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Abstract

In this paper, we present two novel disk failure recovery methods that utilize the inherent characteristics of video

streams for efficient recovery. Whereas the first method exploits the inherent redundancy in video streams (rather

than error-correcting codes) to approximately reconstruct data stored on failed disks, the second method exploits the

sequentiality of video playback to reduce the overhead of online failure recovery in conventional RAID arrays. For

the former approach, we present loss-resilient versions of JPEG and MPEG compression algorithms. We present an

Inherently Redundant Array of Disks (IRAD) architecture that combines these loss-resilient compression algorithms

with techniques for efficient placement of video streams on disk arrays to ensure that on-the-fly recovery does

not impose any additional load on the array. Together, they enhance the scalability of multimedia servers by: (1)

integrating the recovery process with the decompression of video streams, and thereby distributing the reconstruction

process across the clients; and (2) supporting graceful degradation in the quality of recovered images with increase in

the number of disk failures. We present analytical and experimental results to show that both schemes significantly

reduce the failure recovery overhead in a multimedia server.

Keywords: Multimedia storage servers, redundant disk arrays, RAID, fault tolerance, video com-

pression algorithms
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1 Introduction

Recent advances in computer and communication technologies have made it economically feasible to

design sophisticated multimedia information services such as digital libraries, distance learning, online

newspapers, etc. The realization of such services, however, requires the development of high performance,

scalable multimedia servers that can efficiently store and retrieve multimedia objects. While computer

users are accustomed to software failures and operating system crashes, customers of interactive services

are not likely to tolerate anything but rare unavailability of these services [22]. Consequently, multimedia

servers must employ techniques to guarantee high availability of services. A truly fault-tolerant design will

support redundancies in all the key components of the server, including the cpu, memory, I/O, and network

subsystems, as well as the system software. In this paper, we confine our focus to fault-tolerant designs for

the I/O subsystem, and assume that existing fault-tolerant techniques will be used for other subsystems (for

example, see [3, 13, 28]).

Due to the immensity of sizes and the data rate requirements of multimedia objects, multimedia servers

are founded on disk arrays. Disk arrays connect several disks together, and thereby extend the cost, power,

and size advantages of small disks to high capacity configurations [4]. A fundamental tradeoff, though, is

that large disk arrays are highly susceptible to disk failures [7]. To illustrate, although the mean time to

failure for a single disk is 300,000 hours, an array of 1000 disks will experience a failure every 12 days.

Since the storage and retrieval of multimedia objects impose real-time constraints, to provide uninterrupted

service, a multimedia server must continue to meet the real-time guarantees provided to clients even in

the presence of disk failures. Hence, a fault-tolerant multimedia server must not only provide mechanisms

to rapidly recover from a disk failure without losing data, but must also ensure that the recovery process

operates without taking the system off-line and has minimal impact on system performance [14]. Since

video is the most demanding data type (with respect to its data rate and real-time performance requirements),

in this paper, we present failure recovery techniques tailored for video. Such techniques, however, can easily

be extended to other data types such as images and animation sequences.

1.1 Relation to Previous Work

Recently several research projects have investigated the design of fault-tolerant storage systems [4, 18, 33].

Most of these approaches are based on the Redundant Array of Independent Disks (RAID) architecture

[7, 24], which achieves fault tolerance either by mirroring or parity encoding. Mirroring (also referred to

as RAID level 1) achieves fault tolerance by duplicating data on separate disks [2, 5, 9]. Many different

mirroring techniques have been proposed: (1) mirrored declustering duplicates each disk onto another disk,

(2) interleaved declustering uniformly distributes backup blocks of a disk amongst all the remaining disks,

and (3) chained declustering stores backup blocks of disk i on disk i+1. By maintaining two copies of the

information, mirrored arrays achieve fault-tolerance by accessing backup blocks if the primary blocks are

unavailable due to a disk failure. Even in the fault-free state, such arrays service read requests from the disk

with the lighter load, thereby yielding better performance. A fundamental limitation of mirroring, however,

is that it incurs a 100% storage space overhead.

Parity encoding techniques, employed in RAID levels 3, 4, and 5, reduce this overhead by employing

error correcting codes [12, 24]. In a disk array consisting of D disks, parity is computed by an exclusive-or

operation over data stored across (D � 1) disks, and is stored on another disk [13, 17, 24]. The parity

block together with all the data blocks over which parity is computed are referred to as a parity group. In

RAID level 3 or bit-interleaved parity, data is interleaved bit-wise over the data disks and a dedicated disk

stores all parity information. In RAID level 4 or block-interleaved parity, data is interleaved in fixed-size
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Figure 1 : Left-symmetric and declustered parity organizations in parity-based arrays. M
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and P
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� � � �M
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blocks rather than in bits, with a dedicated disk storing parity blocks. Since parity must be updated on every

write request, the parity disk can become a bottleneck in RAID levels 3 and 4. Hence, in RAID level 5 or

distributed block-interleaved parity, parity blocks are uniformly distributed across all the disks (e.g., the

left-symmetric parity assignment shown in Figure 1(a)). In parity-based RAID arrays, if one of the disks

fail, the data on the failed disk is recovered by an exclusive-or operation over the data and the parity blocks

stored on surviving disks. That is, a read access to a block on the failed disk causes one request to be sent

to each surviving disk. Thus, if the system load is balanced prior to a disk failure, the surviving disks would

observe twice as many read requests in the presence of a failure, causing a 100% increase in the load [15].

