
A Time Seriesbased Approach for Power Management in
Mobile Processors and Disks ∗

Xiaotao Liu Prashant Shenoy Weibo Gong†

xiaotaol@cs.umass.edu shenoy@cs.umass.edu gong@ecs.umass.edu

Department of Computer Science †Department of Electrical and Computer Engineering
University of Massachusetts Amherst University of Massachusetts Amherst

Amherst, MA 01003 Amherst, MA 01003

ABSTRACT

In this paper, we present a time series-based approach for managing
power in mobile processors and disks that see multimedia work-
loads. Since multimedia applications impose soft real-time con-
straints, a key goal of our approach is to reduce energy consump-
tion of multimedia applications without degrading performance.
We present simple statistical techniques based on time series to dy-
namically compute the processor and I/O demands of multimedia
applications and present techniques to dynamically vary the volt-
age settings and rotational speeds of mobile processors and disks,
respectively. We implement our approaches in the Linux kernel
running on a Sony Transmeta laptop and in a trace-driven simula-
tor. Our experiments show that, compared to the traditional system-
wide CPU voltage scaling approaches, our technique can achieve
up to a 38.6% energy saving while delivering good performance
to applications. Simulation results for our disk power management
technique show a 20.3% reduction in energy consumption without
any significant performance loss when compared to a traditional
disk power management scheme.

Categories and Subject Descriptors: D.4.1 [Process Manage-
ment]: Scheduling; D.4.8 [Performance]: Modelling and predic-
tion

General Terms: Algorithms, Design, Experimentation.

Keywords: Dynamic Voltage Scaling, Power Management, Multi-
media, Dynamic Rotations per Minute.

1. INTRODUCTION
Modern mobile devices such as laptops, personal digital assis-

tants (PDAs) and cellular phones tend to have rich multimedia ca-

∗This research was supported in part by NSF grants CCR-9984030,
CCR-0098060, CCR-0219520, EIA-0080119 and gifts from IBM,
Microsoft and Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04, June 16–18, 2004, Cork, Ireland.
Copyright 2004 ACM 1581138016/04/0006 ...$5.00.

pabilities such as DVD drives, software video and MP3 players, and
in-built cameras for image and video capture. Energy is a scarce
resource in such battery-powered mobile devices. In contrast, mul-
timedia applications such as audio-video players, multimedia cap-
ture and editing programs tend to be resource-hungry. Typically,
such multimedia applications consume energy by accessing, pro-
cessing and rendering large amounts of data. Further, these appli-
cations impose soft real-time constraints, and thereby impose lower
bounds on the speeds at which multimedia data can be accessed,
processed and rendered by these applications.

Recent mobile devices have incorporated a number of power
management features to conserve battery power. For instance, mod-
ern processors such as Intel’s XScale and Pentium-M, AMD’s Athlon,
Transmeta’s Crusoe and IBM’s PowerPC-405LP all incorporate dy-
namic voltage and frequency scaling (DVFS) capabilities. DVFS
enables the CPU speed to be varied dynamically based on the work-
load and reduces energy consumption during periods of low uti-
lization [14]. A number of software and hardware power manage-
ment techniques have been developed to take advantage of DVFS-
capable processors. For instance, LongRun is a hardware technique
developed by Transmeta to dynamically measure system-wide pro-
cessor utilization and vary the CPU speed accordingly [4].

Several software approaches for DVFS have also been developed
[2, 3, 9, 11, 15]. In [2, 3], the authors propose a work-tracking
heuristic that dynamically infers the periodicity of tasks and deter-
mines a CPU speed based on this period. A system-wide CPU set-
ting is determined based on the CPU demands of individual tasks.
Lorch et. al. [9] divide applications into two categories, interactive
and non-interactive. For interactive applications, they assume im-
plicit deadlines (of 50 ms for user input and 25ms for mouse events)
and vary the CPU speed based on whether these deadlines are met
or missed. A system-wide CPU setting is used in their approach,
and non-interactive tasks are handled using a traditional interval-
based scheduler. An energy-efficient soft real-time CPU scheduler
for mobile multimedia applications was proposed in [15]. The tech-
nique integrates DVFS with a real-time CPU scheduling algorithm
such as Earliest Deadline First (EDF). The technique makes such
scheduling and scaling decisions based on the probability distri-
bution of application cycle demands, and can use different CPU
speeds for different tasks. The approach handles only periodic ap-
plications (e.g., audio and video players). Further, it assumes that
applications convey their periods and the amount of the work in
each period to the operating system using system calls. Techniques
for varying the rotational speed of disks were studied in [6, 7]—the
approach monitors the length of the disk request queue and varies
disk speeds so that the response time of requests is within a prede-

