from the pro-

filing process to model CPU and network activity as a

simple On-Off process. This is achieved by examining

the time at which each event occurs and its duration and

deriving a sequence of busy (On) and idle (Off) periods

Measurement interval I

TimeFraction resource usage
0 1

P
ro

b
ab

il
it

y

�

2

t + �

2

�

1

t + �

1

�

1

�

2

Time

C
u

m
u

la
ti

v
e

re
so

u
rc

e
u

sa
g

e1

 I I

(a) Usage distribution (b) Token bucket parameters

Figure 3: Derivation of the usage distribution and token

bucket parameters.

from this information (see Figure 2). This trace of busy

and idle periods can then be used to derive both the re-

source usage distribution U as well as the token bucket

parameters (�; �).

Determining the usage distribution U : Recall that, the

usage distribution U denotes the probability with which

the capsule uses a certain fraction of the resource. To de-

rive U , we simply partition the trace into measurement

intervals of length I and measure the fraction of time for

which the capsule was busy in each such interval. This

value, which represents the fractional resource usage in

that interval, is histogrammed and then each bucket is nor-

malized with respect to the number of measurement inter-

vals I in the trace to obtain the probability distribution U .

Figure 3(a) illustrates this process.

Deriving token bucket parameters (�; �): Recall that

a token bucket limits the resource usage of a capsule to

� � t + � over any interval t. A given On-Off trace can

have, in general, many (�, �) pairs that satisfy this bound.

To intuitively understand why, let us compute the cumu-

lative resource usage for the capsule over time. The cu-

mulative resource usage is simply the total resource con-

sumption thus far and is computed by incrementing the

cumulative usage after each ON period. Thus, the cumu-

lative resource usage is a step function as depicted in Fig-

ure 3(b). Our objective is to find a line � �t+� that bounds

the cumulative resource usage; the slope of this line is the

token bucket rate � and its Y-intercept is the burst size �.

As shown in Figure 3(b), there are in general many such

curves, all of which are valid descriptions of the observed

resource usage.

Several algorithms that mechanically compute all valid

(�; �) pairs for a given On-Off trace have been proposed

recently. We use a variant of one such algorithm [22] in

our research—for each On-Off trace, the algorithm pro-

duces a range of � values (i.e., [�
min

; �

max

℄) that consti-

tute valid token bucket rates for observed behavior. For

each � within this range, the algorithm also computes the

corresponding burst size �. Although any pair within this

range conforms to the observed behavior, the choice of a

particular (�; �) has important practical implications.

Since the overbooking tolerance O for the capsule is

given, we can use O to choose a particular (�; �) pair. To

illustrate, if O = 0:05, the capsule needs must be met

95% of the time, which can be achieved by reserving re-

sources corresponding to the 95

th percentile of the us-

age distribution. Consequently, a good policy for shared

hosting platforms is to pick a � that corresponds to the

(1�O) � 100

th percentile of the resource usage distribu-

tion U , and to pick the corresponding � as computed by

the above algorithm. This ensures that we provision re-

sources based on a high percentile of the capsule’s needs

and that this percentile is chosen based on the specified

overbooking tolerance O.

2.4 Profiling Server Applications: Experi­
mental Results

In this section, we profile several commonly-used server

applications to illustrate the process of deriving an appli-

cation’s QoS requirements. Our experimentally derived

profiles not only illustrate the inherent nature of various

server application but also demonstrate the utility and

benefits of resource overbooking in shared hosting plat-

forms.

The test bed for our profiling experiments consists of

a cluster of five Dell PowerEdge 1550 servers, each with

a 966 MHz Pentium III processor and 512 MB memory

running Red Hat Linux 7.0. All servers runs the 2.2.17

version of the Linux kernel patched with the Linux trace

toolkit version 0.9.5, and are connected by 100Mbps Eth-

ernet links to a Dell PowerConnect (model no. 5012) eth-

ernet switch.

To profile an application, we run it on one of our

servers and use the remaining servers to generate the

workload for profiling. We assume that all machines are

lightly loaded and that all non-essential system services

(e.g., mail services, X windows server) are turned off to

prevent interference during profiling. The parameters �

and I were both set to 1 sec in all our experimentation.

We profile the following server applications in our exper-

iments:

� Apache web server: We use the SPECWeb99 bench-

mark [20] to generate the workload for the Apache

web server (version 1.3.24). The SPECWeb bench-

mark allows control along two dimensions—the

number of concurrent clients and the percentage of

dynamic (cgi-bin) HTTP requests. We vary both pa-

rameters to study their impact on Apache’s resource

needs.

� MPEG streaming media server: We use a home-

grown streaming server to stream MPEG-1 video

files to multiple concurrent clients over UDP. Each

client in our experiment requests a 15 minute long

variable bit rate MPEG-1 video with a mean bit rate

of 1.5 Mb/s. We vary the number of concurrent

clients and study its impact on the resource usage at

the server.

� Quake game server: We use the publicly available

Linux Quake server to understand the resource usage

of a multi-player game server; our experiments use

the standard version of Quake I—a popular multi-

player game on the Internet. The client workload

is generated using a bot—an autonomous software

program that emulates a human player. We use the

publicly available “terminator” bot to emulate each

player; we vary the number of concurrent players

connected to the server and study its impact on the

resource usage.

� PostgreSQL database server: We profile the post-

greSQL database server (version 7.2.1) using the pg-

bench 1.2 benchmark. This benchmark is part of

the postgreSQL distribution and emulates the TPC-B

transactional benchmark [16]. The benchmark pro-

vides control over the number of concurrent clients

as well as the number of transactions performed by

each client. We vary both parameters and study their

impact on the resource usage of the database server.

We now present some results from our profiling study.

