
Multimedia Systems 7: 241–253 (1999) Multimedia Systems
c© Springer-Verlag 1999

Efficient support for interactive operations
in multi-resolution video servers
Prashant J. Shenoy, Harrick M. Vin

Distributed Multimedia Computing Laboratory, Department of Computer Sciences, University of Texas at Austin, Taylor Hall 2.124, Austin, TX 78712-1188,
USA; e-mail:{shenoy,vin}@cs.utexas.edu; URL: http://www.cs.utexas.edu/users/dmcl

Abstract. In this paper, we present a placement algorithm
that interleaves multi-resolution video streams on a disk ar-
ray and enables a video server to efficiently support play-
back of these streams at different resolution levels. We then
combine this placement algorithm with a scalable compres-
sion technique to efficiently support interactive scan opera-
tions (i.e., fast-forward and rewind). We present an analyt-
ical model for evaluating the impact of the scan operations
on the performance of disk-array-based servers. Our experi-
ments demonstrate that: (1) employing our placement algo-
rithm substantially reduces seek and rotational latency over-
head during playback, and (2) exploiting the characteristics
of video streams and human perceptual tolerances enables
a server to support interactive scan operations without any
additional overhead.

Key words: Multi-resolution video servers – Multi-resolu-
tion playback – Scan operations – Fast-forward – Rewind –
Disk arrays – Scalable compression

1 Introduction

Recent advances in computing and communication technolo-
gies promise to create an infrastructure in which computer
systems will support a wide range of interactive multime-
dia services in a variety of commercial and entertainment
domains (e.g., advertising, online news, customer support,
video on demand, etc.). In its simplest configuration, such
services will be provided by multimedia servers connected
to client sites via high-speed networks. Clients will dial up
the service and request the retrieval of information objects
(consisting of audio, video, text, imagery, etc.) stored at the
server. The resolution at which an object is requested de-
pends on the capabilities of the client and the speed of the
network connection. The retrieval can be interactive, in the
sense that clients can stop, pause, resume, fast-forward, or
rewind the presentation.

Correspondence to: P.J. Shenoy

Amongst all these data types, since video is the most
demanding (with respect to its data rate and real-time per-
formance requirements), several techniques for designing
video servers that can meet the real-time playback require-
ment of single-resolution video streams have been devel-
oped [1, 10, 16, 18, 20]. However, methods for efficiently
supporting interactive operations (playback, fast-forward and
rewind) for multiresolution video streams have not been ad-
equately investigated.

1.1 Relation to previous work

In general, a multiresolution video stream consists of mul-
tiple sub-streams [6]. Whereas all sub-streams must be re-
trieved to display the video stream at the highest resolution,
only a sub-set of the sub-streams need to be retrieved for
playback at a lower resolution. Due to the large storage space
requirement of multiresolution video, most video servers em-
ploy disk arrays as their underlying storage medium. To ef-
fectively utilize the array bandwidth, the server stripes or
interleaves each video stream among disks in the array [16].
In the simplest case, the server can stripe each sub-stream
independently across the array. However, such a scheme can
impose significant disk seek and rotational latency overheads
while retrieving these sub-streams during playback. In con-
trast, multiplexing all component sub-streams into a single
stream and striping this mutiplexed stream eliminates these
latency overheads. Since the server accesses data in terms
of disk blocks (rather than frames), a limitation of this ap-
proach is that the server may have to access more informa-
tion than necessary while accessing a particular sub-stream.
Hence, a key challenge is to design a placement scheme that
allows each sub-stream to be independently accessed, with-
out imposing significant seek and rotational latency over-
heads. Most existing placement schemes have been devel-
oped for single-resolution video streams [2, 16]; placement
schemes that support efficient playback of multiresolution
video streams have not been adequately investigated.

Several techniques for supporting interactive operations
such as fast-forward and rewind (collectively referred to as
scan) have been proposed in the literature. For instance,
a video server can support fast-forward by (1) displaying

242

frames at a rate higher than normal playback [7, 8], or (2)
skipping frames [4, 13], or (3) using an independently en-
coded fast-forward stream. In the first scheme, to support
fast-forward atn times the normal playback rate, the server
is required to retrieven times as many frames (as com-
pared to the normal playback), yielding ann-fold increase
in the load. If additional resources (e.g., disk and network
bandwidth) are not available to meet the increased require-
ments, the client request must be delayed until the necessary
resources become available. To minimize the waiting time,
the server can set aside some resources to accommodate such
dynamic transitions from playback to fast-forward. The ad-
ditional resources that must be set aside are dependent on the
probability of clients requesting a transition from playback
to fast-forward, as well as the duration for which a client
remains in the fast-forward mode [7].

In schemes that skip frames, on the other hand, fast-
forward atn times the playback rate is achieved by display-
ing everynth frame at the normal playback rate. However,
such frame skipping schemes may not be directly applica-
ble for video streams encoded using compression algorithms
that exploit temporal redundancy between successive frames
(e.g., the MPEG compression standard [9]). This is because,
such compression techniques create inter-frame dependen-
cies which may prevent everynth frame to be independently
decoded. To avoid this problem, a fast-forward scheme in
which (1) video streams are stored on disks in terms ofseg-
mentsthat consist of a group of independently decodable
frames; and (2) fast-forward atn times the normal play-
back is achieved by accessing and displaying everynth seg-
ment has been proposed [4]. Such an approach eliminates
the problem introduced by inter-frame dependencies. How-
ever, since each segment may contain a large number of
successive frames (10–15 frames in MPEG), skipping en-
tire segments may result in noticeable discontinuities during
fast-forward, and hence, may be unacceptable.

To emulate the VCR fast-forward operation, a server can
encode a fast-forward stream that is independent of the par-
ent video stream and utilize it only during fast-forward. By
properly selecting the encoding procedure, the server can
ensure that accessing such a specialized stream does not re-
quire any additional disk or network bandwidth. However,
maintaining such a fast-forward stream may incur a sub-
stantial storage space overhead. To minimize storage space
overhead, the MPEG standard has proposed the creation of
a video stream containingD frames, which contain only the
DC coefficients of the transform blocks [9]. However, this
yields a video stream with very poor quality, which is not
acceptable for most applications.

Since rewind is similar to fast-forward, all of the above
approaches for fast-forward can be easily extended to sup-
port rewind. In addition to these server-based approaches,
several client-based approaches that do not require any
server intervention during rewind have also been proposed [3,
8]. These techniques require a client to cache previously dis-
played frames for rewind. For instance, a scheme in which
the client caches all previously displayed frames on a lo-
cal disk has been recently proposed [3]. In this scheme,
frames decoded during normal playback are re-encoded such
the stream does not contain any inter-frame dependencies,
thereby enabling a client to independently decode everynth

frame during rewind. A limitation of this approach, how-
ever, is the additional storage space required at the client to
support rewind. If the storage space available at the client
is limited, then the client can cache only a small number of
previously displayed frames [8]. In such a scenario, the du-
ration of the rewind operation that can be supported without
imposing any load on the server is limited by the size of the
cache (referred to as a VCR-window). If a rewind operation
exceeds this duration, then server intervention is required to
retrieve and transmit additional frames.

In summary, most conventional schemes require addi-
tional resources either at the server or at the client to support
scan operations. To be practical, a scheme that supports scan
operations must (1) minimize the storage space overhead
of maintaining information pertinent to scan operations, (2)
minimize the increase in the bit rate during scan (and hence,
minimize the overhead on the disk and network subsystems),
and (3) provide acceptable video quality.

Techniques for efficiently supporting playback, fast-for-
ward, and rewind in multiresolution video servers constitutes
the subject matter of this paper.