fined range. The impact of on-disk caches on performance was not
considered in their work.

In this paper, we propose a new approach for power management
in mobile devices. Our approach differs from past work in several
different respects.

• Our techniques are based on time series and employ simple
statistical methods to predict future workloads and to com-
pute power settings.

• Our techniques are designed to handle both processors and
disks with power management capabilities. We assume a
DVFS-capable processor and a disk that supports multiple
rotational speeds and present techniques for varying the speeds
of these components based on the workload.

• Unlike techniques that use a single system-wide setting for
all tasks [2, 3, 9], our techniques can employ different CPU
frequencies for different tasks. The CPU setting is modified
at context-switch time based on the needs of each task. Fur-
ther, unlike approaches such as [15], our approach is com-
pletely transparent to applications, and does not require any
information (such as the period) from applications. Last, our
approach does not make any assumptions about the nature of
applications, unlike past work that either assumes periodic or
interactive applications. Our time series-based approach can
be applied to any application, regardless of its nature. Al-
though we present experimental results only for multimedia
applications in this paper due to space constraints, we refer
the reader to [8] for results from other applications such as
batch compilations, emacs, X Server, and interactive shell
terminals.

Our time series-based power management (TS-PM) approach
consists of two components: (i) a time series-based DVFS (TS-
DVFS) that uses per-process utilizations to compute the task-specific
CPU speed settings, and (ii) a time series-based dynamic rotations
per minute (TS-DRPM) technique that dynamically varies disk ro-
tational speeds based on the arrival rate, response times, and ac-
cess patterns (hit ratios seen at the on-board disk caches) of disk
requests.

We have implemented TS-DVFS in the Linux kernel 2.4.20-9,
and have evaluated it on a Sony Vaio laptop equipped with Trans-
meta’s Crusoe TM5600-667 processor [12]. Since disks that sup-
port variable rotational speeds are not yet commercially available,
we resort to trace-driven simulations to evaluate TS-DRPM.

Our results show that:

1. TS-DVFS can achieve up to 38.6% energy saving when com-
pared to the hardwired LongRun technology, while still deliv-
ering good performance to not only multimedia applications
but also other kinds of applications.

2. TS-DRPM reduces the energy consumption of disks by up
to 36% when compared to disks without such features, and
by up to 20.3% when compared to the traditional disk power
management techniques based on disk spin-down.

The rest of this paper is organized as follows. Section 2 intro-
duces the design and algorithms employed in TS-PM. Sections 3
and 4 present the implementation and experimental evaluation of
TS-PM, respectively. Finally, Section 5 summaries our key results.

2. TSPM DESIGN
In this section, we present the architecture of our time series-

based power management (TS-PM) approach and the specific al-
gorithms used by our approach.

2.1 Overview
Our time series-based power management techniques assume a

processor that supports dynamic voltage and frequency scaling and
a hard disk that supports different rotational speeds. While DVFS-
capable processors are widely available, disks that support multiple
rotational speeds are not yet commercially available—we assume
that such disks will be widely used in future mobile devices.

