
Design Considerations for Integrated Proxy Servers

Sambit Sahu, Prashant Shenoy and Don Towlsey

Department of Computer Science, University of Massachusetts, Amherst, MA 01003.

Email: fsahu,shenoy,towsleyg@cs.umass.edu

Abstract

Proxy servers reduce client access times as well as load on

servers and networks by caching frequently accessed web

objects. In this paper, we argue that the growing heterogene-

ity of data stored on web servers coupled with the increas-

ing diversity in application requirements have made exist-

ing proxy servers inadequate. We examine the architecture

and mechanisms required by integrated proxy servers that

address this heterogeneity in application requirements and

data characteristics. Finally, we briefly describe the archi-

tecture of an integrated proxy server that is currently being

built in our research lab.

1 Introduction

The growth of the Internet and the World Wide Web has en-

abled an increasing number of users to access vast amounts

of information stored at geographically distributed sites.

Due to the non-uniformity of information access, however,

popular objects create “hot-spots” of server and network

load, and thereby significantly increase latency for infor-

mation access [17]. Proxy servers provide a way to partly

alleviate these overheads. In such an architecture, clients

request objects from a proxy; the proxy services client re-

quests using locally cached data or by fetching the requested

object from the server. By caching frequently accessed ob-

jects and servicing requests for these objects from the cache,

proxies can reduce the load on network links and servers, as

well as reduce client access latencies.

Recently several proxy servers have been designed to ser-

vice web requests consisting of textual and image objects

[3, 16]. However, the web is rapidly evolving from a pre-

dominantly text (and image) based information system to a

full-fledged multimedia information system. A recent study

has shown that the number of audio and video (continuous

media) objects stored on web servers tripled in the first nine

months of 1998 [8]. Although continuous media objects

constitute a small fraction of the data currently stored on

such servers, it is estimated that, by 2003, more that 50% of

the data stored on servers will be continuous media [4]. Fur-

thermore, clients accessing this data are expected to range

from hand-held PDAs to high-end workstations, each hav-

ing different capabilities and service requirements. Cur-

rent web proxies designed for textual and image data nei-

ther cache continuous media data, nor deal with the diver-

sity in service requirements of users. Consequently, proxy

servers need to be extended along several dimensions to ef-

ficiently support the myriad of present and future applica-

tions. The key challenge in designing such proxy servers

is that they need to deal with heterogeneity in data charac-

teristics as well as heterogeneity in the service requirements

of applications. We refer to a proxy that meets this require-

ment as an integrated proxy server. In this paper, we exam-

ine the architecture and mechanisms required for designing

such integrated proxy servers. Specifically, we argue that an

integrated proxy should: (i) employ a diverse set of mech-

anisms to efficiently support heterogeneous clients, (ii) al-

low these mechanisms to be dynamically composed to pro-

vide a customized per-client service, (iii) efficiently handle

a multi-resource cache consisting of memory and disk, pos-

sibly by monitoring the workload characteristics, and (iv)

employ flexible scheduling and resource management poli-

cies to maximize throughput and utility to users.

The rest of this paper is organized as follows. Section

2 reviews existing proxy servers and identifies their limita-

tions. Section 3 examines the design requirements imposed

by integrated proxy servers. Section 4 briefly describes a

proxy server architecture that meets these requirements. Fi-

nally Section 5 summarizes our observations.

2 Inadequacies of Existing Proxy Servers

Recently several proxy servers that handle conventional web

(text and image) requests have been designed [3, 16]. Since

such proxies cache large amounts of data, they employ disk-

based caches and use conventional file systems to store and

retrieve data from the disk cache. The best-effort service

provided by such file systems suffices for conventional web

requests, since such requests desire low average response

times but no absolute performance guarantees. Moreover,

these servers exploit locality in web accesses by employing

cache replacement policies such as LRU to maximize the hit

ratio.

Continuous media have significantly different character-

istics as compared to conventional data (with respect to size,

data rate, timeliness, etc), and hence, many of the mech-

anisms employed by existing proxy servers are unsuitable

for such requests. To illustrate, continuous media requests

impose real-time constraints on the storage and retrieval of

data to ensure jitter-free playback. Consequently, employ-

ing a conventional (best-effort) file system to manage the

disk cache is inadequate for this purpose. Moreover, the

server-push (streaming) paradigm is more suited to continu-

ous media requests, which is fundamentally different from

the client-pull paradigm employed by existing proxies to

service conventional requests. Finally, continuous media

accesses are predominantly sequential in nature. Cache re-

placement policies such as LRU employed by existing proxy

servers are known to be ineffective for sequential accesses

[2].