1.2 Research contributions of this paper

In this paper, we make three contributions. First, we present
a placement algorithm that interleaves the storage of mul-
tiresolution video streams on a disk array and ensures that
(1) each sub-stream within a stream is independently acces-
sible, and (2) the seek time and rotational latency overheads
incurred while accessing these sub-streams during playback
is minimized. Our placement algorithm enables the server
to efficiently support playback of video streams at different
resolution levels.

Second, we present an encoding technique that, when
combined with our placement algorithm, enables a server to
efficiently support interactive scan operations (fast-forward
and rewind). Our encoding technique uses scalable com-
pression techniques in the temporal and chroma dimensions
to derive a video stream that can efficiently support scan
operations. Specifically, it first partitions the parent video
stream in the temporal dimension to create abaseand an
enhancementsub-stream. Each frame in the base sub-stream
is then partitioned in the chroma dimension, yielding alow-
resolutionand aresidual component. Whereas frames con-
tained in all three components are merged during normal
playback, scan operations are supported by using only the
low-resolution component of the base sub-stream. By appro-
priately sub-sampling in the temporal dimension, the encoder
can support multiple fast-forward/rewind rates. Furthermore,
by appropriately controlling the chroma dimension partition-
ing of base sub-stream, the encoder can ensure that (1) the
bit rate of the low-resolution base sub-stream during scan is
not significantly higher than that of the parent video stream
during normal playback, and (2) the resultant low-resolution
base sub-stream provides acceptable video quality for scan
operations. By employing our placement algorithm to inter-
leave these sub-streams, the server can efficiently retrieve
a video stream during playback or scan without imposing
any additional disk latency overheads. We demonstrate the

243

efficacy of our methodology for the MPEG-2 compression
algorithm.

Finally, to evaluate the efficacy of our encoding tech-
nique and placement algorithm, we present an analytical
model that predicts the effects of making a transition from
playback to scan on the array load. We use the analytical
model to compute the contingency bandwidth that must be
reserved at the server to accommodate any increase in the
load caused by playback-to-scan transitions.

We have implemented a prototype encoder and an event-
driven disk array simulator to evaluate our schemes. We
generated several traces using our encoder and used them
for extensive trace-driven simulations. Our results demon-
strate that (1) the placement algorithm substantially reduces
disk latency overheads during playback, and (2) exploiting
characteristics of video streams and human perceptual tol-
erances enables a server to support scan operations without
any additional overhead.

The rest of the paper is organized as follows. We present
our placement algorithm in Sect. 2. In Sect. 3, we present
techniques for supporting fast-forward and rewind in a video
server, and then derive an analytical model for evaluating the
effects of these operations on the array load. We evaluate our
scheme through extensive simulations in Sect. 5, and finally,
Sect. 6 summarizes our results.

2 Efficient placement of multi-resolution video
on disk arrays

In general, a multiresolution video stream consists of multi-
ple sub-streams. Whereas all sub-streams must be retrieved
to display the video stream at the highest resolution, only
a sub-set of the sub-streams needs to be retrieved for play-
back at a lower resolution. To efficiently support the re-
trieval of such streams at different resolutions, the place-
ment algorithm must ensure that the server canaccess only
as much data as needed and no more. To ensure this prop-
erty, the placement algorithm must interleave video streams
such that (1) each sub-stream as well as its components are
independently accessible, and (2) the seek and rotational
latency while accessing any sub-set of the sub-streams is
minimized. Whereas the former requirement can be met by
storing sub-stream blocks on disk access boundaries (e.g., a
sector), the latter requirement can be met by storing blocks of
sub-streams that are likely to be accessed together adjacent
to each other on disk. Observe that this placement policy
is general, and can be used to interleave any multiresolu-
tion stream on the array. Thus, the placement algorithm can
be employed to support applications such as multiresolution
video on demand, retrieval and multicasting of layered video
over the Internet, etc.

To precisely describe the placement algorithm, consider
a video server that exploits the periodic nature of video play-
back by servicing clients in terms of periodic rounds. Dur-
ing each round, the server retrieves a fixed number of video
frames for each client. To ensure continuous playback, the
number of frames accessed for each client during a round
must be sufficient to meet its playback requirements. Let us
assume that the server employs a disk array to store video
streams. To effectively utilize the array bandwidth, the server

sub−stream 1 sub−stream 2 sub−stream 3

 Data block retrieved
for low resolution playback

Data blocks retrieved for playback at full resolution

Fig. 1. Contiguous placement of sub-stream blocks

interleaves the storage of each video stream among disks in
the array. The unit of interleaving, referred to as amedia
block or a striping unit, denotes the maximum amount of
logically contiguous data stored on a single disk. Each me-
dia block can contain a fixed number of storage units (i.e.,
bytes) or a fixed number of frames. If a video stream is
compressed using a variable-bit-rate (VBR) compression al-
gorithm, then the sizes of frames will vary. Hence, if media
blocks are assumed to be of fixed size, then each block will
contain a variable number of frames. On the other hand, if
each block contains a fixed number of frames, then media
blocks will have variable sizes. Thus, depending on the type
of media blocks used by the server, a request for a fixed
number of frames in each round will require the server to
access a fixed number of variable-size blocks or a variable
number of fixed-size blocks [2, 14, 19].

If the server employs variable-size blocks for storing
video streams, then it can minimize the seek and rotational
latency incurred while servicing requests by (1) storing all
the frames of a sub-stream accessed during a round in the
same media block, and (2) storing blocks of different sub-
streams accessed in the same round adjacent to each other
on disk (see Fig. 1). Moreover, to ensure that each variable-
size block is individually accessible, it must be stored at a
disk-access unit boundary (e.g., a sector). Successive blocks
of a sub-stream are then stored on consecutive disks in a
round-robin manner.

In contrast, if the server employs fixed-size blocks to
store media streams, then the number of frames in each sub-
stream block will vary due to variable frame sizes. Conse-
quently, the fixed-size block placement policy cannot guar-
antee that sub-stream blocks stored adjacent to each other
will always be accessed together. To maximize the probabil-
ity that adjacent blocks are accessed together, the server must
ensure that these blocks contain frames that will be requested
in the same round. That is, sub-stream blocks stored adja-
cent to each other must contain an overlapping set of frames.
To precisely describe a placement policy that achieves these
objectives, letFm and Lm denote the frame numbers of
the first and the last frame, respectively, stored in a block
of sub-streamm. Then the placement policy for fixed-size
blocks is as follows:

1. Setd = 1.
2. Let sub-streami be the sub-stream whose next block has

the lowest value ofLi (i.e., Li = min(L1,L2, ...,)).
3. Place the next block of sub-streami on diskd.
4. Place the next block of each sub-streamj that satisfies

either Fi ≤ Fj ≤ Li or Fj ≤ Fi ≤ Lj contiguously
with the block of sub-streami on disk d.{* Store
sub-stream blocks containing an over-

244

lapping set of frames adjacent to each
other on disk d and skip storing
blocks of sub-streams not satisfying
this condition on disk d. * }

5. Setd = (d + 1) modD and repeat steps (2)–(5) until all
sub-stream blocks have been placed on the array.

Given that sub-streams are interleaved using the above place-
ment policy, the server retrieves all sub-stream blocks that
are stored contiguously if at least one of those blocks is
requested by the client. The blocks that are not requested
in the current round are buffered for use in future rounds.
Since playback is sequential, the server is guaranteed that
these sub-blocks would be requested in the next few rounds.
Note that such a placement policy is simpler to implement
than the variable-size placement policy (which must manage
blocks of different sizes). However, since some blocks are
retrieved ahead of their access, the policy incurs a higher
buffer space requirement.