We assume that our TS-PM technique is implemented in the OS
kernel and consists of three components: (i) a profiler that mea-
sures the current CPU and I/O demands for individual tasks as well
as for the system as a whole, (ii) a predictor that uses a time series
of recent CPU and I/O demand to predict future demands using
statistical methods, and (iii) a speed setting strategy that uses these
predictions to compute the desired CPU and disk settings as well
as a speed adapter that maps these settings to the nearest speed
actually supported by the hardware. Observe that the speed set-
tings strategy computes an ideal speed for the processor and disk,
while the speed adapter maps it to a speed actually supported by
the hardware (since different processors and disks support different
power settings, this separation ensures OS portability across hard-
ware). Figure 1 depicts these components. We assume that both
TS-DVFS and TS-DRPM employ these components, although the
specific algorithms used for profiling, prediction and speed setting
will differ for processors and disks.

Applications

Speed Scaling

Get Speed

Monitoring

Set SpeedT
S

-P
M

 e
n

ab
le

d
 O

S

Processor and I/O Demands

Demands Profiler

Demands Predictor

Speed Adaptor

Processor/Disk

Figure 1: The architecture of a TS-PM-enabled OS kernel

2.2 Profiling Current Demands
This section provides an overview of the profiling techniques

employed in TS-PM to measure processor and I/O demand.

2.2.1 Measurement of Processor Demand

Since TS-DVFS supports per-process CPU speed settings, the
profiler must estimate the processor demands of individual tasks
(the terms tasks and processes are used interchangeably in this pa-
per). Typically, system-wide processor demand is measured using
system utilization, which is given as

Usys =
Tbusy

T
(1)

there Tbusy denotes the time for which the CPU is busy during
some interval T . This concept can be extended to capture the CPU
demands of individual processes. Process utilization—the CPU uti-
lization due to an individual process—can be defined as follows.
Consider a process that executes for time e within a quantum. The
CPU frequency can vary dynamically within this quantum; assume

that frequency changes j times within the quantum and that the
process runs at CPU frequency f1 for time t1 and then at frequency
f2 for time t2 and so on within the quantum. Then the full-speed

equivalent execution time efse for the execution e is given by

efse =

j
∑

i=1

fiti (2)

where fi is the CPU frequency expressed as a percentage of the
maximum available frequency. Intuitively, efse represents the time
for which the process would have executed in the quantum if the
processor were running at full speed throughout.

To compute the process utilization, assume that the process was
scheduled n times during an interval T , and the full-speed execu-
tion time of each execution is e1, e2, ..., en, respectively. Let qi

denote the time quantum that the process gets during its ith exe-
cution in that interval. Then, the process utilization u during that
interval is given as:

u =

∑n

i=1
ei

∑n

i=1
qi

(3)

The quantum qi is given by formula:

qi = ei +
ei

tbusy

tidle (4)

where tbusy refers to the length of the continuous non-idle time
period in which the ith execution sits, and tidle denotes the length
of the first continuous idle time after the ith execution.

2.2.2 Measurement of I/O Demand

TS-DRPM measures the I/O demand of applications by measur-
ing the response time of disk requests. Given an interval T , suppose
that there are n I/O requests during this interval with response times
r1, r2, ..., rn, respectively. Then, the disk utilization in this interval
is given by:

u =

∑n

i=1
ri · si

T
(5)

where si is a scaling factor based on the current disk speed, 0 <

si ≤ 1, and ri · si denotes the full-speed response time—the re-
sponse time that would have been observed if the disk were to run
at full speed. Due to the presence of an on-board disk cache, not
all requests result in disk accesses, and hence, Equation 5 does not
correctly reflect the I/O demand of applications. To measure true
I/O demand, we should only consider those requests that result in
misses in the on-disk cache (and result in actual disk accesses). The
profiler labels each I/O request as a hit or a miss and computes the
utilization by only considering misses. Our profiler uses a heuris-
tic for this labelling—only those read requests with response times
below a threshold τ are labelled as hits; the remaining reads and
all writes are labelled as misses (typically τ is set to less than a
millisecond for modern disks).