Several approaches that address this limitation by trading storage capacity for reduced failure recovery

overhead have been proposed. In the multiple RAID architecture, an array of D disks is partitioned into

clusters of C disks (C � D) with each cluster independently computing parity information [6, 7]. Whereas

a standard RAID array can tolerate a single disk failure, such an architecture can tolerate a failure in each

cluster without losing data. Furthermore, in the presence of a failure, only disks within the cluster containing

the failed disk see an increased load while disks in other clusters continue to see their normal workload.

The declustered parity array (also referred to as clustered RAID) further reduces the overhead of failure

recovery by constraining the number of blocks protected by parity to (G� 1) instead of (C � 1), G < C

[14, 19, 21]. By appropriately distributing the blocks of a parity group across the C disks in a cluster, such a

policy ensures that the load on each surviving disk in a cluster increases only by (G� 1)=(C � 1) instead of

(C�1)=(C�1) = 100% for read requests. This is illustrated in Figure 1(b) whereG = 4 andC = D = 5.

In summary, several techniques for designing fault-tolerant disk arrays have been recently proposed [7].

However, most of the analysis of these failure recovery schemes have presumed a conventional workload

consisting of aperiodic reads and writes. In contrast, a multimedia workload is dominated by large reads

and infrequent writes, which are periodic and sequential. Furthermore, conventional workloads require

good response times but no absolute guarantees, while multimedia workloads, due to their real-time nature,

need bounded response times. Recently, several research groups have adapted conventional failure recovery

techniques for multimedia servers [1, 8, 20, 28]. An admission control algorithm that reserves contingency

disk bandwidth to accommodate load increases in the event of a disk failure in a declustered-parity-based

multimedia server was presented in [23]. Similarly, in the Streaming RAID server [29], a RAID level 3

array is adapted to exploit the periodic nature of video accesses for efficient data retrieval. By restricting

the maximum number of users simultaneously accessing the array, the server ensures that the real time

requirements of video streams are not violated even during a disk failure.
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A key limitation of these techniques is that they treat video data as an uninterpreted sequence of bits

and do not exploit any of its characteristics. However, by exploiting the characteristics of video data, a

multimedia server can significantly lower the overhead of online failure recovery. For instance, a multimedia

server can exploit the sequential nature of video access to compute and prefetch parity information, and

thereby reduce the overhead of failure recovery. Similarly, instead of perfectly recovering video data stored

on the failed disk using error-correcting codes, a server can exploit human perceptual tolerances and the

inherent redundancies in video streams to approximately reconstruct lost image data.

Failure recovery techniques that exploit the characteristics of the stored data to reduce the overhead of

failure recovery have not received much attention and constitute the subject matter of this paper.

1.2 Research Contributions of This Paper

In this paper, we present two recovery techniques that utilize the inherent characteristics of video streams

to minimize the overhead of on-the-fly disk failure recovery. The first approach exploits human perceptual

tolerances and spatial and temporal redundancies inherent in video streams to approximately reconstruct

image data stored on a failed disk. We illustrate our method by presenting loss resilient compression

algorithms for JPEG and MPEG, referred to as Loss-Resilient JPEG (LRJ) and Loss-Resilient MPEG

(LRM), respectively. These algorithms partition each image in the video stream into several sub-images

such that a reasonable approximation of an image can be constructed even when one or more of its sub-images

are not available. We present an Inherently Redundant Array of Disks (IRAD) architecture that combines

these loss-resilient compression algorithms with techniques for efficient placement of video streams on

disk arrays to ensure that on-the-fly recovery does not impose any additional load on the array. Together,

they enhance the scalability of multimedia servers by: (1) separating the tasks of online reconstruction

of requested data from rebuild of failed disks onto spare disks, (2) integrating the recovery process with

the decompression of video streams, and thereby distributing the reconstruction process across the clients,

and (3) supporting graceful degradation in the quality of recovered images with increase in the number of

disk failures. The IRAD architecture demonstrates the efficacy of a novel concept— imperfect recovery in

disk arrays. Our imperfect recovery technique is equally effective in masking packet losses resulting from

network congestion, and hence, is an end-to-end solution for failure recovery.

In the second method, we exploit the sequential nature of video stream accesses to reduce the overhead

of on-line recovery in a RAID array. Specifically, by requiring that parity blocks be computed over a

sequence of blocks belonging to the same video stream, the method ensures that data blocks retrieved by

a server for failure recovery would be requested by the client in the near future. By buffering such blocks

and then servicing requests for their access from the buffer, this method minimizes the overhead of on-line

failure recovery. Our method reduces the recovery overhead to 1=(C � 1) for declustered parity arrays, and

to 1=(G�1) for RAID level 5 arrays. Moreover, the recovery scheme does not make any assumptions about

the array architecture or the bit rates of video streams, and hence, is applicable to a variety of architectures

as well as for VBR video streams.

To evaluate the efficacy of our algorithms, we have developed prototype codecs for the LRJ and

LRM algorithms and have built an event-driven simulator. We evaluate our algorithms through extensive

experimentation and simulations using VBR video streams. We present and analyze our results.