The server can reduce the buffer space requirement by
employing a hybrid placement policy in which the block
size can vary across sub-streams, but is fixed for a given sub-
stream. To maximize performance, the block sizes chosen for
different sub-streams must be proportional to their average
bit rates. Thus, ifri and rj denote the average bit rates of
sub-streamsi andj, the block size is chosen such that

Bi

Bj
=

ri

rj
,

whereBi andBj denote the block sizes of sub-streamsi and
j, respectively. The server then stores successive blocks of
each sub-stream on consecutive disks in a round-robin man-
ner and stores blocks of all sub-streams stored on the same
disk adjacent to each other. Since the block size chosen for
a sub-stream is proportional to its average bit rate, such a
policy ensures that sub-stream blocks stored adjacent to each
other will contain approximately the same number of frames.
This maximizes the probability of adjacent blocks being ac-
cessed together and reduces the buffer space requirement.

Thus, our placement algorithm enables a server to effi-
ciently support playback of video streams at different resolu-
tion levels. In what follows, we describe techniques for effi-
ciently supporting scan operations for multiresolution video.

3 Efficient support for scan operations

3.1 General methodology

Consider a video server that supports scan operations by
skipping frames. To achieve fast-forward or rewind atn
times the normal playback rate, the server must transmit ev-
erynth frame to client sites. Since data is accessed from disk
in terms of blocks rather than frames, in the worst case, the
server will be required to access all the frames prior to se-
lectively transmitting everynth frame to client sites, thereby
incurring ann-fold increase in the load. To address this lim-
itation, the server can temporally partition each video stream
into two sub-streams, such that the first sub-stream (referred
to as thebase sub-stream) contains everynth frame, and the
other sub-stream (referred to as theenhancement sub-stream)

(a) Pre−compression Partitioning

Uncompressed Stream

Uncompressed Uncompressed

Pre−compression Partitioning

Compression
Algorithm

Compression
Algorithm

Base Sub−streamEnhancement Sub−stream

Base Sub−stream Enhancement Sub−stream

(b) Post−compression Partitioning

Compression Algorithm

Post−compression Partitioning

Uncompressed Stream

Compressed Stream

Base Sub−stream Enhancement Sub−stream

Fig. 2. Temporal partitioning techniques

contains all the remaining frames. In such a scenario, to sup-
port fast-forward or rewind, the server will be required to
access only the base sub-stream. During normal playback,
on the other hand, the server will need to access and merge
both sub-streams.

Observe that such temporal partitioning can be accom-
plished either prior to or after compression (referred to as
pre-compressionand post-compressionpartitioning, respec-
tively) (see Fig. 2). The effectiveness of these approaches,
however, is dependent on the compression algorithm. In
intra-frame compression algorithms (e.g., JPEG [15]), since
successive frames are encoded and decoded independently,
both pre-compression and post-compression partitioning
techniques are logically equivalent. Moreover, for such com-
pression algorithms, temporal partitioning does not have any
adverse effects on compression efficiency. In inter-frame
compression algorithms (e.g., MPEG [9] and MPEG-2 [11]),
on the other hand, since the temporal redundancy between
successive frames is used to efficiently encode the video
stream, the degree of compression is critically dependent on
the correlation between successive frames. Consequently, if
the video stream is temporally partitioned prior to compres-
sion, then the resultant reduction in correlation between suc-
cessive frames within each sub-stream may substantially de-
grade compression efficiency. While post-compression parti-
tioning does not suffer from this drawback, the dependencies
between frames introduced by the compression algorithm

245

may complicate the partitioning process. This is because,
for temporal partitioning to be effective, frames in the base
sub-stream should be independently decodable (i.e., without
decoding the corresponding enhancement sub-stream).

Regardless of the partitioning technique used, as we shall
demonstrate later, the bit rate of streams compressed using
inter-frame compression algorithms during scan is generally
higher than that during normal playback. Since human per-
ception is tolerant to a slight degradation in the video quality
during scan, the bit-rate requirement can be reduced by par-
titioning the base sub-stream in the chroma dimension into
low-resolution and residual components, and utilizing only
the low-resolution component for scan.

In summary, to efficiently support scan operations, an
inter-frame compression algorithm must use a combination
of temporal and chroma scalability techniques. The exact
algorithm for deriving these streams using post-compression
partitioning, however, is dependent on the idiosyncrasies of
the inter-frame compression technique as well as the desired
rate of fast-forward. In what follows, we show how these
techniques may be employed to support fast-forward and
rewind in the MPEG compression algorithm.

3.2 Supporting fast-forward in MPEG

3.2.1 The MPEG compression standard

The MPEG compression algorithm exploits the temporal and
spatial redundancies present within a sequence of images to
achieve a high degree of compression [9]. A group of pic-
tures (GOP) in an MPEG stream is defined to be the smallest
set of consecutive frames that is independently decodable. A
GOP can contain three kinds of frames: (1)I frames (intra-
coded without any reference to other frames), (2)P frames
(predictively coded using a previousI or P frame), (3)B
frames (bidirectionally interpolated from both the previous
and the followingI and/or P frame). By using temporal
prediction from both the past and future,B frames achieve
the highest compression ratios. The intra-codedI frames, on
the other hand, achieve the lowest compression ratios.

To derive these types of frames, MPEG partitions each
image into 16× 16 pixel areas called macroblocks. Mac-
roblocks belonging toI frames are independently encoded.
Macroblocks belonging toB and P frames, on the other
hand, are temporally interpolated from the corresponding
reference frame(s), and the error between the actual and in-
terpolated values is computed. The interpolation process also
produces up to two motion vectors for each macroblock,
which denote the positions of the interpolated macroblocks
in the reference frames. Regardless of the type of frame it
belongs to, each macroblock is partitioned into six 8× 8
pixel blocks (four luminance and two chrominance blocks).
Each of these 8×8 pixel blocks are transformed into the fre-
quency domain using discrete cosine transform (DCT). The
DCT uncorrelates each pixel block into an 8× 8 array of
coefficients such that the most amount of energy is packed
in a small number of low-frequency coefficients. Whereas
the lowest frequency coefficient (referred to as the DC coef-
ficient) captures the average brightness and color within the
pixel block, the remaining 63 coefficients (referred to as the

I frame ?

DCT

Quantize

Difference encode DCs
Run length Encode

Motion Estimation

Motion
Vectors

Error
Blocks

Huffman Encode

Difference Encode

YesNo

Compressed Stream

Fig. 3. The MPEG compression algorithm

AC coefficients) capture the details within the pixel block.
The DC coefficients of successive blocks are difference en-
coded and then quantized. The AC coefficients within each
block are quantized to remove high-frequency coefficients,
scanned in a zig-zag manner to obtain an approximate or-
dering from the lowest to the highest frequency, and finally
run-length and entropy encoded. The motion vectors in the
P and B frames are difference and entropy encoded in a
lossless manner. SinceP and B frames exploit temporal
redundancies, they achieve much higher compression ratios
as compared toI frames. Figure 3 depicts the main steps
involved in the MPEG compression algorithm. The MPEG-
2 standard extends this algorithm by supporting scalabil-
ity in the spatial, temporal, and chroma dimensions [5, 11].
MPEG-2 also allows hybrid scalability, a technique in which
a combination of these scalable modes may be used.

An important feature of the MPEG compression algo-
rithm is that the encoding pattern (i.e., the relative frequency
of occurrence ofI, P , andB frames) can be controlled by
the application. Specifically, an application can control the
encoding pattern by specifying: (1)N , the distance between
successive reference (i.e.,I or P) frames, and (2)M , the
distance between successiveI frames. In what follows, we
illustrate how this flexibility can be exploited to derive the
base and the enhancement sub-streams without adversely af-
fecting compression efficiency.