Figure 4(a) depicts the CPU usage distribution of the

Apache web server obtained using the default settings of

the SPECWeb99 benchmark (50 concurrent clients, 30%

dynamic cgi-bin requests). Figure 4(b) plots the corre-

sponding cumulative distribution function (CDF) of the

resource usage. As shown in the figure (and summarized

in Table 1), the worst case CPU usage (100th percentile)

is 25% of CPU capacity. Further, the 99

th and the 95

th

percentiles of CPU usage are 10 and 4% of capacity, re-

spectively. These results indicate that CPU usage is bursty

in nature and that the worst-case requirements are signif-

icantly higher than a high percentile of the usage. Conse-

quently, under provisioning (i.e., overbooking) by a mere

1% reduces the CPU requirements of Apache by a fac-

tor of 2.5, while overbooking by 5% yields a factor of

6.25 reduction (implying that 2.5 and 6.25 times as many

web servers can be supported when provisioning based on

the 99

th and 95

th percentiles, respectively, instead of the

100

th profile). Thus, even small amounts of overbooking

can potentially yield significant increases in platform ca-

pacity. Figure 4(c) depicts the possible valid (�; �) pairs

for Apache’s CPU usage. Depending on the specified

overbooking tolerance O, we can set � to an appropriate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

ba
bi

lit
y

Fraction of CPU

Apache Web Server, SPECWEB99 default

Probability

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Fraction of CPU

Apache Web Server, SPECWEB99 default

Cumulative Probability

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ur

st
, r

ho
 (

m
se

c)

Rate, sigma (fraction)

Valid Token Bucket Pairs

(a) Probability distribution (PDF) (b) Cumulative distribution function (CDF) (c) Token bucket parameters

Figure 4: Profile of the Apache web server using the default SPECWeb99 configuration.

percentile of the usage distributionU , and the correspond-

ing � can then be chosen using this figure.

Figures 5(a)-(d) depict the CPU or network bandwidth

distributions, as appropriate, for various server applica-

tions. Specifically, the figure shows the usage distribution

for the Apache web server with 50% dynamic SPECWeb

requests, the streaming media server with 20 concurrent

clients, the Quake game server with 4 clients and the post-

greSQL server with 10 clients. Table 1 summarizes our

results and also presents profiles for several additional

scenarios (only a small subset of the three dozen profiles

obtained from our experiments are presented due to space

constraints). Table 1 also lists the worst-case resource

needs as well as the 99

th and the 95

th percentile of the

resource usage.

Together, Figure 5 and Table 1 demonstrate that all

server applications exhibit burstiness in their resource us-

age, albeit to different degrees. This burstiness causes the

worst-case resource needs to be significantly higher than

a high percentile of the usage distribution. Consequently,

we find that the 99

th percentile is smaller by a factor of

1.1-2.5, while the 95

th percentile yields a factor of 1.3-

6.25 reduction when compared to the 100

th percentile.

Together, these results illustrate the potential gains that

can be realized by overbooking resources in shared host-

ing platforms.

3 Resource Overbooking and Capsule
Placement in Hosting Platforms

Having derived the QoS requirements of each capsule, the

next step is to determine which platform node will run

each capsule. Several considerations arise when making

such placement decisions. First, since platform resources

are being overbooked, the platform should ensure that the

QoS requirements of a capsule will be met even in the

presence of overbooking. Second, since multiple nodes

may have the resources necessary to house each applica-

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ro

b
a
b
ili

ty

Fraction of CPU

Apache Web Server, 50% cgi-bin

Probability

(a) Apache: dynamic requests

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
ro

b
a
b
ili

ty

Fraction of Network Bandwidth

Streaming Media Server, 20 clients

Probability

(b) Streaming media server

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.005 0.01 0.015 0.02 0.025

P
ro

b
a
b
ili

ty

Fraction of CPU

Quake Game Server, 4 clients

Probability

(c) Quake Server

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

P
ro

b
a
b
ili

ty

Fraction of CPU

Postgres Database Server, 10 clients

Probability

(d) PostgreSQL Server

Figure 5: Profiles of Various Server Applications

tion capsule, the platform will need to pick a specific map-

ping from the set of feasible mappings. In this section, we

present techniques for overbooking platform resources in

a controlled manner. The aim is to ensure that: (i) the QoS

requirements of the application are satisfied and (ii) over-

booking tolerances are taken into account while making

placement decisions.

3.1 Resource Overbooking Techniques

A platform node can accept a new application capsule so

long as the resource requirements of existing capsules are

not violated, and sufficient unused resources exist to meet

the requirements of the new capsule. However, if the node

resources are overbooked, another requirement is added:

Application Res. Res. usage at percentile (�; �)

100

th

99

th

95

th for O = 0:01

WS,default CPU 0.25 0.10 0.04 (0.10, 0.218)
WS, 50% dyn. CPU 0.69 0.29 0.12 (0.29, 0.382)

SMS,k=4 Net 0.19 0.16 0.11 (0.16, 1.89)

SMS,k=20 Net 0.63 0.49 0.43 (0.49, 6.27)

GS,k=2 CPU 0.011 0.010 0.009 (0.010, 0.00099)
GS,k=4 CPU 0.018 0.016 0.014 (0.016, 0.00163)

DBS,k=1 (def) CPU 0.33 0.27 0.20 (0.27, 0.184)

DBS,k=10 CPU 0.85 0.81 0.79 (0.81, 0.130)

Table 1: Summary of profiles. Although we pro-

filed both CPU and network usage for each applica-

tion, we only present results for the more constrain-

ing resource due to space constraints. Abbreviations:

WS=Apache, SMS=streaming media server, GS=Quake

game server, DBS=database server, k=number of clients,

dyn.=dynamic, Res.=Resource.

the overbooking tolerances of individual capsules already

placed on the node should not be exceeded as a result of

accepting the new capsule. Verifying these conditions in-

volves two tests:

Test 1: Resource requirements of the new and existing

capsules can be met. To verify that a node can meet the

requirements of all capsules, we simply sum the require-

ments of individual capsules and ensure that the aggregate

requirements do not exceed node capacity. For each cap-

sule i on the node, the QoS parameters (�
i

,�
i

) and �

i

re-

quire that the capsule be allocated (�

i

� �

i

+ �

i

) resources

in each interval of duration �
i

. Further, since the capsule

has an overbooking tolerance O

i

, in the worst case, the

node can allocate only (�

i

� �

i

+ �

i

) � (1�O

i

) resources

and yet satisfy the capsule needs (thus, the overbooking

tolerance represents the fraction by which the allocation

may be reduced if the node saturates due to overbook-

ing). Consequently, even in the worst case scenario, the

resource requirements of all capsules can be met so long

as the total resource requirements do not exceed the ca-

pacity:

k+1

X

i=1

(�

i

� �

min

+ �

i

) � (1�O

i

) � C � �

min

(1)

where C denotes the CPU or network interface capac-

ity on the node, k denotes the number of existing cap-

sules on the node, k + 1 is the new capsule, and �

min

=

min(�
1

; �

2

; : : : �

k+1

) is the period � for the capsule that

desires the most stringent guarantees. 1

1Note that since the �

i

for capsule i was chosen based on the

(1�O

i

) � 100

th percentile of the capsule’s resource usage distribu-

tion, this multiplication with (1 � O

i

) may seem like penalizing the

capsule twice. However, this is not so because �

i

in combination with

the burst �
i

is an upper envelop of the requirements of capsule i. The

multiplication with (1 � O

i

) allows us to overbook the resources on a

node in a controlled manner.