The rest of this paper is organized as follows: In Section 2, we present loss-resilient schemes for JPEG

and MPEG, as well as the IRAD architecture. We present our parity-based failure recovery algorithm in

Section 3. We analytically compare these failure recovery schemes to standard recovery schemes in Section
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4. The experimental evaluation of our failure recovery schemes is presented in Section 5. Finally, Section

6 summarizes our results.

2 Exploiting Inherent Redundancy of Video Streams

Digitization of video yields a sequence of images.1 We refer to a continuously recorded sequence of video

images as a media stream. Due to the immense sizes of media streams, multimedia servers employ disks

arrays as their underlying storage medium. Since disk arrays are highly susceptible to disk failures, these

server employ failure recovery techniques to guarantee high availability of data. Conventional parity-based

recovery techniques use error correcting codes to perfectly recover data stored on a failed disk. However,

human perception is tolerant to minor distortions in video playback. Hence, a multimedia server can reduce

the overhead of online failure recovery by exploiting the inherent spatial and temporal redundancies within

video streams to approximately reconstruct lost images. To illustrate, let I denote an image in the video

sequence, where

I = f p(x; y) j p(x; y) is the pixel value at (x; y)g

Let each image I be partitioned into several sub-images I
1

; I

2

; � � � ; I

N

such that I
i

� I; 1 � i � N , and

I

1

[ I

2

[ � � � [ I

N

= I . If these sub-images are stored on different disks, then a single disk failure will

result in the loss of a fraction of each image. If the sub-images are created such that none of the immediate

neighbors of a pixel in the image belong to the same sub-image, then even in the presence of a single disk

failure, all the neighbors of the lost pixels will be available. In this case, the high degree of correlation

between neighboring pixels will make it possible to reconstruct a reasonable approximation of the original

image. Moreover, no additional information will have to be retrieved from any of the surviving disks for

recovery. Since the images are partitioned in the pixel domain (i.e., prior to compression), we refer to the

process as pre-compression partitioning.

Although conceptually elegant, such pre-compression image partitioning techniques significantly re-

duce the correlation between the pixels assigned to the same sub-image, and hence adversely affect image

compression efficiency [26, 31]. The resultant increase in the bit-rate requirement may impose a higher

load on each disk even in the fault-free state, and thereby reduce the number of video streams that can be

simultaneously retrieved from the server. Alternatively, a server can employ post-compression partition-

ing techniques which partition each image into several sub-images after the redundancies within the video

stream have been exploited by the compression algorithm. The key challenge in designing post-compression

partitioning schemes is to create sub-images that facilitate effective and efficient recovery of lost image data

without significantly affecting the compression efficiency. Most compression algorithms use a transform

function (such as the discrete cosine transform (DCT) or the wavelet transform) that converts an image from

the pixel domain to the frequency domain by packing most of the spectral energy into a small number of

coefficients, thereby achieving compression. Consequently, post-compression partitioning depends on the

characteristics of the transform function used to encode video streams. In what follows, we first describe

the characteristics of the DCT, and then present a partitioning scheme that exploits these characteristics to

effectively reconstruct lost transform coefficients. The partitioning scheme can be used with any compres-

sion algorithm using the discrete cosine transform. We illustrate our method by presenting failure resilient

schemes for two popular compression algorithms used for video sequences (namely, motion JPEG and

1

We shall use the terms image and frame interchangeably in this paper.
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MPEG). By integrating these schemes with placement techniques, we derive a new disk array architecture

for storing video streams.

2.1 Characteristics of the Discrete Cosine Transform

Compression algorithms based on the discrete cosine transform partition each image into nxn pixel blocks

and independently apply the DCT to each block. The DCT uncorrelates each pixel block into an array of n2

coefficients such that most of the spectral energy is packed into a small number of low frequency coefficients.

Whereas the lowest frequency coefficient (referred to as the DC coefficient) captures the average brightness

and color of the spatial block, the remaining set of (n2 � 1) coefficients (referred to as the AC coefficients)

capture the details within the nxn pixel block. The coefficients produced by the DCT have the following

characteristics:

� Since the DC coefficients capture the average brightness and color of each 8x8 pixel block and since

the average brightness and color of pixels gradually change within a image, the DC coefficients of

neighboring nxn pixel blocks are correlated. Consequently, the value of the DC coefficient of a block

can be reasonably approximated from the DC coefficients of the neighboring blocks.

To formally capture this observation, consider an image containing ncol � nrow blocks of nxn

pixels each. Let us define the 8-neighborhood of a block at location (x; y) (denoted by B(x; y)) as

the set:

N

8

(B(x; y)) = fB(i; j) j jx� ij � 1 and jy � jj � 1g � fB(x; y)g (1)

Then, the DC coefficient of B(x; y) can be approximated as:

DC

B(x;y)

=

1

8

�

X

B

(i;j)

2N

8

(B(x;y))

DC

B(i;j)

(2)

where DC

B(i;j)

denotes the DC coefficient of block B(i; j).

� Due to the very nature of DCT, the set of AC coefficients yielded for each nxn block are uncorrelated.