3.2.2 Deriving the base and the enhancement sub-streams

Since only the base sub-stream is accessed during scan op-
erations, one of the key requirements of post-compression
temporal partitioning is that the base sub-stream must have
no dependencies on frames contained in the enhancement
sub-stream. That is, the base sub-stream must be indepen-
dently decodable. Consequently, the base sub-stream can not
contain aP or aB frame whose reference frame belongs to
the enhancement sub-stream. To construct a base sub-stream
that meets this requirement and supports fast-forward atn

246

Data Partitioning

1 2

3

4

5

6

7

8 9

1 2

3

4

5

6

7

8 9

Data Partitioning

Original
DCT Coefficients

Low−resolution
Component

(3 coefficients)

Residual
Component

(6 coefficients)

DC coefficient

Fig. 4. The data partitioning technique

times the normal playback rate, the encoding pattern must
be constrained such that

N = k · n, k = 1, 2, 3, . . . and
M = m · N, m = 1, 2, 3, . . .

Observe that the resultant encoding pattern (i.e.,IBN−1P
BN−1P . . .) contains (N − 1) B frames between successive
I and P reference frames, and (m − 1) P frames between
successiveI frames. Such a stream, on temporal partition-
ing, yields (1) a base sub-stream containing all theI and
P frames, as well as everynth B frame (if any) between
successive reference frames; and (2) an enhancement sub-
stream containing all the remainingB frames. For instance,
to support fast-forward at twice the normal playback rate
(i.e., for n = 2), the encoder can chooseN = 2 andM = 6
(i.e., the encoding pattern ofIBPBPBI . . .) and assign
alternate frames to base and enhancement sub-streams, re-
spectively. This yields a base stream containing all theI and
P frames and an enhancement stream with all theB frames.
Alternatively, the encoder can chooseN = 4 andM = 12
(i.e., IBBBPBBBPBBBI . . .) as the encoding pattern. If
B1, B2, andB3 denote the threeB frames between any two
reference frames, respectively, then, after temporal partition-
ing, the base sub-stream would contain all theI, P , andB2
frames, and the enhancement sub-stream would contain all
the B1 andB3 frames. By recursively partitioning the base
sub-stream in the temporal dimension, the server can support
multiple fast-forward rates.

Observe that an appropriate choice of the encoding pat-
tern enables temporal partitioning to be performedafter the
spatial and temporal redundancies have been exploited by
the motion estimation and DCT stages in MPEG. This elim-
inates any adverse effects of temporal partitioning on the
compression efficiency. However, it yields a base sub-stream
with a relatively higher frequency ofI and P frames as
compared to the original stream. Since during fast-forward,
frames from only the base sub-stream are transmitted without
changing the playback rate (thereby achieving ann-fold in-
crease in theeffectiveplayback rate), the bit rate of the resul-
tant stream is higher than that during normal playback. The
bit rate can be reduced by partitioning the base sub-stream
into low-resolution and residual components, and utilizing
only the low-resolution component for fast-forward. Exam-
ples of such chroma-partitioning techniques include the SNR
scalability and the data-partitioning modes of the MPEG-2
standard [11]. Whereas the SNR scalability mode creates
the low-resolution and residual components by controlling
the granularity of quantization, the data-partitioning tech-
nique achieves a similar effect by explicitly dividing the

frequency domain coefficients between the two components.
Figure 4 illustrates the data-partitioning technique for a 3×3
array of DCT coefficients. The key issue here is to determine
an appropriate of number of DCT coefficients that must be
included in the low-resolution component of the base sub-
stream so as to ensure acceptable video quality during fast-
forward without substantially increasing the bit rate.

In summary, our post-compression partitioning technique
yields three components per stream: the low-resolution and
the residual components of the base sub-stream and the
enhancement sub-stream. Whereas only the low-resolution
component of the base sub-stream is utilized during fast-
forward, all three components are retrieved and merged
during normal playback. The main steps involved in the
compression and decompression algorithm are illustrated in
Fig. 5. The compression and decompression algorithms may
be implemented by either using an MPEG-2-compliant codec
(which supports hybrid scalability), or by suitably extending
an MPEG-1 codec to incorporate partitioning in the temporal
and chroma dimensions.

3.3 Supporting rewind in MPEG

The post-compression partitioning scheme described in
Sect. 3.2.2 can also be used to support rewind. However, the
rewind operation differs from fast-forward in the following
characteristics.

– During rewind, data blocks from the low-resolution com-
ponent of the base sub-stream are retrieved sequentially
in the reverse order.

– The inter-frame dependencies in MPEG require a GOP
to be decoded in the forward direction and displayed
backwards. To illustrate, ifI1P2P3I4 denotes a GOP,
then, even though the frames are displayed in the order
I4P3P2I1 during rewind, they must still be decoded in
the orderI1P2P3I4 due to frame dependencies.

– Since data blocks are retrieved in the reverse order dur-
ing rewind, the first frame of the GOP arrives after all
other frames in the GOP have arrived at the client. Con-
sequently, the decoder must wait for the entire GOP to
arrive before it can begin decoding the stream, thereby
introducing an initiation latency at the client. Moreover,
since a GOP is decoded in the forward direction and
displayed backwards, the entire GOPs must be decoded
and buffered before a frame can be displayed. This in-
creases the buffer requirements at the client and adds to
the initiation latency.

3.4 Discussion

In this section, we compare our scheme with other schemes
for scan operations proposed in the literature. Specifically,
we compare our scheme with (1) a scheme that displays
frames atn-times the normal playback rate, (2) a scheme
that displays everynth frame and skips intermediate frames,
and (3) a scheme that maintains an independently encoded
stream for scan operations.

247

(a) Compression Algorithm

Motion Estimation (P & B frames only)
DCT, Quantize

Data Partitioning

Difference Encode DCs
Run length & Huffman Encode

Difference Encode DCs
Run length & Huffman Encode

Uncompressed Frames

Residual Component
Component

Temporal
Partitioning

Base Sub−stream Base Sub−stream Enhancement Sub−stream
Low resolution

Low−resolution Residual Enhancement

Huffman
Decode

Huffman
Decode

Huffman
Decode

Inverse DCT
Inverse Quantization etc.

Inverse DCT
Inverse Quantization etc.

(full resolution)

Fast−forward Stream Normal Playback Stream
(full resolution)

Base Sub−stream Base Sub−stream Sub−stream

Base Sub−stream

(low resolution)

(b) Decompression Algorithm

Merge in
chroma dimension

Merge in
temporal dimension

Fig. 5a,b. The compression and decompression algorithms

3.4.1 Load on the server and the network

Displaying frames atn times the playback rate during scan
causes the server to retrieve and transmitn times as many
frames, yielding ann-fold increase in the load imposed
on the server and the network. Supporting scan by skip-
ping intermediate frames and displaying everynth frame
can be done either at the server or at the client. In the for-
mer approach, the server retrieves and transmitn times as
many frames; the client decodes everynth frame and dis-
cards remaining frames. This imposes ann-fold increase in
the server and the network load. In the latter approach, the
server retrieves and transmits everynth frame from the video
stream. Since skipping frames causes a relative increase in
the number ofI andP frames during scan, this approach also
imposes an overhead on the server and the network. To illus-
trate, displaying alternate frames from a stream encoded as
IBPBPBP yields a stream with the sequenceIPIPIP . I
andP frames are substantially larger thanB frames, yield-
ing an increase in bit rate during scan. Although smaller
than ann-fold increase, our experiments indicate that this
overhead can be as large as 70% (see Sect. 5.2 and Table
2). One approach to compensate for this increased bit rate
is to lower the frame rate during scan. For instance, fast-
forward at four times the playback rate can be achieved by
displaying every eighth frames at half the normal playback
rate. Both reducing the frame rate and skipping over a large
number of intermediate frames can cause scan to be jerky.
In contrast, our approach reduces the picture quality during
fast-forward (by displaying only the low-resolution compo-
nent of the base sub-stream) to maintain the same bit rate.
Thus, the two schemes have different tradeoffs. One reduces
the frame rate during scan while maintaining the same pic-
ture quality (causing scan to be jerky). The other reduces
the picture quality during scan while maintaining the same
frame rate (resulting in a lower resolution). Finally, by care-
fully encoding an independent stream for scan, it is possible

to support fast-forward and rewind without any overhead on
the server or the network.