Several research groups have investigated the design of

specialized continuous media proxies to alleviate some of

the drawbacks of conventional web proxies. Most of these

efforts have focused on designing mechanisms for handling

continuous media requests and a large number of mech-

anisms such as prefix caching, forward error correction,

smoothing, batching and transcoding have been proposed

[1, 7, 11, 12]. Most continuous media proxies support only

a subset of these mechanisms and appropriately parameter-

ize them to specific user needs. However, the increasing

heterogeneity in the service requirements of users has made

it difficult, if not impossible, to support a diverse workload

using a small set of mechanisms. Consequently, a proxy

will need to employ a rich set of mechanisms to support het-

erogeneous clients. Furthermore, it will need to allow its

service to be tailored to the user needs (by allowing var-

ious mechanisms to be dynamically combined to create a

customized per-client service). Existing continuous media

proxies neither allow dynamic composition of mechanisms

to create a customized service, nor do they allow modular

extensions to the set of supported mechanisms. Moreover,

much of the effort in designing such proxies has focused on

mechanisms for efficiently handling user requests, and the

issue of managing continuous data on a disk-based cache

has not received much attention. Finally, continuous media

proxies are designed for audio and video requests and typi-

cally do not handle conventional web requests.

A simple approach for servicing multiple application

classes is to employ a separate proxy for each application

class and use an an integration layer that provides a logi-

cally unified view to applications. Although conceptually

elegant, the static partitioning of resources among compo-

nent proxy servers inherent in this approach can lead to

severe under-utilization of resources, especially in scenar-

ios with dynamically fluctuating workloads [14]. Moreover,

since service requirements can vary even within an applica-

tion class (e.g., loss-tolerant video, delay-intolerant video,

etc), implementing a separate component proxy for each

sub-class can further exacerbate this problem. Use of a sin-

gle integrated proxy, on the other hand, enables the server to

dynamically multiplex its resources among various classes,

which yields better utilization and better application perfor-

mance [13, 14].

In fact, some recently released commercial proxy servers,

such as Inktomi’s Traffic Server, employ the physically in-

tegrated architecture and can manage both continuous me-

dia and conventional web requests [9, 10]. Such servers also

employ specialized placement techniques, instead of general

purpose file systems, to store and retrieve objects from disk,

which allows them to improve server throughput. However,

even these state of the art proxy servers employ a fixed set of

mechanisms to handle various classes of requests and do not

allow composition of various mechanisms to provide cus-

tomized service.

In summary, existing proxy servers are unsuitable for

managing a heterogenous clientele accessing data with di-

verse characteristics. This motivates the need for designing

an integrated proxy server to address these limitations. Next,

we examine the design requirements for such a proxy server.

3 Requirements for Integrated Proxy
Servers

A physically integrated proxy server should achieve efficient

utilization of server resources while managing heterogeneity

in application requirements and data characteristics. Meet-

ing these objectives imposes several requirements on the

proxy server.

� Composability: To efficiently support clients with dif-

ferent service requirements, an integrated proxy server

should tailor its service to meet needs of individual

clients. To achieve this objective, the proxy server

should employ a rich set of mechanisms and allow

these mechanisms to be dynamically composed to cre-

ate a customized per-client service. Thus, smoothing

and transcoding could be combined to service a low-

bandwidth client, whereas forward error correction and

prefix caching mechanisms could be combined to ser-

vice a client that has low delay and loss tolerance. The

proxy server architecture should also facilitate easy ad-

dition of new mechanisms to support requirements of

future clients as well as allow newly added mechanisms

to be composed with the set of existing mechanisms.