2.3 Predicting Future Demand
The processor utilizations of individual tasks and the disk utiliza-

tion are measured by the profiler periodically, yielding a time series
of their values. We can then use simple time series-based statistical
models to predict future processor and I/O demands. We have ex-
perimented with a number of auto-regressive and moving average
models such as AR(1), AR(2), AR(3), MA(1), and MA(2) for such
predictions [1]. Our analysis using real traces of processor and I/O
usage has shown that the first-order auto-regressive model AR(1)
yields a good balance between prediction accuracy and computa-
tional complexity. We omit these results due to space constraints

and assume a predictor based on the AR(1) model in the rest of this
paper (see [8] for detailed results).

To understand how the AR(1) predictor works, consider a se-
quence of observations of the processor or I/O demands: u0, u1,
u2, ..., un. Given this time series, we wish to predict the demand
in the (n + 1)th interval. Let un+1 denote the actual demand and
let ûn+1 denote the predicted demand.

The first-order autoregressive process (AR(1)) is given by [1]:

ũt = φ1ũt−1 + at (6)

where at is some random variable with zero mean and −1 < φ1 <

1. If ut has a non-zero mean µ, then ũt = ut − µ, otherwise,
ũt = ut.

Given such a process, an AR(1) predictor estimates the mean of
ut and the parameter φ1 of the model and then predicts the next
value based on these estimates. Let µ̂ denote the estimated mean
and let φ̂1 denote the estimated value of φ1. The prediction ûn+1

is given by:

ûn+1 = µ̂ + φ̂1(un − µ̂) (7)

Estimation of the mean µ̂ and the parameter φ̂1 are important issues
in the design of an AR(1) predictor.

Our predictor estimates these two parameters dynamically using
recent observations. Consider a window that hold the most recent
m observations of utilizations, m ≤ n. The estimate of the mean
µ̂ is given by:

µ̂ =

∑m−1

i=0
un−i

m
(8)

The estimate of φ̂1 is given by:

φ̂1 =

∑m−1

i=0
(un−i − µ̂)(un−1−i − µ̂)

∑m−1

i=0
(un−i − µ̂)(un−i − µ̂)

(9)

Although both TS-DVFS and TS-DRPM use the AR(1) predic-
tor, they use it in different ways. TS-DVFS uses a different AR(1)
predictor for each task in the system, while TS-DRPM uses a single
predictor to predict aggregate I/O demand.

2.4 Speed Setting Strategy
This section outlines the strategies used to compute the processor

and disk power settings.

2.4.1 Processor Speed Setting Strategy

The AR(1) predictor assumes a stationary process. Since appli-
cation behavior tends to change over time, in reality, the time series
of processor and I/O demands is non-stationary. Consequently, our
predictor is imperfect and will yield prediction errors. In order to
quickly respond to the prediction errors, we implement a two-level
CPU speed setting strategy in TS-DVFS. The first level works at
the time scale of the prediction interval T and is responsible for
computing a baseline CPU frequency for the entire interval T . The
second level works at the granularity of subintervals within T and
adjusts the baseline CPU speed setting whenever prediction errors
are detected.

Suppose that the prediction interval is T = n × 10 ms, where n

is an integer (we choose 3 ≤ n ≤ 5 in our implementation). At the
end of each such interval, TS-DVFS computes the baseline CPU
frequency for the next interval as

fbase = û × fmax (10)

where fmax is the maximum CPU frequency, and û is the processor
utilization prediction for the next interval.

The interval T is further divided into m subintervals, and the
length of each such subinterval is 10n

m
ms. Let uj denote the ob-

served process utilization of the application until the end of the jth
subinterval and let fj denote the frequency setting in this subinter-
val. Then the CPU frequency setting is adjusted as follows:

fk =

fk−1 if |uk−1 − uk−2| ≤ thresholduk−2

uk−1 × fmax if |uk−1 − uk−2| > thresholduk−2

fbase if k = 1 or uk−1 = 0

(11)

where thresholdj is a predefined series of thresholds, u0 = û and
f0 = fbase. Intuitively, the frequency setting is adjusted whenever
the observed utilization in a subinterval is a threshold bigger than
that in the previous subinterval (indicating a prediction error). It is
left unchanged when the two utilizations are within a threshold and
reset to the baseline when the utilization drops to zero.