3.4.2 Storage space overhead

By employing post-compression partitioning, our scheme
eliminates any adverse degradation in compression effi-
ciency for various components of the video stream. Hence,
the storage space overhead of our scheme (as compared to
the original stream) is negligible. Since schemes that display
frames at a higher rate as well as schemes that skip frames
do not require any modifications to the video stream, they
do not impose any storage space overhead on the server.
In contrast, maintaining an independently encoded stream to
support scan imposes a substantial storage space overhead
on the server.

3.4.3 Modifications to existing decoders

Although our encoding technique stores each sub-stream
separately on the array, it is not essential to do so to support
scan operations. The encoder can employ the hybrid scalabil-
ity mode of MPEG-2 to produce sub-streams and multiplex
these sub-streams within a single program/transport stream,
resulting in an MPEG-2-compliant stream.1 The server can
then retrieve and transmit only the low-resolution compo-
nent of the base sub-stream during scan operations. By dis-
playing this sub-stream component atn times the normal

1 It is important to distinguish an MPEG-2 compliant stream from one
that conforms to an MPEG-2 profile. Since the number of combinations of
encoding parameters that can generate valid MPEG-2 streams is large, the
standard defines various commonly used sub-sets of these parameters and
refers to them as profiles. A decoder that can decode a stream corresponding
to a profile is said to conform to that profile. Streams produced using our
encoding technique do not conform to any MPEG-2 profile; nevertheless,
they are MPEG-2 compliant.

248

playback rate, MPEG-2 decoders that support hybrid scala-
bility can also support scan operations. However, since data
is accessed from disk in terms of blocks rather than frames,
the server may have to retrieve more data than is neces-
sary, thereby imposing an additional load during scan. Our
placement scheme overcomes these drawbacks by interleav-
ing each component sub-stream separately on the array so
as to allow independent access to a component. This results
in a deviation from the MPEG-2 standard, since each sub-
stream is now stored within a separate program stream, with
all program streams sharing a common time base.

All other schemes also require the decoder to be modified
(albeit to a smaller extent) to understand transitions between
playback and scan and to decode the incoming stream ap-
propriately (for instance, MPEG time codes that determine
the display instant of each frame must be interpreted appro-
priately during scan operations).

Thus, different schemes have different tradeoffs. Our
scheme imposes negligible overhead on the server and the
network, but requires modifications to existing codecs. Ex-
isting schemes require either substantial additional disk and
network bandwidth or additional storage space to support
scan, and require only minor modifications to codecs. The
choice of an appropriate scheme depends on the application
environment.

Given that video streams generated using the above en-
coding technique, the server can use the placement algorithm
described in Sect. 2 to interleave sub-stream blocks on disk.
In such a scenario, the load on the array depends on two fac-
tors: (1) change in bit rate of a client when a client switches
to scan, and (2) the relative number of clients in playback
and scan modes. In what follows, we present an analytical
model to determine the effects of these factors on the load
on the array. Since analysis for fast-forward and rewind are
similar, we present the model only for fast-forward.

4 Determining the overhead of fast-forward operation

Consider a video server that servicesN clients, each re-
trieving a video stream (sayS1, S2, . . . , SN). Let f1, f2,
. . . , fN denote the number of frames retrieved from streams
S1, S2, . . . , SN , respectively, during each round. To support
fast-forward atn times the normal playback rate, let each
streamSi be partitioned into three components, namely, the
low resolution and the residual components of the base sub-
stream and the enhancement sub-stream (denoted byS1

i , S
2
i ,

and S3
i , respectively). During normal playback, the server

retrieves fi

n , fi

n , and (n−1)·fi

n frames of sub-streamS1
i , S

2
i ,

andS3
i , respectively, in each round, which are then merged

to obtainfi frames of the original streamSi. During fast-
forward, however, the server retrievesfi frames of only
the low resolution component of the base sub-stream (i.e.,
S1

i) in each round. Let each sub-stream be interleaved on
disk usingvariable-size blocks. Then, each variable-size sub-
stream block contains all the frames accessed from that
sub-stream in a round during normal playback. Thus, de-
pending upon whether clienti is in the playback or the
fast-forward mode, it accesses either a single block from
each of the three components of a stream orn blocks from
the low-resolution component of the base sub-stream dur-

ffpl

i

i

i

P

(1 − P)

F

i
(1 − F)

Fig. 6. The Markov model for the behavior of a client

ing a round. Hence, the set of clients accessing a disk
moves in alock-stepmanner. Specifically, clients that ac-
cess diski in the playback mode during a round will ac-
cess disk (i + 1) modD in the following round, and those
that access disksi, (i + 1) mod D, · · · , (i + n − 1) mod D
in the fast-forward mode during a round will access (i +
n) mod D, · · · , (i + n + 1) modD, · · · , (i + 2n − 1) modD
in the following round. Although the set of clients in the
fast-forward and playback modes move in a lock-step man-
ner, the set of clients in the fast-forward mode moven times
faster than those in normal playback. Consequently, the num-
ber of blocks accessed during a round can vary from one disk
to another. Hence, some disks can be more heavily loaded
than others, resulting in different service times for differ-
ent disks. This load imbalance can cause the service time
of some of the heavily loaded disks to exceed the round
duration, causing playback discontinuities at client sites.

Recall that, the chroma domain partitioning used by our
encoding technique ensures that the bit rate of the stream
does not significantly change during fast-forward. Conse-
quently, a client accesses approximately the same amount
of data in a round, regardless of whether it is in the play-
back of the fast-forward mode. The only difference between
the two modes is that instead of accessing a single chunk of
data containing blocks of all three components of a stream,
the client accessesn smaller blocks containing only the low-
resolution component of the base sub-stream. Thus, the fast-
forward operation increases the number of blocks accessed
from the server, thereby increasing the seek and rotational
latency overheads, and hence, the service time of disks. The
resulting increase in the load on the server can cause the the
service time of some of the heavily loaded disks to exceed
the round duration, causing discontinuities in video play-
back.

To minimize the frequency of playback discontinuities
caused by (1) the load imbalance due to the clients in the
fast-forward mode, and (2) the increased seek and rotational
latency overheads in the fast-forward mode, the server must
set aside some contingency disk bandwidth so that the ser-
vice time of the most heavily loaded disk in the array rarely
exceeds the round duration. To estimate the amount of con-
tingency bandwidth that must be reserved, the server must be
able to determine the impact of a playback-to-fast-forward
transition on the service time of the most heavily loaded disk.
We now present an analytical model that uses the probabil-
ity of a playback-to-fast-forward transition and the change
in stream bit rate after such a transition to determine the
service time on the most heavily loaded disk.