Moreover, since DCT packs the most amount of spectral energy into a small number low frequency

coefficients, quantizing the set of AC coefficients (by using a user-defined normalization array)

yields many zeroes, especially at higher frequencies. Consequently, recovering a block by simply

substituting a zero for each of the lost AC coefficient is generally sufficient to obtain a reasonable

approximation of the original image (at least as long as the number of lost coefficients are small and

are scattered throughout the block).

2.2 Image Partitioning Fundamentals

To precisely describe the partitioning process, let I denote the frequency domain image obtained by applying

the DCT to the original image I . Then, the partitioning algorithm exploits the characteristics of the DCT

by proceeding in two steps:

1. Scrambling: In this step, the partitioning algorithm scrambles image I by uniformly distributing the

AC coefficients of a DCT block across multiple blocks.
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and D
i

(1 � i � 15) represent AC coefficients.

2. Sub-image creation: The scrambled image S(I) is then partitioned into a set of N sub-images

such that none of the DC coefficients in the 8-neighborhood of a block belong to the same sub-

image. If I
1

;I

2

; � � � ;I

N

denote the sub-images, then the partitioning algorithm also ensures that: (i)

I

j

� S(I); 1 � j � N , and (ii) I
1

[ I

2

[ � � � [ I

N

= S(I).

Note that this partitioning process is distinct from pre-compression image partitioning since the sub-

images are created in the frequency domain as opposed to in the pixel domain. In fact, as we shall demonstrate

later, it is this feature of the partitioning algorithm that enables reasonable failure recovery without incurring

any significant degradation in compression efficiency. We present our partitioning algorithm by first

describing a method for scrambling AC coefficients and then describing the sub-image creation process.

2.2.1 Scrambling AC Coefficients

Although substituting lost AC coefficients by zeroes yields a reasonable approximation of the original

image, the degradation in image quality can be minimized by reducing the number of lost coefficients.

The number of lost coefficients can be minimized by scattering the AC coefficients of a block amongst

multiple sub-images. To achieve this objective, the partitioning algorithm employs a scrambling function

f which when given a set of M DCT blocks, creates a new set of M blocks such that the AC coefficients

from each of the input blocks are uniformly distributed amongst all of the output blocks. Furthermore, to

prevent scrambling from adversely affecting compression efficiency, the scrambling function must ensure

that the relative positions of AC coefficients in scrambled blocks is the same as that in the input blocks. Any

scrambling function that satisfies these requirements can be used by the partitioning algorithm.

To describe one such scrambling function f , letB
0

;B

1

; � � � B

M�1

denote the DCT blocks of the original

image. Then,

f(B

0

;B

1

; � � � ;B

M�1

) = fB

0

0

;B

0

2

; � � � ;B

0

M�1

g

where B0
0

;B

0

1

; � � � B

0

M�1

denote the scrambled DCT blocks. Let us assume that the AC coefficients are

numbered from left-to-right in a row-major order and that ACk

B

i

denotes the k

th AC coefficient (k 2

[1; n

2

� 1]) of block B

i

. The scrambling function f assigns AC

k

B

i

to be the kth coefficient of block B

0

j

where j = (i + k) modM . Thus, each resulting block contains n

2

M

coefficients of each of the original
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blocks. Specifically, one of the blocks contain the DC coefficient and
�

n

2

M

� 1

�

AC coefficients, and all

the remaining (M � 1) blocks contain
�

n

2

M

�

AC coefficients. Figure 2 illustrates the scrambling of AC

coefficients for four 4x4 blocks.

2.2.2 Creating Sub-images

Having scrambled the image, it must then be partitioned into sub-images such that none of the DC coefficients

in the 8-neighborhood of a block belongs to the same sub-image. The minimum value of the degree of

image partitioning N (i.e., the number of sub-images) that satisfies this requirement is determined by the

following theorem:

Theorem 1 To ensure that none of the blocks contained in a sub-image are in the 8-neighborhood of each

other in the original image, the image must be partitioned into at least 4 sub-images.

Proof: We demonstrate that partitioning an image into 4 sub-images is both necessary and sufficient.

� Necessity: Consider a DCT block B(x; y) as well as all of the blocks in its 8-neighborhood. Let us

partition the set of blocks into four groups G
1

; G

2

; G

3

, and G
4

, such that:

G

1

= fB(x; y)g

G

2

= fB(x� 1; y);B(x+ 1; y)g

G

3

= fB(x� 1; y � 1);B(x� 1; y + 1);B(x + 1; y � 1);B(x + 1; y + 1)g

G

4

= fB(x; y � 1);B(x; y + 1)g

By the definition of 8-neighborhood, it is clear that none of the groups contain any two blocks that are

in the 8-neighborhood of each other. Moreover, none of the groups can be merged together without

violating this condition. Hence, to ensure that no sub-image contains two blocks that are in the

8-neighborhood of each other, an image must be partitioned into at least 4 sub-images.