In a real implementation, the computed fj will be mapped to
the closest available frequency which is not less than itself, and
thresholdj series are specifically determined for each processor
platform.

2.4.2 I/O Speed Setting Strategy

Modern hard drives implement pre-fetching in the hardware to
maximize disk cache performance (for instance, track buffering is
a form of pre-fetching where an entire disk track is read when-
ever any sector on that track is requested). Any speed setting strat-
egy should avoid choosing disk speeds that will interfere with such
pre-fetching. Aggressive lowering of disk speed can impact pre-
fetching, reduce the cache hit ratio, and severely degrade applica-
tion performance. This can be especially harmful for soft real-time
multimedia applications.

Our I/O speed setting strategy takes these factors into account
when computing an appropriate speed setting. Specifically, our
technique take into account the arrival rate during last interval, the
hit ratio of the most recent n requests, and the performance slow-
down at different RPM levels when computing the speed. Suppose
that the arrival rate for the last T seconds is a, the hit ratio of the
most recent n requests is h, and TS-DRPM predicts disk utilization
for the next T seconds as û. Let Rdiff [i] denote the difference
in the rotational latency between the maximum RPM level and the
candidate RPM level i (note that the seek time remains unchanged
when changing the disk rotational speed). The performance slow-
down Pdiff [i] is given by the increase in rotational latency seen by
these a × T requests:

Pdiff [i] = a(1 − h) × T × Rdiff [i] (12)

With this, we can predict the disk utilizations under different RPM
levels for the next T seconds by:

ûi = û +
Pdiff [i]

T
(13)

where ûi is the predicted utilization if running on RPM level i for
the next T seconds.

Let ûmax denote the utilization at the maximum RPM level. We
choose the lowest RPM level that satisfies the following property:

ûi − ûmax

ûmax

≤ threshold (14)

where threshold is a predefined threshold.

3. IMPLEMENTATION AND SIMULATION
We have implemented TS-DVFS in the Linux kernel on a Sony

Vaio PCG-V1CPK laptop with Transmeta Crusoe TM5600-667 pro-
cessor [12]. Since DRPM-enabled disks are not yet commercially

available, we implement TS-DRPM in a simulated DRPM-ready
hard disk using DiskSim [5]. Next we present the details of our
implementation.

3.1 Implementation of TSDVFS
The Transmeta TM5600 processor supports five discrete frequency

and voltage levels (see Table 1) and implements the LongRun [4]
technology in hardware to dynamically vary the CPU frequency
based on the observed system-wide CPU utilization. LongRun
varies the CPU frequency between a user-specified maximum and
minimum values—these values can be set by users by writing to
two machine special registers (MSR). By default, these values are
set to 300 MHZ and 677 MHz, enabling the full range of voltage
scaling. LongRun can be disabled by setting the minimum and
maximum register values to the same frequency (e.g., setting both
to 533 MHz does not allow any leeway in changing the CPU fre-
quency, effectively disabling LongRun). This feature can be used
to implement voltage scaling in software—the OS can periodically
determine the desired frequency and set the two registers to this
value.

Freq. (MHz) Voltage (V) Power (W)

300 1.2 1.3

400 1.225 1.9

533 1.35 3.0

600 1.5 4.2

667 1.6 5.3

Table 1: Characteristics of the TM5600-667 processor

Our prototype of TS-DVFS is implemented as a set of mod-
ules and patches in the Linux kernel 2.4.20-9. Our implementa-
tion uses a scaling interval T of 40ms, sub-intervals of 10ms, and
a window size 4 for the AR(1) predictor. Our prototyping effort in-
volved the following issues: (i) implementation of the CPU demand
profiler and predictor, (ii) modifications to the kernel CPU sched-
uler to support per-process DVFS settings (which are taken into
account at context switch time), (iii) implementation of the CPU
speed adaptor for the Transmeta processor, and (iv) determination
of the thresholdj values from off-line empirical experiments. The
latter experiments yield a hardware-specific conversion table (see
Table 2) for mapping process utilizations to a corresponding CPU
frequency.