To precisely describe the model, let us assume that a
client in the playback mode can switch to the fast-forward
mode at any random instant and vice versa, and that such

249

a behavior can be modeled using a two-state Markov chain
[17] (see Fig. 6). LetF i denote the probability of switching
from playback to fast-forward, andP i denote the probability
of switching from fast-forward to playback mode for client
i as shown in the figure. IfP i

s and F i
s denote the steady-

state Markov probability of clienti being in playback and
fast-forward, respectively, then, using the theory of Markov
chains, we getP i

s = P i

P i+F i andF i
s = F i

P i+F i [17].
Let the random variableX j

i denote the number of blocks
accessed by clienti from disk j in a round. Then assuming
that n ≤ D,

X j
i =

{
1 if client i accesses diskj
0 otherwise . (1)

Clearly,X j
i = 1 only if client i accesses a block from diskj

during either playback or fast-forward. Furthermore, client
i accesses a block from diskj during fast-forward only if
the first of then media blocks requested during a round is
retrieved from diskj or any one of then−1 previous disks.
Since retrieval of each individual stream from disk proceeds
in lock-step, it is possible to exactly compute the set of
disks being accessed by the stream. However, since transi-
tions from fast-forward to playback and vice-versa occur at
random instants, and since the duration for which a client
stays in the fast-forward mode is a random variable, after
a small number of such transitions, the first media block is
equally likely to be accessed from any of the disks in the
array. Consequently,

P (X j
i = 1) = pi = P i

s · 1
D

+ F i
s · n

D
. (2)

Thus, if the random variableBj denotes the total number of
blocks accessed from diskj, then

Bj =
N∑
i=1

X j
i . (3)

Assuming that playback can begin from a random point in
the media stream and that playback-to-fast-forward transi-
tions occur independently of each other, the set of media
blocks accessed by different streams are independent of each
other. That is,X j

i s are independent. Hence, we get

Z(Bj) =
N∏
i=1

Z(X j
i) , (4)

whereZ(Bj) andZ(X j
i) are the z-transforms2 of the random

variablesBj andX j
i , respectively [17].3 Then the number of

2 The z-transform of a random variableU is the polynomialZ(U) =
a0 + za1 + z2a2 + · · ·, where the coefficient of theith term in the poly-
nomial represents the probability that the random variable equalsi. That
is, P (U = i) = ai. If U1, U2, . . . , Un aren independent random variables,
and Y =

∑n

i=1
Ui, thenZ(Y) =

∏n

i=1
Z(Ui). The distribution ofY can

then be computed using a polynomial multiplication of the z-transforms of
U1, U2, · · · , Un

3 In the event that all the clients are homogeneous (i.e.,p1 = p2 = · · · =
pN = p), Bj reduces to a binomial random variable, yielding

P (Bj = x) =
(

N
x

)
px(1 − p)N−x, 0 ≤ x ≤ N . (5)

blocks accessed from the most heavily loaded disk is given
by

Bmax = max(B1,B2, · · · ,BD) .

Note that sub-stream blocks are interleaved on the array in a
round-robin manner and a client can access up ton blocks in
a round. Hence, the number of blocks accessed from a disk
is not independent of the load on its neighboring disks. Since
the precise dependence of these random variables on each
other is difficult to characterize, and since the maximum of
D dependent random variables is difficult to compute, as an
approximation we assume thatBjs are independent of each
other. Later in this paper, we demonstrate that this approxi-
mation does not cause any inaccuracies in the predictions of
the model. Then, the distribution ofBmax can be computed
as

FBmax(x) = FB1(x) · FB2(x) · · ·FBD (x) , (6)

whereFBmax(x) denotes the probability distribution function
of Bmax.

Having determined the distribution of the number of
blocks accessed from the most heavily loaded disk, the ser-
vice time of the disk can then be computed by using a disk
model. We use one such model that has been proposed in the
literature [12, 19]. The service time to accessB̂max blocks
as predicted by the disk model is

τ = B̂max ∗ (ts + tr + tt) , (7)

where ts and tr denote the expected seek time and rota-
tional latency incurred while accessing a block from disk,
respectively, and̂Bmax = E(Bmax). Assuming that thêBmax
blocks are equally spaced across theC cylinders of a disk,

we definets = tseek

(⌊
C

B̂max

⌋)
, where

tseek(x) =

{
0 if x = 0
a
√

x − 1 + b(x − 1) + c otherwise
(8)

and a, b, and c are constants (determined using physical
characteristics of a disk) [12]. The average rotational la-
tency, tr, is defined to be half of the maximum rotational
latency. The transfer time,tt, on the other hand, can be
computed as a weighted average of the transfer times dur-
ing playback and fast-forward, where the weights are the
total number of blocks retrieved during playback and fast-
forward, respectively. Lettpt denote the expected transfer
time to retrieve a contiguous chunk of data consisting of one
block from each of the three components during playback
andtft denote the expected transfer time to retrieve a block of
the low-resolution component of the base sub-stream during
fast-forward. SinceN clients access the server, the number
of playback blocks requested in a round isN · Ps and the
number of fast-forward blocks isN · Fs · n, wherePs and
Fs denote the steady-state probabilities of being in playback
and fast-forward, respectively.4 Then, the expected transfer
time of a block is

tt =
(N · Ps) · tpt + (N · Fs · n) · tft

N · Ps + N · Fs · n
=

Ps · tpt + Fs · n · tft
Ps + Fs · n

.

(9)
4 If the steady-state probabilities for different clients are different, then

Ps = 1
N

·
∑N

i=1
P i

s andFs = 1
N

·
∑N

i=1
F i

s .

250

Thus, given the server configuration (i.e., disk array charac-
teristics, number of clients, and their data rate requirements)
and the steady-state Markov probabilities, Eq. 7 derives the
expected service time for the most heavily loaded disk.

Given the model for determining the service time of the
most heavily loaded disk, we can compute the fraction of the
disk bandwidth (referred to as the contingency bandwidth)
that must be reserved to prevent server saturation due to
playback-to-fast-forward transitions. To do so, letτ1 denote
the service time of the most heavily loaded disk obtained for
F i = 0 (i.e., when all clients are in the playback mode), and
let τ2 denote the service time of the most heavily loaded disk
obtained using the specified values of Markov probabilities
F i andP i. Let R denote the duration of a round. Then the
contingency bandwidth, defined as the fraction of the disk
bandwidth that must be reserved by the server to accom-
modate any load increase due to playback-to-fast-forward
transitions, can be computed as

C = max

(
0,

τ2 − τ1

R
)

. (10)

5 Experimental evaluation

To evaluate our placement algorithm and encoding tech-
nique, we have developed a prototype encoder and an event-
driven disk array simulator. The data for our experiments
and simulations was generated by digitizing several video
clips, the largest one of which was a 10-min sequence of a
Frasier episode5 which yielded 18,000 frames. We used our
encoder to encode these video clips; the resulting streams
could support both multiresolution video playback as well
as scan operations.

5.1 Evaluation of the placement algorithm

The simulation environment for evaluating the placement al-
gorithm consisted of an array of 16 disks. The characteristics
of each disk in the array are shown in Table 1. First, we in-
terleaved each sub-stream independently across disks in the
array using fixed-size blocks of size 32 KB. Each client ac-
cessing the array was assumed to retrieve all sub-streams of
a randomly selected video stream at a playback rate of 30
frames/s. The duration of a round was set to 1 s. We varied
the number of clients accessing the array and measured the
average service time of a disk in a round.

Next, we interleaved each video stream using our place-
ment algorithm for fixed-size blocks and repeated the ex-
periment. As shown in Fig. 7a, the average service time of
a disk was smaller by about 40% when our placement al-
gorithm was used. This is because the placement algorithm
places sub-stream blocks that are likely to be accessed in
the same round adjacent to each other on disk and thereby
reduces seek and rotational latency overheads.

We repeated the above experiment for variable-size
blocks. Again, our placement algorithm resulted in smaller
service time per disk for a given workload (see Fig. 7b).
This demonstrates the efficacy of our placement algorithm
in supporting multiresolution video playback.