Test 2: Overbooking tolerances of all capsules are met.

The overbooking tolerance of a capsule is met only if the

total amount of overbooking is smaller than its specified

tolerance. To compute the aggregate overbooking on a

node, we must first compute the total resource usage on

the node. Since the usage distributions U
i

of individual

capsules are known, the total resource on a node is simply

the sum of the individual usages. That is, Y =

P

k+1

i=1

U

i

,

where Y denotes the of aggregate resource usage distribu-

tion on the node. Assuming each U

i

is independent, the

resulting distribution Y can be computed from elementary

probability theory.2 Given the total resource usage distri-

bution Y , the probability that the total demand exceeds

the node capacity should be less than the overbooking tol-

erance for every capsule, that is,

Pr(Y > C) � O

i

8i (2)

where C denotes the CPU or network capacity on the

node. Rather than verifying this condition for each indi-

vidual capsule, it suffices to do so for the least-tolerance

capsule. That is,

Pr(Y > C) � min(O
1

; O

2

; : : : ; O

k+1

) (3)

where Pr(Y > C) =

P

1

x=C

Y (x). Note that Equation

3 enables a platform to provide a probabilistic guarantee

that a capsule’s QoS requirements will be met at least (1�

O

min

)� 100% of the time.

Equations 1 and 3 can easily handle heterogeneity in

nodes by using appropriateC values for the CPU and net-

work capacities on each node.

A new capsule can be placed on a node if Equations 1

and 3 are satisfied for both the CPU and network interface.

3.2 Capsule Placement Algorithms

Consider an application with m capsules that needs to be

placed on a shared hosting platform with N nodes. For

each of the m capsules, we can determine the set of fea-

sible platform nodes. A feasible node is one that can

satisfy the capsule’s resource requirements (i.e., satisfies

Equations 1 and 3 for both the CPU and network require-

ments). The platform must then pick a feasible node for

each capsule such that all m capsules can be placed on

the platform, with the constraint that no two capsules can

be placed on the same node (since, by definition, two cap-

sules from the same application are not colocated).

The placement of capsules onto nodes subject to the

above constraint can be handled as follows. We model the

2This is done using the z-transform. The z-transform of a random

variable U is the polynomial Z(U) = a

0

+ za

1

+ z

2

a

2

+ � � � where

the coefficient of the ith term represents the probability that the random

variable equals i (i.e., U(i)). If U
1

; U

2

; :::;U

k+1

are k+1 independent

random variables, and Y =

P

k+1

i=1

U

i

, then Z(Y) =

Q

k+1

i=1

Z(U

i

).

The distribution of Y can then be computed using a polynomial multi-

plication of the z-transforms of U
1

; U

2

; � � � ; U

k+1

.

placement problem using a graph that contains a vertex

for each of the m capsules and N nodes. We add an edge

between a capsule and a node if that node is a feasible

node for the capsule (i.e., has sufficient resources to house

the application). The result is a bipartite graph where each

edge connects a capsule to a node.

Given such a graph, we use the following algorithm to

determine a placement. The algorithm starts with the cap-

sule that is most constrained (i.e., has the least number of

edges/feasible nodes) and places it on any one of its feasi-

ble nodes. The node and all of its edges are deleted (since

no other capsule can be placed on it). The algorithm then

picks the next most constrained capsule and repeats the

above process until all m capsules are placed onto nodes.

It can be shown that such a greedy algorithm will always

find a placement if one exists (see an extended version of

this paper [24] for a formal proof). This property is used

as follows — if no node is found to place a capsule, the al-

gorithm terminates declaring that no placement exists for

the application. Further, the algorithm is efficient, since

capsules can be placed in a single linear scan once they

are sorted in the increasing order of out-degree, resulting

in an overall complexity of O(m � logm).

In our description of the placement algorithm above,

we left unspecified how a node is chosen for a capsule

out of the many possible feasible nodes. The choice of a

particular feasible node can have important implications

on the total number of applications supported by the plat-

form. Consequently, we consider four policies for making

this decision. The first policy is random, where we pick

one feasible node randomly. The second policy is best-

fit, where we choose the feasible node which has the least

unused resources (i.e., constitutes the best fit for the cap-

sule). The third policy is worst-fit, where we place the

capsule onto the feasible node with the most unused re-

sources. In general, the unused network and CPU capaci-

ties on a node may be different, and similarly, the capsule

may request different amounts of CPU and network re-

sources. Consequently, defining the best and worst fits

for the capsule must take into account the unused capac-

ities on both resources—we currently do so by simply

considering the mean unused capacity across the two re-

sources and compare it to the mean requirements across

the two resources to determine the “fit”. A fourth policy

is to place a capsule onto a node that has other capsules

with similar overbooking tolerances. Since a node must

always meet the requirements of its least tolerant capsule

per Equation 3, colocating capsules with similar over-

booking tolerances permits the platform provider to maxi-

mize the amount of resource overbooking in the platform.

For instance, placing a capsule with a tolerance of 0.01

onto a node that has an existing capsule with O = 0:05

reduces the maximum permissible overbooking on that

node to 1% (since O
min

= min(0:01; 0:05) = 0:01). On

the other hand, placing this less-tolerant capsule on an-

other node may allow future, more tolerant capsules to be

placed onto this node, thereby allowing nodes resources

to be overbooked to a greater extent. We experimentally

compare the effectiveness of these three policies in Sec-

tion 5.2.

3.3 Handling Dynamically Changing Re­
source Requirements

Our discussion thus far has assumed that the resource re-

quirements of an application at run-time do not change af-

ter the initial profiling phase. In reality though, resource

requirements change dynamically over time, in tandem

with the workload seen by the application. In this sec-

tion we outline our approach for dealing with dynamically

changing application workloads.

First, recall that we provision resources based on a high

percentile of the application’s resource usage distribution.

Consequently, variations in the application workload that

affect only the average resource requirements of the cap-

sules, but not the tail of the resource usage distribution,

will not result in violations of the probabilistic guaran-

tees provided by the hosting platform. In contrast, work-

load changes that cause an increase in the tail of the re-

source usage distribution will certainly affect application

QoS guarantees.

How a platform should deal with such changes in re-

source requirements depends on several factors. Since we

are interested in yield management, the platform should

increase the resources allocated to an overload applica-

tion only if it increases revenues for the platform provider.