Process Utilization Freq. (MHz)

[0%, 45%) 300

[45%, 60%) 400

[60%, 80%] 533

(80%, 90%] 600

(90%, 100%] 667

Table 2: Mapping Process Utilizations to a CPU Frequency in

the Transmeta TM5600.

3.2 Simulation of TSDRPM
To simulate TS-DRPM, we consider an IBM TravelStar 40GNX

[13] laptop hard disk as the baseline and enhance it with DRPM
features. We enhance the disk with five different RPM levels from
3000 to 5400 RPM with a step size of 600 RPM. The assumed
power characteristics for these RPM levels are shown in 3. We im-
plement TS-DRPM for this disk in the DiskSim simulator [5]. We
assume a scaling interval T of 10s, a threshold value of 0.15, a his-
tory of the 100 most recent requests, and a window size of 2 for

the AR(1) predictor. We augment DiskSim with power models to
record the energy consumption of the disk at various RPM levels.
Our implementation also accounts for the queuing and service de-
lays caused by the changes in the RPM level of the disk and in the
STANDY/ACTIVE/IDLE modes.

RPM Idle Power Seek Power Read/Write Power

3000 0.8W 1.4W 1.3W

3600 1.1W 1.7W 1.6W

4200 1.4W 2.0W 1.9W

4800 1.7W 2.3W 2.2W

5400 2.0W 2.6W 2.5W

Table 3: Characteristics of the Simulated DRPM-Ready Hard

Disk

4. EXPERIMENTAL EVALUATION
We evaluated TS-DVFS with a variety of applications and TS-

DRPM with a variety of real application traces. This section presents
a summary of our key results (see [8] for detailed results).

4.1 TSDVFS Results
To evaluate TS-DVFS, we ran applications under three differ-

ent configurations: (i) with DVFS disabled—the CPU always runs
at the maximum available speed (denoted as FULL); (ii) using the
hardwired LongRun technology; (iii) using TS-DVFS and with the
LongRun technology disabled. The energy consumption of the pro-
cessor during an interval T is computed as

energy =
n

∑

i=1

piti (15)

where n is the number of available frequency/voltage combinations
on the processor, pi denotes the power consumption of the proces-
sor when running at the ith frequency/voltage combination, and ti

represents the time spent at the ith frequency/voltage combination
during the interval T . We modify the Linux kernel to record the
energy consumption of the TM5600 processor using Equation 15
and Table 1.

4.1.1 Multimedia Applications

We encoded several DVD movies at different bit-rates and res-
olutions using Divx MPEG4 video codec and MP3 audio codec.
The characteristics of two such movies are listed in Table 4. The
bit-rates are depicted in the form (a+ b)Kbps, where a is the video
and b is the audio bit-rate. We recorded the energy consumed in
the playback of these movies at full speed, with LongRun and with
TS-DVFS.

Res. Length Bit-Rate(Kbps)

Movie 1 640x272 6720s 1290.9 + 179.20

Movie 2 640x352 7168s 679.7 + 128.00

Table 4: Characteristics of MPEG 4 Videos

As shown in Figure 2, all three configuration—FULL, LongRun,
and TS-DVFS—handle these movies very well. The same play-
back quality is observed under all three configurations: identical
execution times, same frame rate, no dropped frames and no user-
noticeable delays. The results also show that although LongRun al-
ready achieves significant energy savings (from 53.77% to 57.17%)
compared to FULL, TS-PM can achieve additional 20.51% to 24.64%
energy savings when compared to LongRun.

Orig. Charac. Charac. after Resc./Trans.

Len. Res. Bit-Rate(Kbps) Res. Bit-Rate(Kbps)

610s 512x288 838.40+128.00 480x270 802.25+128.00
2270s 480x360 861.90+128.00 480x360 803.40+128.00

Table 5: Characteristics of MPEG Videos for Rescal-

ing/Transcoding

In addition to movie playback, we studied the energy efficiency
of TS-PM for transcoding. We used mencoder, an encoder tool in
MPlayer suite [10], to perform two tasks: (i) to rescale the resolu-
tion of an MPEG4 movie, and (ii) to transcode a MPEG1 movie to
MPEG4. The characteristics of these workloads are shown in Table
5. All these movies use MP3 codec as their audio codec.