5 The Frasier series is a copyright of NBC.

Table 1. Disk parameters of Seagate Elite3 disk used in the paper

Disk capacity 2 GB
Number of disks in the array 16
Bytes per sector 512 KB
Sector per track 99
Tracks per cylinder 21
Cylinders per disk 2627
Minimum seek time 1.7 ms
Maximum seek time 22.5 ms
Maximum rotational latency 11.1 ms

5.2 Evaluation of the encoding technique
and the analytical model

5.2.1 Creating the base sub-stream

For encoding each video stream, we assumed a fast-forward
speed of twice the normal playback rate. Sincen = 2, each
video stream was encoded withN = 4 andM = 12 as the
encoding pattern (i.e.,IBBBPBBBPBBBI). Let B1, B2
andB3 denote the threeB frames between any two reference
frames. Then, the encoder assigned theI, P andB2 frames
to the base sub-stream and theB1 and B3 frames to the
enhancement sub-stream. Since the relative frequency ofI
and P frames in the base sub-stream was higher than that
in the original stream, using the base sub-stream for fast-
forward yielded an increase in the bit rate (see Table 2). For
streams under consideration, the increase in bit rate ranged
from 40% to 70%. Hence, to lower the bit rate during fast-
forward, the encoder further partitioned the base sub-stream
in the chroma domain to create low-resolution and residual
components.

5.2.2 Determining parameters for data partitioning
of the base sub-stream

The key issue in data partitioning is to determine the num-
ber of DCT coefficients that must be included in the low-
resolution component of the base sub-stream so as to ensure
acceptable video quality during fast-forward without any
substantial increase in the bit rate. To quantify the quality
of a decompressed image, we use thePeak Signal-to-Noise
Ratio (PSNR)as our metric. For anA×B pixel image with
a resolution ofr bits/pixel, if p(x, y) andp′(x, y) denote the
pixel values at location (x, y) in the original and the decom-
pressed images, respectively, then the PSNR of the image is
defined as

PSNR = 10.log10((2r−1)2

σ2) dB ,

whereσ =
∑A

x=1

∑B
y=1(p(x, y) − p′(x, y))2 .

Figure 8a shows the variation in the average video qual-
ity during fast-forward obtained by varying the number of
DCT coefficients in the low-resolution component. It shows
that the video quality improves by increasing the number of
coefficients contained in each DCT block. However, this im-
provement in video quality is at the expense of an increase
in the bit-rate requirement during fast-forward (see Fig. 8b).

Depending on the relative importance of the bit rate and
the video quality during fast-forward, the encoder can use

251

0

20

40

60

80

100

120

140

160

180

200

220

0 5 10 15 20 25 30 35

A
ve

ra
ge

 s
er

vi
ce

 ti
m

e
(m

se
c)

Number of clients

(a) 16 disks, 32KB fixed-size blocks

Naive placement algorithm
Our placement algorithm

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35

A
ve

ra
ge

 s
er

vi
ce

 ti
m

e
(m

se
c)

Number of clients

(b) 16 disks, variable-size blocks

Naive placement algorithm
Our placement algorithm

Fig. 7a,b.Service time of a disk during normal playback. Our placement algorithm yields a smaller service time per disk as compared to one that interleaves
each sub-stream independently across the array

10

15

20

25

30

35

40

0 10 20 30 40 50 60

P
S

N
R

 (
dB

)

No of DCT coefficients

(a) Variation in PSNR with number of DCT coefficients

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20

A
ve

ra
ge

 b
it

ra
te

 (
M

b/
se

c)

No of DCT coefficients

(b) Variation in bit rate with number of DCT coefficients

Fig. 8a,b. Variation of PSNR and fast-forward bit rates with number of DCT coefficients for the Frasier sequence

one the following two metrics to determine the number of
coefficients that must be included in the low-resolution com-
ponent of the base sub-stream: (1) choose the number of co-
efficients such that the bit rate during fast-forward approx-
imately equals that during normal playback, or (2) choose
the number of coefficients such that the video quality during
fast-forward is at least equal to a specified minimum value.
In the former approach, the amount of contingency band-
width that must be reserved by the server is small. However,
the picture quality can vary from one stream to another.
In contrast, the latter approach yields a minimum accept-
able video quality, possibly at the expense of an increase
in the bit rate during fast-forward. To illustrate these trade-
offs, consider the streams listed in Table 2. If the number
of coefficients in the low-resolution component of the base
sub-stream is chosen so as to optimize bit rate, then the
encoder would choose 18 coefficients for both the Hockey
and Flintstones sequences (so that the bit rate during fast-
forward approximately equals that during normal playback).
However, the picture quality obtained during fast-forward
for these sequences is 33.1 dB and 24.97 dB, respectively.
On the other hand, if the number of coefficients is chosen
so as to obtain a minimum video quality (say 30 dB), then
the number of coefficients included in the low-resolution
component of the two sequences would be 18 and 22, re-
spectively. While this does not cause an increase in bit rate
for the Hockey sequence, it causes an increase in bit rate for
the Flintstones sequence during fast-forward.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

Block Size (kB)

Block Size Distributions

Normal Stream
Base sub-stream with 18 coefficients

Fig. 9. Comparison of block size distribution of the base sub-stream with
the normal stream

For the streams under consideration, our experiments
indicate that by assigning 18–20 coefficients to the low-
resolution component of the base sub-stream, we can get ac-
ceptable video quality (about 27 dB) without any significant
increase in the bit rate during fast-forward. Consequently,
the average size of a block retrieved during fast-forward
is about half of that retrieved during normal playback (see
Fig. 9). Since the server retrieves twice the number of blocks
in each round during fast-forward, there is no significant
change in the stream bit rate.

252

Table 2. PSNR and bit rates of MPEG streams during fast-forward for various sequences. The base sub-stream bit rate indicates the bit rate during
fast-forward without chroma partitioning. The bit rate and PSNR values have units of Mb/s and dB, respectively

Stream Normal Base Number of coefficients in the low-resolution component

bit rate sub-stream 18 20 22

bit rate PSNR bit rate PSNR bit rate PSNR bit rate

Hockey 1.61 2.12 33.1 1.57 34.5 1.67 35.7 1.7
Flintstones 1.62 2.77 24.97 1.56 27.6 1.7 30.29 1.8
Frasier 1.35 1.96 30.33 1.20 30.97 1.32 31.52 1.4
News 1.48 2.1 24.46 1.2 26.48 1.31 28.46 1.4

400

450

500

550

600

650

700

0 0.2 0.4 0.6 0.8 1

S
er

vi
ce

 T
im

e
(m

se
c)

Probability of being in fast-forward

 (a) 16 disks, 100 clients

Simulator, Coefficients = 10
Model, Coefficients = 10

Simulator, Coefficients = 20
Model, Coefficients = 20

Simulator, Coefficients = 28
Model, Coefficients = 28

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1C
on

tin
ge

nc
y

B
an

dw
id

th
 (

fr
ac

tio
n

of
 to

ta
l b

an
dw

id
th

)

Probability of being in fast-forward

(b) 16 disks, 100 clients

 Coefficients = 10
 Coefficients = 20
 Coefficients = 28

Fig. 10a,b.Variation in service times and the contingency bandwidth obtained by changing the probability of fast-forward

5.2.3 Determining the contingency bandwidth

Regardless of whether data partitioning is performed to op-
timize the bit rate or the picture quality, the server must re-
serve contingency bandwidth to accommodate any increase
in load due to playback-to-fast-forward transitions. Fig. 10a
depicts the variation in the service time of the most heavily
loaded disk obtained from the analytical model and trace-
driven simulations with increase in the steady-state Markov
probability of a client being in fast-forward mode. The fig-
ure shows that the service times predicted by the model are
within 3–5% of those obtained from simulations. Moreover,
when the low-resolution component of the base sub-stream
contains 20 DCT coefficients, the service time of the most
heavily loaded disk is independent of the probability of being
in fast-forward (and hence, the number of clients in the fast-
forward mode). Thus, the fast-forward operation imposes a
negligible overhead on the server.