� Sufficiency: To prove the sufficiency, let us partition an image into 4 sub-images (denoted by I
1

;I

2

;I

3

,
and I

4

) as follows:

I

1

= fB(i; j) j (i mod 2) = 0 and (j mod 2) = 0g

I

2

= fB(i; j) j (i mod 2) = 1 and (j mod 2) = 0g

I

3

= fB(i; j) j (i mod 2) = 0 and (j mod 2) = 1g

I

4

= fB(i; j) j (i mod 2) = 1 and (j mod 2) = 1g

Since these definitions cover blocks in both odd and even numbered rows as well as columns, the 4

sub-images together contain all the blocks within the original image. Moreover, each block within

the original image is a member of of exactly one of the sub-images.

To demonstrate that none of the blocks contained in a sub-image belongs to the 8-neighborhood of

each other, without loss of any generality, consider two distinct blocks B(i
1

; j

1

) and B(i
2

; j

2

) that

belong to a sub-image. Then, by the definition of sub-images, either ji
1

� i

2

j � 2 or jj
1

� j

2

j � 2,

or both. Hence, by definition (see Equation (1)), blocks B(i
1

; j

1

) and B(i

2

; j

2

) do not belong to
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the 8-neighborhood of each other. Thus, the definitions of sub-images I
1

;I

2

;I

3

, and I

4

denote a

scheme for partitioning an image which guarantees that no sub-image contains blocks that are in the

8-neighborhood of each other.

2.2.3 Determining Image Partitioning Parameters

Before partitioning an image, the algorithm must first choose the values of parameters M and N (i.e., the

number of DCT blocks produced by each invocation of the scrambling function and the degree of image

partitioning, respectively). To enable good recovery of DC coefficients, the algorithm must choose N � 4,

where the exact value of N is governed by the required quality of the reconstructed image. To minimize

the impact of lost AC coefficients on the visual quality of an image, the partitioning algorithm must assign

no more than one block from every set of M scrambled blocks to each sub-image. This requires that M

be atmost N (i.e., M � N ). Furthermore, since each scrambled blocks consists of 1=M th of the AC

coefficients from each of M input blocks, the number of lost AC coefficients can be minimized by choosing

M as large as possible. Hence, the algorithm can minimize the degradation in image quality due to a failure

by choosing M = N .

If an image is partitioned into 4 sub-images, then each sub-image will contain 25% of the image data in

the frequency domain. Consequently, if the information contained in a sub-image is not available, the image

will have to be reconstructed from the remaining 75% of the data. Since the quality of the reconstructed

image is dependent on the amount of original image data available for reconstruction, increasing the degree

of image partitioning improves the quality of the reconstructed images. However, as we shall point out

later, increasing the degree of image partitioning decreases the correlation between the DC coefficients of

blocks assigned to the same sub-image, and thereby deteriorates compression efficiency. Hence, the degree

of image partitioning must be chosen so as to simultaneously optimize the quality of reconstructed image

and the compression efficiency. In what follows, we show how scrambling and sub-image creation can be

combined to derive loss-resilient versions of JPEG and MPEG.

2.3 Loss-Resilient JPEG (LRJ) Algorithm

The JPEG compression algorithm groups image data into a sequence of 8x8 pixel blocks. Each pixel block

is then subjected to the DCT which yields a DC coefficient and 63 AC coefficients. The DC coefficients

of successive blocks are difference encoded using a DPCM scheme independent of the AC coefficients.

Within each block, the AC coefficients are quantized to remove high frequency components, scanned in a

zig-zag manner to obtain an approximate ordering from lowest to highest frequency, and finally run length

and entropy encoded. Figure 3 depicts the main steps involved in the JPEG compression algorithm [25].

The motion-JPEG algorithm applies the JPEG algorithm to a sequence of images yielding a compressed

video stream.

The Loss-Resilient JPEG (LRJ) algorithm is an enhancement of the JPEG compression standard, and

uses the partitioning technique presented in the Section 2.2. Given that each image in a video stream is

being partitioned into N(N � 4) sub-images, the LRJ compression algorithm is as follows:

1. Scrambling: The algorithm selects N consecutive DCT blocks from the same row of the original

image and scrambles the AC coefficients within the blocks to create a new set of N blocks. Since

each invocation of the scrambling function requires N blocks from the same row, N is chosen such

that it divides the total number of blocks in a row. In the event that this is not possible (e.g., when the

number of blocks in a row are prime), each row of blocks is padded with additional “zero” blocks such

9
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Figure 3 : JPEG compression algorithm

that the number of blocks in a row becomes an integral multiple of N . Since all coefficients in such

blocks are zeroes, they can be efficiently run-length and huffman encoded without any significant

degradation in compression efficiency.

2. Sub-image Creation: Blocks obtained from each invocation of the scrambling function are then

assigned to sub-images (one block per sub-image) such that none of the DC coefficients contained

in a sub-image belong to blocks that are in the 8-neighborhood of each other. Since N � 4, the

latter objective can be achieved by assigning the scrambled blocks belonging to a row to sub-images

in a round-robin manner, and by ensuring that the assignment of the first block from each row is

offset by 2 sub-images from the corresponding block in the previous row. That is, if block B0(i; j) is

assigned to sub-image I
k

, then blockB0(i+1; j) is assigned to sub-image I
(k+1)modN

, 0 � i � ncol,

0 � j � nrow. Moreover, if block B0(i; j) is assigned to sub-image I
k

, then block B0(i; j + 1) is

assigned to sub-image I
(k+2)modN

.