Thus, if an application provider only pays for a fixed

amount of resources, there is no economic incentive for

the platform provider to increase the resource allocation

beyond this limit even if the application is overloaded. In

contrast, if the contract between the application and plat-

form provider permits usage-based charging (i.e., charg-

ing for resources based on the actual usage, or a high per-

centile of the usage), then allocating additional resources

in response to increased demand is desirable for maxi-

mizing revenue. In such a scenario, handling dynamically

changing requirements involves two steps: (i) detecting

changes in the tail of the resource usage distribution, and

(ii) reacting to these changes by varying the actual re-

sources allocated to the application.

To detect such changes in the tail of an application’s

resource usage distribution, we propose to conduct con-

tinuous, on-line profiling of the resource usage of all cap-

sules using low-overhead profiling tools. This would be

done by recording the CPU scheduling instants, network

transmission times and packet sizes for all processes over

intervals of a suitable length. At the end of each interval,

this data would be processed to construct the latest re-

source usage distributions for all capsules. An application

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ro

ba
bi

lit
y

Fraction of CPU

Apache Web Server, Offline Profile, 50% cgi-bin

Probability

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ro

ba
bi

lit
y

Fraction of CPU

Apache Web Server, Expected Workload

Probability

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ro

ba
bi

lit
y

Fraction of CPU

Apache Web Server, Overload

Probability

(a) Original profile (b) Profile under expected load (c) Profile under overload

Figure 6: Demonstration of how an application overload may be detected by comparing the latest resource usage

profile with the original offline profile.

overload would manifest itself through an increased con-

centration in the high percentile buckets of the resource

usage distributions of its capsules.

We present the results of a simple experiment to illus-

trate this. Figure 6(a) shows the CPU usage distribution

of the Apache web server obtained via offline profiling.

The workload for the web server was generated by us-

ing the SPECWeb99 benchmark emulating 50 concurrent

clients with 50% dynamic cgi-bin requests. The offline

profiling was done over a period of 30 minutes. Next,

we assumed an overbooking tolerance of 1% for this web

server capsule. As described in Section 2.3, it was as-

signed a CPU rate of 0:29 (corresponding to the 99

th

percentile of its CPU usage distribution). The remain-

ing capacity was assigned to a greedy dhrystone applica-

tion (this application performs compute-intensive integer

computations and greedily consumes all resources allo-

cated to it). The web server was then subjected to exactly

the same workload (50 clients with 50% cgi-bin requests)

for 25 minutes, followed by a heavier workload consist-

ing of 70 concurrent clients with 70% dynamic cgi-bin

requests for 5 minutes. The heavier workload during the

last 5 minutes was to simulate an unexpected flash crowd.

The web server’s CPU usage distribution was recorded

over periods of length 10 minute each. Figure 6(b) shows

the CPU usage distribution observed for the web server

during a period of expected workload. We find that this

profile is very similar to the profile obtained using offline

measurements, except being upper-bounded by the CPU

rate assigned to the capsule. Figure 6(c) plots the CPU

usage distribution during the period when the web server

was overloaded. We find an increased concentration in

the high percentile regions of this distribution compared

to the original distribution.

The detection of application overload would trigger re-

medial actions that would proceed in two stages. First,

new resource requirements would be computed for the

affected capsules. Next, actions would be taken to pro-

vide the capsules the newly computed resource shares —

this may involve increasing the resource allocations of the

capsules, or moving the capsules to nodes with sufficient

resources. Implementing and evaluating these techniques

for handling application overloads are part of our ongoing

research on shared hosting platforms.

4 Implementation Considerations

In this section, we first discuss implementation issues

in integrating our resource overbooking techniques with

OS resource allocation mechanisms. We then present an

overview of our prototype implementation.

4.1 Providing Application Isolation at Run
Time

The techniques described in the previous section allow a

platform provider to overbook platform resources and yet

provide guarantees that the QoS requirements of applica-

tions will be met. The task of enforcing these guaran-

tees at run-time is the responsibility of the OS kernel. To

meet these guarantees, we assume that the kernel employs

resources allocation mechanisms that support some no-

tion of quality of service. Numerous such mechanisms—

such as reservations, shares and token bucket regulators

[4, 12, 13]—have been proposed recently. All of these

mechanisms allow a certain fraction of each resource

(CPU cycles, network interface bandwidth) to be reserved

for each application and enforce these allocations on a fine

time scale.

In addition to enforcing the QoS requirements of each

application, these mechanisms also isolate applications

from one another. By limiting the resources consumed by

each application to its reserved amount, the mechanisms

prevent a malicious or overloaded application from grab-

bing more than its allocated share of resources, thereby

providing application isolation at run-time—an important

requirement in shared hosting environments running un-

trusted applications.

Our overbooking techniques can exploit many com-

monly used QoS-aware resource allocation mechanisms.

Since the QoS requirements of an application are de-

fined in a OS- and mechanism-independent manner, we

need to map these OS-independent QoS requirements to

mechanism-specific parameter values. We consider three

commonly-used QoS-aware mechanisms — reservations,

proportional-share schedulers and rate regulators. Due to

space constraints, we present only the mapping for reser-

vations here and point the reader to an extended version

of this paper [24] for the remaining mappings.

A reservation-based scheduler [12, 13] requires the re-

source requirements to be specified as a pair (x; y) where

the capsule desires x units of the resource every y time

units (effectively, the capsule requests x

y

fraction of the

resource). For reasons of feasibility, the sum of the re-

quests allocations should not exceed 1 (i.e.,
P

j

x

j

y

j

� 1).

In such a scenario, the QoS requirements of a capsule

with token bucket parameters (�

i

; �

i

) and an overbook-

ing toleranceO
i

can be translated to reservation by setting

(1�O

i

)��

i

=

x

i

y

i

and (1�O

i

)��

i

= x

i

. To see why, recall

that (1 � O

i

) � �

i

denotes the rate of resource consump-

tion of the capsule in the presence of overbooking, which

is same as x

i

y

i

. Further, since the capsule can request x
i

units of the resource every y
i

time units, and in the worst

case, the entire x

i

units may be requested continuously,

we set the burst size to be (1 � O

i

) � �

i

= x

i

. These

equations simplify to x
i

= (1�O

i

) � �

i

and y
i

= �

i

=�

i

.

4.2 Prototype Implementation

We have implemented a Linux-based shared hosting plat-

form that incorporates the techniques discussed in the

previous sections. Our implementation consists of three

key components: (i) a profiling module that allows us

to profile applications and empirically derive their QoS

requirements, (ii) a control plane that is responsible for

resource overbooking and capsule placement, and (iii) a

QoS-enhanced Linux kernel that is responsible for enforc-

ing application QoS requirements.