Movie 1 Movie 2 Transcoding
0

10000

20000

30000

40000

50000

Applications

Energy Consumption of Applications Set 1

E
n
e
rg

y
 i
n
 J

o
u
le

s

TS−DVFS
LongRun
FULL

Rescaling make+mp3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Applications

Energy Consumption of Applications Set 2

E
n
e
rg

y
 i
n
 J

o
u
le

s

TS−DVFS
LongRun
FULL

Movie 1 Movie 2 Transcoding
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Applications

Execution Time of Applications Set 1

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s TS−DVFS

LongRun
FULL

Rescaling make+mp3
0

200

400

600

800

1000

1200

1400

1600

1800

Applications

Execution Time of Applications Set 2

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s TS−DVFS

LongRun
FULL

Figure 2: CPU Energy Consumption and Execution Times for

Different Workloads

Our results in Figure 2 (labelled as Transcoding and Rescaling)
show that LongRun is unable to extract any energy savings for these
workloads. However, TS-DVFS can still achieve up to 7.08% and
14.41% energy savings for rescaling and transcoding, respectively,
when compared to LongRun and Full. The data in Figure 2 also
shows that TS-DVFS can extract these savings without any signif-
icant performance degradation—the observed loss in performance
is only 2.73% for the transcoding workload.

4.1.2 Other Applications

We also evaluated the efficiency of TS-DVFS for a variety of
other application workloads such as editors, X server, shell termi-
nals, and build jobs [8]. We consider one such workload, namely,
building the Linux kernel with background MP3 audio playback,
labelled as “make+mp3” in Figure 2.

Our results in Figure 2 show that LongRun is unable to extract
any energy savings when compared to FULL. In fact, Longrun in-
curs a 2.31% slowdown and consumes an extra 69.27 Joules when
compared to FULL (the increase in energy consumption is due to
the longer completion time for the build job). In contrast, TS-DVFS
is able to extract 38.62% energy savings at the expense of 4.03%
longer execution time when compared to LongRun.

4.2 TSDRPM Results
To evaluate TS-DRPM, we consider four disk configurations: (i)

FULL, where the disk is assumed to run at full speed with no power
optimizations, (ii) TPMperf , the traditional power management
based on disk spin-down, where we assume a perfect arrival time
predictor and transition the disk to sleep mode if the time to next re-
quest is long enough to accommodate the spin-down followed by a
spin-up, (iii) SIMPLE-DRPM—the technique proposed in [7, 6]—
which uses the variance in mean response times of disk requests to
estimate the I/O demand, and (iv) TS-DRPM, our time series-based
technique.

We instrument the Linux kernel to gather traces of disk requests
from a variety of application mixes. We present results from one
such workload consisting of a mix of movie playback, MP3 play-
back, and movie transcoding. We conduct trace driven simulations
for the four configurations and determine the energy consumption
of the disk and the response time CDF. Figure 3 depicts our results
and indicates that TS-DRPM, TPMperf , and SIMPLE-DRPM can
all achieve significant energy savings when compared to FULL.
TS-DRPM yields the best savings and reduces the energy consump-
tion of the multimedia workload by 9.46%, 20.35%, and 36.01%
when compared to SIMPLE-DRPM, TPMperf , and FULL, re-
spectively.

0

10000

20000

30000

40000

50000

Multimedia Workload

Energy Consumption of Hard Disk

E
n
e
rg

y
 i
n
 J

o
u
le

s

TS−DRPM
SIMPLE−DRPM
TPM

perf

FULL

0 20 40 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (ms)

Response Time of Hard Disk on Multimedia Workload

C
D

F

TS−DRPM
SIMPLE−DRPM
TPM

perf

FULL

Figure 3: Energy Consumption and Response Times of Disk

Requests for a Multimedia Workload

The response time CDFs indicate the performance seen by re-
quests under the four configurations. Since the TPMperf is equipped
with a perfect predictor, it does not incur any performance penalty,
and its CDF curve is identical to FULL. The figure shows that al-
though TS-DRPM incurs a performance slowdown, the degradation
is small when compared to FULL.