� Multi-resource cache management: Since an integrated

proxy caches large amounts of data, it employs a disk-

based cache to store these objects and employ a smaller

memory cache to improve latencies for frequently ac-

cessed objects. Managing such a multi-resource cache

necessitates the development of novel cache replace-

ment and cache management policies that take advan-

tage of the workload characteristics. Whereas the cache

replacement policy determines which objects to store

in the cache (and which ones to evict), the cache man-

agement policy determines where to store an object in

the cache (e.g., memory, disk, both). A cache replace-

ment policy suitable for integrated proxy environments

should take into account diverse sizes of objects as well

as differences in access characteristics of objects when

making replacement decisions. Most existing cache re-

placement policies deal with homogeneous objects and

access characteristics and hence, are unsuitable for this

purpose. The design of a cache management policy

suitable for integrated proxies has not received much

attention in the literature. The key challenge in design-

ing such a policy is to develop efficient techniques to

monitor the workload and maintain access statistics so

as to aid its decisions. Based on these statistics, the

policy may prefetch objects from disk to memory in an-

ticipation of their access. The policy may also have to

trade one resource against another when making deci-

sions on storing and migrating objects. For example, it

may decide to store large hot continuous media objects

on disk, rather than in memory, and utilize the cache

space in memory to store a large number of small text

objects. Finally, the policy may decide to store por-

tions of an object (e.g., continuous media prefixes) in

memory and the remainder on disk to reduce access la-

tencies.

� Scheduling and resource management: Since an inte-

grated proxy services requests with different require-

ments, it must ensure that these requests do not inter-

fere with each other. For instance, real-time continu-

ous media requests should not affect the response times

of best-effort web requests, and a burst of best-effort

web requests should not affect the real-time guaran-

tees provided to continuous media requests. Hence, the

scheduling algorithm employed by the proxy should

protect various classes from one another, while pro-

viding all the benefits of dynamic resource sharing.

Furthermore, each client request arriving at the proxy

triggers one or more cache requests (especially long-

lived continuous media requests that periodically re-

trieve data from the cache for steaming). In such a

scenario, the scheduling algorithm should ensure that

it aligns the service provided with the requirements of

individual cache requests.

In general, resource management techniques employed

by the proxy must address the challenge of inte-

gration—efficiently managing requests and data with

diverse characteristics. To do so, the proxy can employ

a single integrated technique for each resource to man-

age all classes. Alternatively, the proxy can allow mul-

tiple data-type specific techniques to manage a resource

Network Subsystem

Session Manager

Composable Services Layer

Cache Manager

Request Scheduler

 Buffer
Subsystem

 Disk
Subsystem

Figure 1: Architecture of our integrated proxy server

and employ mechanisms that enable their coexistence.

� Operating system issues: An integrated proxy server

can provide performance guarantees to applications

only in conjunction with an operating system that can

itself allocate resources in a predictable manner. Thus,

we assume that the underlying operating system em-

ploys predictable resource allocation techniques for re-

sources such as CPU, disks and network interfaces.

Moreover, unlike video and web servers that are dom-

inated by read requests, a significant portion of the

workload at a proxy consists of writes and deletes (re-

sulting from evictions of cold objects and fetching new

objects into the cache). Consequently, the operating

system must employ placement policies that minimize

fragmentation of disk space resulting from frequent

writes and deletes. The placement policy should also

efficiently handle the storage of diverse objects rang-

ing from small text files to large continuous media files.

Most existing placement policies have been either de-

veloped for predominantly read-only continuous me-

dia workloads in video servers or for small textual files

stored in conventional file systems; hence, these polices

are unsuitable for proxy workloads.

4 Architecture of an Integrated Proxy
Server

We are designing an integrated proxy server that meets the

requirements outlined in Section 3. Figure 1 depicts the key

components of our architecture. A novel feature of our ar-

chitecture is the composable services layer that provides fa-

cilities to dynamically compose mechanisms as well as to

add support for new mechanisms. Conceptually, each mech-

anism in this layer either transforms (modifies) the request

stream or the data stream; a sequence of mechanisms can

then be combined to provide customized service. For in-

stance, smoothing mechanisms modify the request schedule

to smooth out bit rate variations, whereas transcoding mech-

anisms modify the data stream; together they can provide

smoothed transcoded continuous media streams to users.

Besides the composable services layer, our architecture con-

sists of a number of other components such as: (i) the net-

work subsystem that provides interfaces (e.g., http) to fa-

cilitate client-proxy and proxy-server communication, (ii) a

session manager that manages and maintains state of active

client sessions, (iii) a cache manager that instantiates cache

management and cache replacement policies to manage a

two level cache consisting of memory and disk, (iv) a re-

quest scheduler that partitions the server bandwidth fairly

across classes while meeting requirements (e.g., deadlines)

of individual requests and (v) buffer and disk subsystems that

manage storage and retrieval of objects from memory and

disk, respectively.