Once all the blocks within the image have been processed, each of the N sub-images can be indepen-

dently encoded. Specifically, the DC coefficients within each sub-image are encoded with a lossless DPCM

scheme using the DC coefficient from the previous block assigned to the sub-image as a 1-D predictor.

Similarly, the 2-D array of 63 AC coefficients within each block is formatted as a 1-D vector using a zigzag

reordering, and then run-length and huffman encoded. Note that the huffman tables utilized for this purpose

can either be optimized over each individual sub-image or over the entire image. Whereas the former

approach will require a huffman table to be stored with each sub-image, the latter requires a single huffman

table to be stored for an entire image. However, in such a scenario, the huffman table must be replicated

across multiple sub-images to guarantee its availability table even when one or more of the sub-images are

not available.

At the time of decompression, once each sub-image has been run-length and huffman decoded, the LRJ

algorithm repeatedly selects a block from each of theN sub-images (referred to as the merging step) and uses

an unscrambling function to obtain blocks of the original image. In the event that the information contained

in a sub-image is not available, the unscrambling function also performs a predictive reconstruction of the

lost DC coefficients from the DC coefficients of the neighboring 8x8 blocks. Lost AC coefficients, on the

other hand, are replaced by zeroes. Since the scrambling function employed by the encoder ensures that each

scrambled block contains coefficients from several blocks of the original image, the artifacts yielded by such

10
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Figure 4 : LRJ compression and decompression algorithms

a recovery mechanism are dispersed over the entire reconstructed image, thereby significantly improving

the visual quality of the image. Figure 4 depicts the various modules involved in the LRJ compression and

decompression algorithm, and Figure 5 describes both of these algorithms in detail.

As a final note, observe that since successive blocks within a sub-image do not belong to the 8-

neighborhood of each other, the correlation between their DC coefficients is smaller than the neighboring DC

coefficients in the original image. The reduced correlation diminishes the efficiency of DPCM encoding of

DC coefficients, and hence increases the total size of the compressed image (as compared to the corresponding

JPEG image). Scrambling AC coefficients of a block across several sub-images, on the other hand, does

not have any significant impact on the compressed image size. This is because, due to the very nature of

DCT, AC coefficients are uncorrelated. Moreover, quantization yields a large number of zero coefficients.

Since the scrambling algorithm does not alter the relative position of an AC coefficient within the zig-zag

ordering, the effect of scrambling on the efficiency of run-length and huffman encoding is minimal. Thus,

the increase in compressed image size yielded by the LRJ algorithm can be mostly attributed to the need for

replicating huffman tables and the reduced correlation of successive DC coefficients.

2.4 Loss-Resilient MPEG (LRM) Algorithm

The MPEG compression standard exploits the large temporal and spatial redundancies present within an

video stream to achieve a high degree of compression [11, 16]. MPEG supports three kinds of frames : (1)

I frames (intra-coded without any reference to other frames), (2) P frames (predictively coded using an I

or P frame), (3) B frames (bidirectionally interpolated from both the previous and the following I and/or

P frame). To derive these types of frames, MPEG groups image data into 16x16 pixel areas called macro

blocks. Macro blocks belonging to I frames are independently encoded. Macro blocks belonging to B and

P frames, on the other hand, are temporally interpolated from corresponding reference frame(s), and the

error macro block is computed as the difference between the actual and interpolated blocks. Macro blocks

for which the encoder is unable to find a good reference block are intra-coded. The interpolation process

also produces up to two motion vectors for each macro block, which denote the positions of the interpolated

macro blocks in the reference frames. Regardless of the frame type, each macro block is then partitioned into

six 8x8 pixel blocks — four luminance and two chrominance blocks. Each 8x8 pixel block is transformed

into the frequency domain using the DCT. The DC coefficients of successive blocks are difference encoded.
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Procedure LRJ-Compress

begin

Input: Image consisting of nrow � ncol

8x8 pixel blocks and the value of N ;

Perform DCT on each 8x8 pixel block;

Quantize the coefficients using a user-defined matrix;

ncol

0

= ncol rounded to the next higher

multiple of N ;

Pad each row of the transformed image with

(ncol

0

� ncol) zero blocks;

for (i = 0 to nrow � 1) do

offset = (2 � i) mod N ;

for (j = 0 to ncol0 � 1) do

k = (j + offset) mod N ;

Assign DC
B(i;j)

to sub-image k;

for (m = 1 to 63) do

Assign AC
m

B(i;j)

to sub-image

(k +m) mod N ;

end for

end for

end for

for each sub-image do

DPCM encoding of the DC coefficients;

Run-length encode the AC coefficients;

Huffman encode the resultant stream;

end for

end.

Procedure LRJ-Decompress

begin

Input: N sub-images;

for each sub-image do

Huffman decode the bit stream;

Run-length decode AC coefficients;

Inverse DPCM for DC coefficients;

endfor

for (j = 0 to nrow� 1) do

offset = (2 � j) mod N ;

for (i = 0 to ncol0 � 1) do

k = (i+ offset) mod N ;

if sub-image k is available

DC

B(i;j)

 next DC coefficient

from sub-image k;

else

Derive DC
B(i;j)

from Equation 2;

fi

for (m = 1 to 63) do

if sub-image (k +m) mod N is available

AC

m

B(i;j)

 m

th AC coefficient from

sub-image (k +m) mod N ;

else

AC

m

B(i;j)

 0;

fi

end for

end for

end for

Perform inverse quantization of each 8x8 block;

Perform inverse DCT on each 8x8 block;

end.