The profiling module runs on a set of dedicated (and

therefore isolated) platform nodes and consists of a vanilla

Linux kernel enhanced with the Linux trace toolkit. As

explained in Section 2, the profiling module gathers a ker-

nel trace of CPU and network activities of each capsule. It

then post-processes this information to derive an On-Off

trace of resource usage and then derives the usage distri-

bution U and the token bucket parameters for this usage.

The control plane is responsible for placing capsules of

newly arriving applications onto nodes while overbook-

ing node resources. The control plane also keeps state

consisting of a list of all capsules residing on each node

and their QoS requirements. It also maintains information

about the hardware characteristics of each node. The re-

quirements of a newly arriving application are specified to

the control plane using a resource specification language.

This specification includes the CPU and network band-

width requirements of each capsule. The control plane

uses this specification to derive a placement for each cap-

sule as discussed in Section 3.2. In addition to assigning

each capsule to a node, the control plane also translates

the QoS parameters of the capsules to parameters of com-

monly used resource allocation mechanisms (discussed in

the previous section).

The third component, namely the QoS-enhanced Linux

kernel, runs on each platform node and is responsible

for enforcing the QoS requirements of capsules at run

time. For the purposes of this paper, we implement the

H-SFQ proportional-share CPU scheduler [10]. H-SFQ is

a hierarchical proportional-share scheduler that allows us

to group resource principals (processes, lightweight pro-

cesses) and assign an aggregate CPU share to the entire

group. We implement a token bucket regulator to provide

QoS guarantees at the network interface card. Our rate

regulator allows us to associate all network sockets be-

longing to a group of processes to a single token bucket.

We instantiate a token bucket regulator for each capsule

and regulate the network bandwidth usage of all resource

principals contained in this capsule using the (�; �) pa-

rameters of the capsule’s network bandwidth usage. In

Section 5.3, we experimentally demonstrate the efficacy

of these mechanisms in enforcing the QoS requirements

of capsules even in the presence of overbooking.

5 Experimental Evaluation

In this section, we present the results of our experimental

evaluation. The setup used in our experiments is identi-

cal to that described in Section 2.4—we employ a clus-

ter of Linux-based servers as our shared hosting platform.

Each server runs a QoS-enhanced Linux kernel consisting

of the H-SFQ CPU scheduler and a leaky bucket regulator

for the network interface. The control plane for the shared

platform implements the resource overbooking and cap-

sule placement strategies discussed earlier in this paper.

For ease of comparison, we use the same set of applica-

tions discussed in 2.4 and their derived profiles (see Table

1) for our experimental study.

5.1 Efficacy of Resource Overbooking

Our first set of experiments examine the efficacy of over-

booking resources in shared hosting platforms. We first

consider shared web hosting platforms — a type of shared

hosting platform that runs only web servers. Each web

server running on the platform is assumed to conform to

one of the four web server profiles gathered from our pro-

filing study (two of these profiles are shown in Table 1; the

other two employed varying mixes of static and dynamic

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

N
um

be
r

of
 W

eb
 S

er
ve

rs
 P

la
ce

d

Number of Nodes

Placement on Clusters of Different Sizes

No overbooking
ovb=1%
ovb=5%

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

N
um

be
r

of
 S

tr
ea

m
in

g
S

er
ve

rs
 S

up
po

rt
ed

Number of Nodes

Placement on Clusters of Different Sizes

No overbooking
ovb=1%
ovb=5%

������

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

0

50

100

150

200

250

300

350

5 16 32 64 128

N
u

m
b

e
r
 o

f
 A

p
p

li
c
a
ti

o
n

s
 S

u
p

p
o

r
te

d

Cluster size

Collocating CPU Bound and Network Bound Capsules

Streaming Server
Apache Server

Postgres Server

(a) Web servers (b) Streaming media servers (c) Mix of applications

Figure 7: Benefits of resource overbooking for a bursty web server application, a less bursty streaming server appli-

cation and for application mixes.

SPECWeb99 requests). The objective of our experiment

is to examine how many such web servers can be sup-

ported by a given platform configuration for various over-

booking tolerances. We vary the overbooking tolerance

from 0% to 10%, and for each tolerance value, attempt to

place as many web servers as possible until the platform

resources are exhausted. We first perform the experiment

for a cluster of 5 nodes (identical to our hardware config-

uration) and then repeat it for cluster sizes ranging from

16 to 128 nodes (since we lack clusters of these sizes, for

these experiments, we only examine how many applica-

tions can be accommodated on the platform and do not

actually run these applications). Figure 7(a) depicts our

results with 95% confidence intervals. The figure shows

that, the larger the amount of overbooking, the larger is

the number of web servers that can be run on a given plat-

form. Specifically, for a 128 node platform, the number

of web servers that can be supported increases from 307

when no overbooking is employed to over 1800 for 10%

overbooking (a factor of 5.9 increase). Even for a modest

1% overbooking, we see a factor of 2 increase in the num-

ber of web servers that can be supported on platforms of

various sizes. Thus, even modest amounts of overbook-

ing can significantly enhance revenues for the platform

provider.

Next, we examine the benefits of overbooking re-

sources in a shared hosting platform that runs a mix of

streaming servers, database servers and web servers. To

demonstrate the impact of burstiness on overbooking, we

first focus only on the streaming media server. As shown

in Table 1, the streaming server (with 20 clients) ex-

hibits less burstiness than a typical web server, and con-

sequently, we expect smaller gains due to resource over-

booking. To quantify these gains, we vary the platform

size from 5 to 128 nodes and determine the number of

streaming servers that can be supported with 0%, 1% and

5% overbooking. Figure 7(b) plots our results with 95%

confidence intervals. As shown, the number of servers

that can be supported increases by 30-40% with 1% over-

booking when compared to the no overbooking case. In-

creasing the amount of overbooking from 1% to 5% yields

only a marginal additional gain, consistent with the pro-

file for this streaming server shown in Table 1 (and also

indicative of the less-tolerant nature of this soft real-time

application). Thus, less bursty applications yield smaller

gains when overbooking resources.