Figure 10b shows the contingency bandwidth that must
be reserved for different values of the probability of being
in the fast-forward mode. When the low-resolution compo-
nent of the base sub-stream contains 20 coefficients, the bit
rate during fast-forward approximately equals that during
normal playback. Consequently, the overhead on the server
during fast-forward and the contingency bandwidth require-
ment are very small. Increasing the number of coefficients
contained in the low-resolution component beyond 20 en-
hances picture quality during fast-forward, at the expense
of an increased bit rate and larger contingency bandwidth
requirement. In contrast, decreasing the number of coeffi-
cients in the low-resolution component below 20 causes the
bit rate during fast-forward to be lower than that during nor-
mal playback. Hence, the contingency bandwidth require-
ment reduces to zero at the expense of poor picture quality
during fast-forward.

6 Concluding remarks

In this paper, we presented a placement algorithm that in-
terleaves multiresolution video streams on a disk array and
ensures that (1) each sub-stream is independently accessible,
and (2) the seek and rotational latency overhead incurred
in accessing any sub-set of these sub-streams is minimized.
This enables a server to efficiently support playback of video
streams at different resolution levels. We then presented an
encoding technique, which when combined with our place-
ment algorithm enables a server to efficiently support scan
operations. Our encoding technique combines scalability in
the temporal and chroma dimensions to ensure that scan op-
erations do not impose any additional overhead as compared
to normal playback. We presented an analytical model for
predicting the effects of making a transition from playback
to fast-forward on the array load, and used it to compute
the contingency bandwidth that must be reserved by the
server to accommodate any load increase due to the fast-
forward operation. Our experimental results demonstrate that
(1) the placement algorithm substantially reduces seek and
rotational latency overhead during playback, and (2) by ex-
ploiting the characteristics of the compression algorithm and
human perceptual tolerances, a server can support interac-
tive scan operations without any significant increase in bit
rate.

Although presented in the context of interactive scan op-
erations, our analytical model can also be used to perform
admission control in the presence of interactive scan opera-
tions. Our algorithms are being incorporated into Symphony,
a multimedia file system being developed in our research
laboratory.

253

Acknowledgements.This research was supported in part by an IBM Faculty
Development Award, Intel, the National Science Foundation (Research Ini-
tiation Award CCR-9409666 and CAREER award CCR-9624757), NASA,
Mitsubishi Electric Research Laboratories (MERL), and Sun Microsystems
Inc.

References

1. Anderson D, Osawa Y, Govindan R (1991) A File System for Contin-
uous Media. ACM Trans Comput Syst 10(4): 311–337

2. Chang E, Zakhor A (1994) Scalable Video Placement on Parallel Disk
Arrays. In: Niblack W, Jain RC (eds) Proceedings of IS&T/SPIE Inter-
national Symposium on Electronic Imaging: Science and Technology,
February 1994, San Jose, Calif., pp 208–221

3. Chen MS, Kandlur DD (1995) Downloading and Stream Conversion:
Supporting Interactive Playout of Videos in a Client Station. In: Pro-
ceedings of the International Conference On Multimedia Computing
and Systems (ICMCS), May 1995, Washington D.C., pp 73–80

4. Chen MS, Kandlur DD, Yu PS (1994) Support for Fully Interactive
Playout in a Disk-Array-Based Video Server. In: Proceedings of the
Second ACM International Conference on Multimedia, October 1994,
San Francisco, CA, pp 391–398

5. Chiang T, Anastassiou D (1994) Hierarchichal Coding of Digital Tele-
vision. IEEE Commun 32(4): 38–45

6. Chiueh T, Katz R (1993) Multi-Resolution Video Representation for
Parallel Disk Arrays. In: Proceedings ACM Multimedia, August 1993,
Anaheim, Calif., pp 401–409

7. Dey-Sircar JK, Salehi JD, Kurose JF, Towsley D (1994) Providing
VCR Capabilities in Large-Scale Video Servers. In: Proceedings of the
Second ACM International Conference on Multimedia, October 1994,
San Francisco, CA, pp 25–32

8. Feng W, Jahanian F, Sechrest S (1996) Providing VCR Functionality
in a Constant Quality Video-On-Demand Transportation Service. In:
Proceedings of the International Conference On Multimedia Computing
and Systems (ICMCS), June 1996, Hiroshima, Japan, pp 127–135

9. Le Gall D (1991) MPEG: A Video Compression Standard for Multi-
media Apllications. Commun. ACM 34(4): 46–58

10. Gemmell J, Christodoulakis S (1991) Principles of Delay Sensitive
Multimedia Data Storage and Retrieval. ACM Trans Inf Syst 10(1):
51–90

11. International Organisation for Standardisation (1994) Information
Technology – Generic Coding of Moving Pictures and Associated
Audio Systems: Systems, Video and Audio, International Standard
(MPEG2). ISO/IEC 13818. International Organisation for Standardi-
sation, Geneva, Switzerland

12. Lee EK, Katz RH (1993) An Analytic Performance Model for Disk
Arrays. In: Proceedings of the ACM SIGMETRICS, May 1993, San
Diego, CA, pp 98–109

13. Lui JCS, Law KW (1995) Load Balancing and VCR Functionalities
Support via Subband Coding Techniques. In: Proceedings of the Fifth
International Workshop on Network and Operating System Support for
Digital Audio and Video, April 1995, Durham, NH, pp 77–80

14. Paek S, Bocheck P, Chang SF (1995) Scalable MPEG-2 Video Servers
with Heterogeneous QoS on Parallel Disk Arrays. In: Proceedings of
the Fifth International Workshop on Network and Operating System
Support for Digital Audio and Video, April 1995, Durham, NH

15. Pennebaker WB, Mitchell JL (1993) JPEG Still-Image Data Compres-
sion Standard. Van Nostrand Reinhold, New York

16. Tobagi FA, Pang J, Baird R, Gang M (1993) Streaming RAID: A Disk
Storage System for Video and Audio Files. In: Proceedings of ACM
Multimedia, August 1993, Anaheim, Calif., pp 393–400

17. Trivedi KS (1982) Probability and Statistics With Reliability, Queuing,
And Computer Science Applications. Prentice-Hall, Englewood Cliffs,
N.J.

18. Vin HM, Goyal P, Goyal A, Goyal A (1994) A Statistical Admis-
sion Control Algorithm for Multimedia Servers. In: Proceedings of the
ACM Multimedia, October 1994, San Francisco, Calif., pp 33–40

19. Vin HM, Rao SS, Goyal P (1995) Optimizing the Placement of Mul-
timedia Objects on Disk Arrays. In: Proceedings of the Second IEEE
International Conference on Multimedia Computing and Systems, May
1995, Washington, D.C., pp 158–165

20. Yu P, Chen MS, Kandlur DD (1992) Design and Analysis of a Grouped
Sweeping Scheme for Multimedia Storage Management. In: Proceed-
ings of Third International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video, November 1992, San Diego,
Calif., pp 38–49

Prashant Shenoy is a doctoral can-
didate in the Department of Computer
Sciences at the University Texas at
Austin. His research topics include mul-
timedia file systems and operating sys-
tems. He is involved in the design and
implementation of an integrated file sys-
tem being built at Distributed Multime-
dia Computing Laboratory, UT Austin.

Harrick M. Vin received his Ph.D.
in Computer Science from the Univer-
sity of California at San Diego in 1993.
He is currently an Assistant Professor
of Computer Sciences, and the Direc-
tor of the Distributed Multimedia Com-
puting Laboratory at the University of
Texas at Austin. His research interests
are in the areas of multimedia systems,
high-speed networking, mobile comput-
ing, and large-scale distributed systems.
Over the past 5 years, he has co-authored
more than 55 papers in leading journals
and conferences in the area of multime-

dia systems. He has been a recipient of several awards, including the
National Science Foundation CAREER award, IBM Faculty Development
Award, AT&T Foundation Award, IBM Doctoral Fellowship, NCR Innova-
tion Award, and the San Diego Supercomputer Center Creative Computing
Award.