Figure 5 : LRJ compression and decompression algorithms
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The AC coefficients within a block are quantized, scanned in a zig-zag manner, and finally, run-length and

entropy encoded. The motion vectors in P and B frames are also difference and entropy encoded.

Thus, while JPEG exploits only the spatial redundancies present within images, MPEG exploits both

temporal and spatial redundancies present in image sequences. The key difference between the loss-resilient

MPEG (LRM) algorithm and the LRJ algorithm is that LRM must also recover lost motion vectors of a

macro-block in addition to lost DCT blocks. In order to recover lost DCT blocks, the LRM algorithm uses

a partitioning algorithm similar to that in the LRJ algorithm. Since the least unit of encoding in MPEG is

a macro block, the partitioning algorithm operates on macro blocks rather than DCT blocks. To precisely

describe the LRM algorithm, let Bi(x; y) denote the ith DCT block, 0 � i � 5, in the macro block located

at (x; y), and let the first four DCT blocks with each macro blocks denote luminance blocks. The algorithm

proceeds in two steps:

1. Scrambling: Given N macro blocks from the same row of the image, the scrambling function takes

the ith DCT block of each macro block and scrambles them such that the AC coefficients of each

block are uniformly distributed among the output blocks. That is,

f(B

i

(x; y);B

i

(x+ 1; y); � � � B

i

(x+N � 1; y)) = B

0

i

(x; y);B

0

i

(x+ 1; y); � � � B

0

i

(x+N � 1; y)

2. Sub-image Creation: The partitioning algorithm assigns DCT blocks to sub-images such that none

of the DC coefficients in the 8-neighborhood of a block belong to the same sub-image. Since

each macro block contains blocks from the luminance as well as both chrominance components,

the above property must hold for all three components of an image. To ensure this property, the

partitioning algorithm partitions each image as follows : (1) block B0
0

(x; y) is assigned to sub-image

I

(2x+4y) mod N

, (2) if block B0
0

(x; y) is assigned to sub-image I
k

, then block B0
i

(x; y) is assigned to

sub-image I
(k+i) mod N

, 0 � i � 3, and (3) blocksB0
4

(x; y) and B0
5

(x; y) are assigned to sub-images

I

(x+2y) mod N

and I
(x+2y+1) mod N

, respectively. Figure 6 illustrates the sub-image creation process.

While a lost DC coefficient can be extrapolated from its neighboring DCT blocks, extrapolating a

lost motion vector from neighboring macro blocks yields poor results due to the small correlation between

motion vectors of adjacent macro-block within an image. Furthermore, if the MPEG encoder is unable

to temporally interpolate a macro block from its reference frames, then the block is intra-coded. Thus,

if the neighboring macro blocks of a macro block are intra-coded, there won’t be any motion vectors

to extrapolate from. Hence, to enable recovery even in such scenarios, the loss-resilient MPEG (LRM)

algorithm must replicate motion vectors of macro blocks. In our algorithm, the motion vectors of a macro

block stored in sub-image I
k

are replicated in sub-image I
k+1

. Since MPEG allows applications to store any

application-specific data in the user-defined section of the MPEG stream, such replication can be achieved

without violating the syntax of MPEG. The primary motion vectors, on the other hand, are stored with

their respective macro blocks, as dictated by the syntax of MPEG. Besides replicating motion vectors, the

LRM algorithm also replicates the header information of each macro block in the user-defined section of a

sub-stream. The macro block header contains information such as whether the macro block is intra-coded,

predictively coded, or bidirectionally interpolated, which is needed by the decoder to decode the macro

block. Such header information can be efficiently replicated since only a few bits per macro-block are

needed to encode the information.

Given such encoded streams, if one of the sub-streams is unavailable, then the recovery process operates

as follows: (1) DC coefficients of lost DCT blocks are extrapolated from neighboring DCT blocks, (2) lost

AC coefficients are substituted by zeroes, and (3) lost motion vectors are recovered from the replicas stored
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Figure 6 : Sub-image creation in LRM: a0 through a5 represent the six DCT blocks of macro block a and

mva represents its motion vector. Successive DCT blocks within the same row of the luminance component

(e.g., a0; a1; b0; b1; :::) are assigned to successive sub-images in a round-robin manner. Successive blocks

within the same column (e.g., a0 and a2) are assigned to sub-images that are offset by 2 from each other.

Successive blocks of each chrominance component (e.g., a4; b4; c4:::) are mapped to sub-images in a

round-robin manner.

in the user-defined sections of the surviving sub-streams. Observe that, since neighboring macro blocks can

be encoded differently, a DC coefficient must be extrapolated from only those neighboring DCT blocks with

the same encoding type. For instance, a DC coefficient contained in an intra-coded macro block must be

extrapolated from only those neighboring DCT blocks belonging to intra-coded macro blocks. Thus, just as

in the LRJ algorithm, a reasonable reconstruction of the image can be obtained by exploiting the inherent

redundancies within the video stream. However, due to the dependencies between frames in MPEG, errors

due to imperfect recovery in a frame can get propagated to other frames. That is, imperfect recovery of an

I frame macro block can cause artifacts to appear in the blocks within the B and P frames which have been

interpolated from it. The impact of such error propagation on the visual quality can be reduced by choosing

a larger value of N , thereby reducing the fraction of the data lost per image. As we shall see in Section 5,

the loss in compression efficiency caused by choosing larger values of N (as compared to LRJ) is not high.