Although the streaming server does not exhibit signif-

icant burstiness, large statistical multiplexing gains can

still accrue by colocating bursty and non-bursty applica-

tions. Further, since streaming server is heavily network-

bound and uses a minimal amount of CPU, additional

gains are possible by colocating applications with differ-

ent bottleneck resources (e.g., CPU-bound and network-

bound applications). To examine the validity of this as-

sertion, we conduct an experiment where we attempt to

place a mix of streaming, web and database servers—a

mix of CPU-bound and network-bound as well as bursty

and non-bursty applications. Figure 7(c) plots the number

of applications supported by platforms of different sizes

with 1% overbooking. As shown, an identical platform

configuration is able to support a large number of appli-

cations than the scenario where only streaming servers

are placed on the platform. Specifically, for a 32 node

cluster, the platform supports 36 and 52 additional web

and database servers in addition to the approximately 80

streaming servers that were supported earlier. We note

that our capsule placement algorithms are automatically

able to extract these gains without any specific “tweaking”

on our part. Thus, colocating applications with different

bottleneck resources and different amounts of burstiness

enhance additional statistical multiplexing benefits when

overbooking resources.

5.2 Capsule Placement Algorithms

Our next experiment compares the effectiveness of the

best-fit, worst-fit and random placement algorithms dis-

cussed in Section 3.2. Using our profiles, we construct

two types of applications: a replicated web server and

an e-commerce application consisting of a front-end web

server and a back-end database server. Each arriving ap-

plication belongs to one of these two categories and is

assumed to consist of 2-10 capsules, depending on the

degree of replication. The overbooking tolerance is set

to 5%. We then determine the number of applications

that can be placed on a given platform by different place-

ment strategies. Figure 8(a) depicts our results. As shown,

best-fit and random placement yield similar performance,

while worst-fit outperforms these two policies across a

range of platform sizes. This is because best-fit places

capsules onto nodes with smaller unused capacity, result-

ing in “fragmentation” of unused capacity on a node; the

leftover capacity may be wasted if no additional applica-

tions can be accommodated. Worst fit, on the other hand,

reduces the chances of such fragmentation by placing cap-

sules onto nodes with the larger unused capacity. While

such effects become prominent when application capsules

have widely varying requirements (as observed in this ex-

periment), they become less noticeable when the applica-

tion have similar resource requirements. To demonstrate

this behavior, we attempted to place Quake game servers

onto platforms of various sizes. Observe from Table 1

that the game server profiles exhibit less diversity than a

mix of web and database servers. Figure 8(b) shows that,

due to the similarity in the application resource require-

ments, all policies are able to place a comparable number

of game servers.

Finally, we examine the effectiveness of taking the

overbooking tolerance into account when making place-

ment decisions. We compare the worst-fit policy to an

overbooking-conscious worst-fit policy. The latter policy

chooses the three worst-fits among all feasible nodes and

picks the node that best matches the overbooking toler-

ance of the capsule. Our experiment assumes a web host-

ing platform with two types of applications: less-tolerant

web servers that permit 1% overbooking and more tol-

erant web servers that permit 10% overbooking. We vary

the platform size and examine the total number of applica-

tions placed by the two policies. As shown in Figure 8(c),

taking overbooking tolerances into account when making

placement decisions can help increase the number of ap-

plications placed on the cluster. However, we find that

the additional gains are small (< 6% in all cases), indi-

cating that a simple worst-fit policy may suffice for most

scenarios.

5.3 Effectiveness of Kernel Resource Allo­
cation Mechanisms

While our experiments thus far have focused on the im-

pact of overbooking on platform capacity, in our next ex-

periment, we examine the impact of overbooking on ap-

plication performance. We show that combining our over-

booking techniques with kernel-based QoS resource al-

location mechanisms can indeed provide application iso-

lation and quantitative performance guarantees to appli-

cations (even in the presence of overbooking). We be-

gin by running the Apache web server on a dedicated

(isolated) node and examine its performance (by measur-

ing throughput in requests/s) for the default SPECWeb99

workload. We then run the web server on a node run-

ning our QoS-enhanced Linux kernel. We first allo-

cate resources based on the 100

th percentile of its usage

(no overbooking) and assign the remaining capacity to a

greedy dhrystone application. We measure the throughput

of the web server in presence of this background dhrys-

tone application. Next, we reserve resources for the web

server based on the 99

th and the 95

th percentiles, allo-

cate the remaining capacity to the dhrystone application,

and measure the server throughput. Table 2 depicts our

results. As shown, provisioning based on the 100

th per-

centile yields performance that is comparable to running

the application on an dedicated node. Provisioning based

on the 99

th and 95

th percentiles results in a small degra-

dation in throughput, but well within the permissible lim-

its of 1% and 5% degradation, respectively, due to over-

booking. Table 2 also shows that provisioning based on

the average resource requirements results in a substan-

tial fall in throughout, indicating that reserving resources

based on mean usage is not advisable for shared hosting

platforms.

We repeat the above experiment for the streaming

server and the database server. The background load

for the streaming server experiment is generated using a

greedy UDP sender that transmits network packets as fast

as possible, while that in case of the database server is

generated using the dhrystone application. In both cases,

we first run the application on an isolated node and then

on our QoS-enhanced kernel with provisioning based on

the 100

th, 99

th and the 95

th percentiles. We also run

the application with provisioning based on the average of

its resource usage distribution obtained via offline profil-

ing. We measure the throughput in transaction/s for the

database server and the mean length of a playback viola-

tion (in seconds) for the streaming media server. Table 2

plots our results. Like with the web server, provisioning

based on the 100

th percentile yields performance compa-

rable to running the application on an isolated node, while

a small amount of overbooking results in a corresponding

small amount of degradation in application performance.

For each of the above scenarios, we also computed the

application profiles in the presence of background load

and overbooking and compared these to the profiles gath-

ered on the isolated node. Figure 9 shows one such set of

profiles. It should be seen in combination with the sec-

ond row in Table 2 that corresponds to the PostgreSQL

application. Together, they depict the performance of the

������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

10

20

30

40

50

60

70

80

90

16 32 64

N
u

m
b

e
r
 o

f
 A

p
p

li
c
a
ti

o
n

s
 S

u
p

p
o

r
te

d

Cluster size

Performance of Different Placement Heuristics, ovb=5%

Random
Best Fit

Worst Fit

������

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

500

1000

1500

2000

2500

3000

3500

16 32 64

N
u

m
b

e
r
 o

f
 A

p
p

li
c
a
ti

o
n

s
 S

u
p

p
o

r
te

d

Cluster size

Performance of Different Placement Heuristics, ovb=5%

Random
Best Fit

Worst Fit

������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

0

100

200

300

400

500

600

700

16 32 64

N
u

m
b

e
r
 o

f
 A

p
p

li
c
a
ti

o
n

s
 S

u
p

p
o

r
te

d

Cluster size

Comparison of Worst Fit and Close Overbooking

Worst Fit
Ovb. conscious

(a) Placing diverse applications (b) Placing similar applications (c) Overbooking-conscious placement

Figure 8: Performance of various capsule placement strategies.