5. SUMMARY AND CONCLUSIONS
This paper proposes a new approach for power management in

mobile devices. Our TS-PM approach is based on time series and
employs simple statistical methods to predict future workloads and
to compute power settings. TS-PM consists of two components:
(i) a time series-based DVFS (TS-DVFS) that uses per-process uti-
lizations to compute the task-specific CPU settings, and (ii) a time
series-based dynamic rotations per minute (TS-DRPM) technique
that dynamically varies disk rotational speeds based on the arrival
rate, response times, and access patterns (hit ratios seen at the on-
board disk caches) of disk requests.

We have evaluated the energy efficiency of TS-PM through im-
plementation and simulations. Our results show that, when com-
pared to the LongRun technology, TS-PM reduces energy con-
sumption by 24.64%, 7.08%, 14.41%, 38.62% for movie play-
back, movie rescaling, transcoding and Linux builds, respectively,
without any significant performance loss. The results from our sim-
ulations of TS-DRPM show that TS-PM can achieve up to 36.01%

energy savings when compared to disks without any power saving
features. TS-PM yields up to 20.35% savings when compared to
traditional power management based on disk spin-down.

6. REFERENCES
[1] G. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series

Analysis Forecasting and Control Third Edition. Prentice
Hall, 1994.

[2] K. Flautner and T. Mudge. Vertigo: Automatic
performance-setting for linux. In Proceedings of the Fifth

Symposium on Operating Systems Design and

Implementation (OSDI’02), Boston, MA, pages 105–116,
December 2002.

[3] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. In
Proceedings of the 7th ACM International Conference on

Mobile Computing and Networking (MobiCom’01), Rome,

Italy, pages 260–271, July 2001.

[4] M. Fleischmann. Longrun power management - dynamic
power management for crusoe processors. Technical report,
Transmeta Corporation, 2001.

[5] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The disksim
simulation environment - version 2.0 reference manual.

[6] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Drpm: Dynamic speed control for power
management in server class disks. In Proceedings of the 30th

IEEE Annual International Symposium on Computer

Architecture (ISCA’03), San Diego, CA, June 2003.

[7] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Reducing disk power consumption in servers.
IEEE Computer: Special Issue on Power-aware and

Temperature-aware Computing, 36(12):59–66, December
2003.

[8] X. Liu, P. Shenoy, and W. Gong. A time series-based
approach for power management in mobile processors and
disks. Technical report 04-25, University of Massachusetts
Amherst, 2004.

[9] J. R. Lorch and A. J. Smith. Operating system modifications
for task-based speed and voltage scheduling. In Proceedings

of the 1st ACM/USENIX International Conference on Mobile

Systems, Applications, and Services (MobiSys’03), San

Francisco, CA, pages 215–229, May 2003.

[10] Mplayer 0.90. http://www.mplayerhq.hu.

[11] T. Pering, T. Burd, and R. W. Broderson. Voltage scheduling
on the lparm microprocessor system. In Proceedings of the

2000 IEEE International Symposium on Low Power

Electronics and Design (ISLPED’00), Rapallo, Italy, July
2000.

[12] Crosoe tm5600 processor data sheet. Transmeta Inc.,
http://www.transmeta.com.

[13] Ibm hard disk - travelstart 40gnx. IBM, http://www.ibm.com.

[14] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In Proceedings of the 1st

USENIX Symposium on Operating Systems Design and

Implementation (OSDI’94), Monterey, CA, pages 13–23,
November 1994.

[15] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
cpu scheduling for mobile multimedia systems. In
Proceedings of the 19th ACM Symposium on Operating

Systems Principles (SOSP’03), Bolton Landing, NY, pages
149–163, October 2003.