Separately, we are also designing QLinux, a QoS-

enhanced Linux kernel (jointly with AT&T Research and

the Univ. of Texas) that can allocate resources in a pre-

dictable manner.1 Specifically, the kernel employs: (i) the

H-SFQ CPU scheduler that allocates CPU bandwidth fairly

among application classes [5], (ii) the SFQ link scheduler

that can fairly allocate network link bandwidth to network

flows [6], and (iii) the Cello disk scheduler that can support

disk requests with diverse requirements [15]. We plan to

use this QoS-enhanced Linux kernel as the substrate for our

integrated proxy server.

5 Concluding Remarks

In this paper, we argued that the growing heterogeneity of

data objects in the web and the increasing diversity in appli-

cation requirements have made conventional proxy servers

inadequate. We examined the architecture and mechanisms

required by integrated proxy servers to address this hetero-

geneity in application requirements and data characteristics.

Finally, we briefly outlined the architecture of an integrated

proxy server that is currently being built in our research lab.

References

[1] E. Amir, S. McCanne, and R. Katz. An Active Service Frame-

work and Its Application to Real-time Multimedia Transcod-

ing. In Proceedings of ACM SIGCOMM Conference, Van-

couver, Canada, pages 178–189, September 1998.

[2] P. Cao. Application Controlled File Caching and Prefetching.

PhD thesis, Princeton University, 1996.

1The current version of QLinux is available from

http://www.cs.umass.edu/˜lass/software/qlinux.

[3] A. Chankhunthod, P B. Danzig, C. Neerdaels, M F. Schwartz,

and K J. Worrell. A Hierarchical Internet Object Cache. In

Proceedings of the 1996 USENIX Technical Conference, San

Diego, CA, January 1996.

[4] G. A. Gibson, J.S. Vitter, and J. Wilkes. Storage and I/O Is-

sues in Large-Scale Computing. ACM Workshop on Strategic

Directions in Computing Research, ACM Computing Surveys,

1996. http://www.medg.lcs.mit.edu/doyle/sdcr.

[5] P. Goyal, X. Guo, and H. Vin. A Hierarchical CPU Scheduler

for Multimedia Operating Systems. In Proceedings of the

Second Symposium on Operating Systems Design and Imple-

mentation, pages 107–121, October 1996.

[6] P. Goyal, H. M. Vin, and H. Cheng. Start-time Fair Queu-

ing: A Scheduling Algorithm for Integrated Services Packet

Switching Networks. In Proceedings of ACM SIGCOMM’96,

pages 157–168, August 1996.

[7] K A. Hua, Y. Cai, and S. Sheu. Patching: A Multicast Tech-

nique for True Video-on-Demand Services. In Proceedings

of 6th ACM Conference on Multimedia, Bristol, UK, pages

191–200, September 1998.

[8] Streaming Media Caching White Paper. Techni-

cal report, Inktomi Corporation, Available on-line at

http://www.inktomi.com/products/traffic/tech/streaming.html,

1999.

[9] Traffic Server Product Details. Inktomi Corporation,

http://www.inktomi.com/products/traffic, 1999.

[10] NetCache Product Details. Network Appliance, Inc.,

http://www.netapp.com/products/internet prod.html, 1999.

[11] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley. Support-

ing Stored Video: Reducing Rate Variability and End-to-

End Resource Requirements through Optimal Smoothing. In

Proceedings of ACM SIGMETRICS, Philadelphia, PA, May

1996.

[12] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix Caching for

Multimedia Streams. In Proceedings of the IEEE Infocom’99,

New York, NY, March 1999.

[13] S. Shenker. Fundamental Design Issues for the Future In-

ternet. IEEE Journal of Selected Areas in Communications,

13:1176–1188, September 1995.

[14] P. Shenoy, P. Goyal, and H M. Vin. Architectural Consid-

erations for Next Generation File Systems. Technical Re-

port TR98-48, Dept. of Computer Science, Univ. of Mas-

sachusetts at Amherst, 1998.

[15] P Shenoy and H M. Vin. Cello: A Disk Scheduling Frame-

work for Next Generation Operating Systems. In Proceed-

ings of ACM SIGMETRICS Conference, Madison, WI, pages

44–55, June 1998.

[16] Squid Internet Object Cache Users Guide. Available on-line

at http://squid.nlanr.net, 1997.

[17] R. Tewari, M. Dahlin, H M. Vin, and J. Kay. Beyond Hi-

erarchies: Design Considerations for Distributed Caching on

the Internet. In Proceedings of the 19th International Con-

ference on Distributed Computing Systems (ICDCS) (to ap-

pear), June 1999.