Application Metric Isolated Node 100

th

99

th

95

th Average

Apache Throughput (req/s) 67:93 � 2:08 67:51 � 2:12 66:91 � 2:76 64:81 � 2:54 39:82 � 5:26

PostgreSQL Throughput (transactions/s) 22:84 � 0:54 22:46 � 0:46 22:21 � 0:63 21:78 � 0:51 9:04 � 0:85

Streaming Length of violations (sec) 0 0 0:31 � 0:04 0:59 � 0:05 5:23 � 0:22

Table 2: Effectiveness of kernel resource allocation mechanisms. All results are shown with 95% confidence intervals.

database server for different levels of CPU provisioning.

Figures 9(b) and (c) show the CPU profiles of the database

server when it is provisioned based on the 99

th and the

95

th percentiles respectively. As can be seen, the two

profiles look similar to the original profile shown in Fig-

ure 9(a). Correspondingly, Table 2 shows that for these

levels of CPU provisioning, the throughput received by

the database server is only slightly inferior to that on an

isolated node. This indicates that upon provisioning re-

sources based on a high percentile, the presence of back-

ground load interferes minimally with the application be-

havior. In Figure 9(d), we show the CPU profile when the

database server was provisioned based on its average CPU

requirement. This profile is drastically different from the

original profile. We also present the corresponding low

throughput in Table 2. This reinforces our earlier obser-

vation that provisioning resources based on the average

requirements can result in significantly degraded perfor-

mance.

Together, these results demonstrate that our kernel re-

source allocation mechanisms are able to provide quan-

titative performance guarantees even when resources are

overbooked.

6 Related Work

Research on clustered environments over the past decade

has spanned a number of issues. Systems such as Condor

have investigated techniques for harvesting idle CPU cy-

cles on a cluster of workstations to run batch jobs [15].

The design of scalable, fault-tolerant network services

running on server clusters has been studied in [8]. Use

of virtual clusters to manage resources and contain faults

in large multiprocessor systems has been studied in [9].

Scalability, availability and performance issues in dedi-

cated clusters have been studied in the context of clus-

tered mail servers [18] and replicated web servers [3].

Ongoing efforts in the grid computing community have

focused on developing standard interfaces for resource

reservations in clustered environments [11]. In the con-

text of QoS-aware resource allocation, numerous efforts

over the past decade have developed predictable resource

allocation mechanisms for single machine environments

[4, 12, 13].

Statistical admission control techniques that overbook

resources have been studied in the context of video-on-

demand servers [25] and ATM networks [6], but little

work as been published to date in the context of shared,

cluster-based hosting platforms.

Most closely related to our work is Aron [1, 2], who

presents a comprehensive framework for resource man-

agement in web servers, with the aim of delivering pre-

dictable QoS and differentiated services. New services

are profiled by running on lightly-loaded machines, and

contracts subsequently negotiated in terms of application

level performance (connections per second), reported by

the application to the system. CPU and disk bandwidth

are scheduled by lottery scheduling [26] and SFQ [10] re-

spectively, while physical memory is statically partitioned

between services with free pages allocated temporarily to

services that can make use of them. A resource monitor

running over a longer timescale examines performance

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Fraction of CPU

Postgres Profile on Isolated Node

Cumulative Probability

(a) Profile on isolated node

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Fraction of CPU

Postgres Profile When Overbooked by 1%

Cumulative Probability

(b) Provision using 99

th %-tile

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Fraction of CPU

Postgres CDF Overbooked by 5%

Cumulative Probability

(c) Provision using 95

th %-tile

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Fraction of CPU

Postgres CDF Overbooked by 50%

Cumulative Probability

(d) Provision using average

Figure 9: Effect of different levels of provisioning on the

PostgreSQL server CPU profile.

reported by the application and system performance in-

formation and flags conditions which might violate con-

tracts, to allow extra resources to be provided by external

means.

In Aron’s system, resource allocation is primarily

driven by application feedback and the primary concern is

allowing a principal to meet its contract. It is instructive to

compare this with our own goal of maximizing the yield

in the system, which amounts to maximizing the propor-

tion of system resources used to satisfy contracts. Over a

long time period (over which new machines can be pro-

visioned, for instance) these goals coincide, but as [19]

makes clear, over short periods of time they do not. This

difference corresponds to a different kind of relationship

between service provider and platform provider. Conse-

quently, Aron’s system is able to take advantage of uni-

form application-reported performance metrics; ours in

contrast is oriented toward a heterogeneous mixture of

services which are untrusted by the platform and poten-

tially antagonistic.

This subtle but important difference also motivates

other differences in design choices between the two sys-

tems. In Aron’s work, application overload is detected

when resource usage exceeds some predetermined thresh-

old. We, on the other hand, detect overload by observing

the tail of the recent resource usage distributions. On the

other hand, several features of Aron’s work, such as the

use of multiple random variables to capture the behavior

of services over different time scales, are directly applica-

ble to our system.

The specific problem of QoS-aware resource manage-

ment for clustered environments has been investigated in

[3]. This effort builds upon single node QoS-aware re-

source allocation mechanisms and propose techniques to

extend their benefits to clustered environments. [7] pro-

poses a system called Muse for provisioning resources in

hosting centers based on energy considerations. Muse

is based on an economic approach to managing shared

server resources in which services “bid” for resources as a

function of delivered performance. It also provides mech-

anisms to continuously monitor load and compute new re-

sources by estimating the value of their effects on service

performance. economic approach for sharing resources

in such driven by energy considerations. A salient differ-

ence between Muse and our approach is that Muse pro-

visions resources based on the average resource require-

ments whereas we provision based on the tail of the re-

source requirements.

In [27], the authors consider a model of hosting plat-

forms different from that considered in our work. They

visualize future applications executing on platforms con-

structed by clustering multiple, autonomous distributed

servers, with resource access governed by agreements be-

tween the owners and the users of these servers. They

present an architecture for distributed, coordinated en-

forcement of resource sharing agreements based on an

application-independent way to represent resources and

agreements. In this work we have looked at hosting plat-

forms consisting of servers in one location and connected

by a fast network. However we also believe that dis-

tributed hosting platforms will become more popular and

resource management in such systems will pose several

challenging research problems.

7 Concluding Remarks

In this paper, we presented techniques for provisioning

CPU and network resources in shared hosting platforms

running potentially antagonistic third-party applications.

We argued that provisioning resources solely based on

the worst-case needs of applications results in low aver-

age utilization, while provisioning based on a high per-

centile of the application needs can yield statistical mul-

tiplexing gains that significantly increase the utilization

of the cluster. Since an accurate estimate of an applica-

tion’s resource needs is necessary when provisioning re-

sources, we presented techniques to profile applications

on dedicated nodes, possibly while in service, and used

these profiles to guide the placement of application com-

ponents onto shared nodes. We then proposed techniques

to overbook cluster resources in a controlled fashion such

that the platform can provide performance guarantees to

applications even when overbooked. Our techniques, in

conjunction with commonly used OS resource allocation

mechanisms, can provide application isolation and per-

formance guarantees at run-time in the presence of over-

booking. We implemented our techniques in a Linux

cluster and evaluated them using common server appli-

cations. We found that the efficiency benefits from con-

trolled overbooking of resources can be dramatic when

compared to provisioning resources based on the worst-

case requirements of applications. Specifically, overbook-

ing resources by as little as 1% increases the utilization

of the hosting platform by a factor of 2, while overbook-

ing by 5-10% results in gains of up to 500%. The more

bursty the application resources needs, the higher are the

benefits of resource overbooking. More generally, our re-

sults demonstrate the benefits and feasibility of overbook-

ing resources for the platform provider.

Acknowledgments

We would like to thank the anonymous reviewers and our

shepherd Peter Druschel for their comments.

References

[1] M. Aron. Differentiated and Predictable Quality of Service in Web

Server Systems. PhD Thesis, Computer Science, Rice University,

October 2000.

[2] M. Aron, S. Iyer, and P. Druschel. A Resource Management

Framework for Predictable Quality of Service in Web Servers.

Submitted for publication

[3] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster Reserves: A

Mechanism for Resource Management in Cluster-based Network

Servers. In Proceedings of the ACM SIGMETRICS Conference,

Santa Clara, CA, June 2000.

[4] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A

New Facility for Resource Management in Server Systems. In Pro-

ceedings of the third Symposium on Operating System Design and

Implementation (OSDI’99), New Orleans, pages 45–58, February

1999.

[5] C. A. Waldspurger. Memory Resource Management in VMware

ESX Server. In Proceedings of the 5th Symposium on Operating

System Design and Implementation (OSDI’02), Boston, MA, De-

cember 2002.

[6] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn.

Statistical Service Assurances for Traffic Scheduling Algo-

rithms. IEEE Journal on Selected Areas in Communications,

18(12):2651–2664, December 2000.

[7] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Man-

aging Energy and Server Resources in Hosting Centers. In Pro-

ceedings of the Eighteenth ACM Symposium on Operating Systems

Principles (SOSP), pages 103–116, October 2001.

[8] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gau-

thier. Cluster-based Scalable Network Services. In Proceedings

of the sixteenth ACM symposium on Operating systems principles

(SOSP’97), Saint-Malo, France, pages 78–91, December 1997.

[9] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular

Disco: Resource Management using Virtual Clusters on Shared-

memory Multiprocessors. In Proceedings of the ACM Symposium

on Operating Systems Principles (SOSP’99), Kiawah Island Re-

sort, SC, pages 154–169, December 1999.

[10] P. Goyal, X. Guo, and H.M. Vin. A Hierarchical CPU Scheduler

for Multimedia Operating Systems. In Proceedings of Operat-

ing System Design and Implementation (OSDI’96), Seattle, pages

107–122, October 1996.

[11] Global Grid Forum: Scheduling and Resource Management Work-

ing Group. http://www-unix.mcs.anl.gov/ schopf/ggf-sched, 2002.

[12] M B. Jones, D Rosu, and M Rosu. CPU Reservations and Time

Constraints: Efficient, Predictable Scheduling of Independent Ac-

tivities. In Proceedings of the sixteenth ACM symposium on Op-

erating Systems Principles (SOSP’97), Saint-Malo, France, pages

198–211, December 1997.

[13] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Ev-

ers, R. Fairbairns, and E. Hyden. The Design and Implementation

of an Operating System to Support Distributed Multimedia Ap-

plications. IEEE Journal on Selected Areas in Communication,

14(7):1280–1297, September 1996.

[14] Linux Trace Toolkit Project Page. http://www.opersys.com/LTT/,

2002.

[15] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle

Workstations. In Proceedings of the 8th International Conference

of Distributed Computing Systems, pages 104–111, June 1988.

[16] The pgbench man page, PostgreSQL software distribution, 2002.

[17] T. Roscoe and B. Lyles. Distributing Computing without DPEs:

Design Considerations for Public Computing Platforms. In Pro-

ceedings of the 9th ACM SIGOPS European Workshop, Kolding,

Denmark, September 2000.

[18] Y. Saito, B. Bershad, and H. Levy. Manageability, Availability and

Performance in Porcupine: A Highly Available, Scalable Cluster-

based Mail Service. In Proceedings of the 17th SOSP, Kiawah

Island Resort, SC, pages 1–15, December 1999.

[19] B C. Smith, J F. Leimkuhler, and R M. Darrow. Yield Management

at American Airlines. Interfaces, 22(1):8–31, January-February

1992.

[20] The Standard Performance Evaluation Corporation (SPEC),

http://www.spec.org. SPECWeb99 Benchmark Documentation.

[21] V Sundaram, A. Chandra, P. Goyal, P. Shenoy, J Sahni, and H Vin.

Application Performance in the QLinux Multimedia Operating

System. In Proceedings of the Eighth ACM Conference on Multi-

media, Los Angeles, CA, November 2000.

[22] P. Tang and T. Tai. Network Traffic Characterization Using Token

Bucket Model. In Proceedings of IEEE Infocom’99, New York,

NY, March 1999.

[23] B. Urgaonkar and P. Shenoy. Sharc: Managing CPU and Network

Bandwidth in Shared Clusters. Technical Report TR01-08, Depart-

ment of Computer Science, University of Massachusetts, October

2001.

[24] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking

and Application Profiling in Shared Hosting Platforms. Technical

report TR02-21, Department of Computer Science, University of

Massachusetts, May 2002.

[25] H. M. Vin, P. Goyal, A. Goyal, and A. Goyal. A Statistical Admis-

sion Control Algorithm for Multimedia Servers. In Proceedings

of the ACM Multimedia’94, San Francisco, pages 33–40, October

1994.

[26] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible

Proportional-share Resource Management. In Proceedings of sym-

posim on Operating System Design and Implementation, Novem-

ber 1994.

[27] T. Zhao and V. Karmacheti. Enforcing Resource Sharing Agree-

ments among Distributed Server Clusters. In Proceedings of the

16th International Parallel and Distributed Processing Symposium

(IPDPS), April 2002.