2.5 Inherently Redundant Array of Disks (IRAD)

The LRJ or the LRM compression algorithms, when applied to a sequence of images constituting a video

stream yield N sequences of sub-images. We refer to each such sequence as a sub-stream. For effective

recovery, the server must ensure that the disks over which the sub-streams are striped do not overlap (i.e.,

even in the presence of a single disk failure, at least (N�1) sub-streams are available). This can be achieved

by striping each sub-stream over a mutually exclusive subset of disks in the array. We refer to a disk array

architecture that employs such a placement strategy as an Inherently Redundant Array of Disks (IRAD). In

the event of a disk failure, clients use the LRJ or the LRM algorithm to approximately reconstruct lost image

data. A careful analysis of this process of recovering from disk failures illustrates the following salient

characteristics of the IRAD architecture:

� Since each image in the video stream is reconstructed by extrapolating information retrieved from the

surviving disks, the failure recovery process does not impose any additional load on the disk array.
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Consequently, the number of clients that can be serviced simultaneously by a multimedia server will

be constrained solely by the playback rate requirements of each of the video streams during the

fault-free state. Moreover, operating the server at very high levels of utilization during the fault-free

state will not present any risk of saturation in the presence of failure.

� Since the recovery of lost image data is integrated with the decompression algorithm, the reconstruction

process is carried out at client sites. This is an important departure from the conventional RAID

architectures — distributing the functionality of failure recovery to client sites will significantly

enhance the scalability of multi-disk multimedia servers.

� Since the recovery process only exploits the inherent redundancy in imagery, client sites will be

able to reconstruct a video stream even in the presence of multiple disk failures. The quality of the

reconstructed image, albeit, will degrade with increase in the number of simultaneously failed disks

(i.e., IRAD supports graceful degradation in the image quality with increase in the number of failed

disks).2

� Since the cause of the data loss is irrelevant to the recovery algorithm, the unscrambling algorithms

in LRJ and LRM can be adapted to mask packet losses due to network congestion as well.3

Thus, the IRAD architecture provides an integrated, scalable, end-to-end solution for failure recovery.

In case of a disk failure, a redundant array must: (1) perform online reconstruction and thereby provide

uninterrupted service to user requests, and (2) rebuild the failed disk onto a spare disk so that the array can

revert back to the normal operating mode. Whereas the LRJ and LRM algorithms can be used to achieve

the former objective in IRAD, rebuild can be accomplished either by restoring the failed disks from tertiary

storage (i.e., tape backups), or by employing parity-based techniques. To rebuild failed disks from tertiary

storage, the controller must allow a user to backup and restore each disk individually. Since rebuild of a

failed disk from tertiary storage can operate independently of other disks in the array, the rebuild operation

does not impose any additional load on the surviving disks. Alternatively, if parity information is used to

rebuild the contents of the failed disk, then on-line rebuild onto a spare disk can proceed simply by issuing

low-priority read requests to access media blocks from each of the surviving disks [15]. Note that, the array

controller still depends on the LRJ/LRM algorithms for online reconstruction of user requested images

while the parity information is used for online rebuild of the failed disk. The choice of a particular rebuild

technique is environment dependent: whereas rebuild from tertiary storage will suffice for predominantly

read-only environments, parity-based rebuild will be required for environments with frequent writes.

3 Exploiting Sequentiality of Video Retrieval

In the previous section, we presented failure techniques that approximately reconstruct data stored on

failed disks. While approximate reconstruction is adequate for most continuous media applications, certain

demanding continuous media applications require perfect reconstruction of data (e.g., a video clip showing

a cat scan of a brain tumor). For such applications, we present a failure recovery scheme that exploits

2

Observe that, to tolerate multiple disk failures, multiple copies of hu�man tables and motion vectors would have

to be maintained.

3

Several techniques have been proposed which scramble media streams prior to network transmission to enable

approximate reconstruction in case of packet losses. [10, 26]. The e�cacy of these techniques validates our claim.

15



the sequential nature of continuous media accesses to perfectly recover data stored on failed disks without

imposing a large overhead on the server.

3.1 Parity-based Reconstruction

Consider a multimedia server that employs a disk array for storing continuous media streams. To effectively

utilize the array bandwidth, the server interleaves (i.e., stripes) each media stream among disks in the array.

The unit of data interleaving, referred to as a media block or a stripe unit, denotes the maximum amount of

logically contiguous data that is stored on a single disk. In addition to a sequence of media blocks for each

video stream, to recover from disk failures, the server maintains parity blocks on the array. Parity blocks

are computed by an exclusive-or operation over all media blocks within the parity group.

To describe the fault-free operation, consider a scenario where the server is servicing n clients, each

retrieving a video stream (say S

1

; S

2

; :::; S

n

, respectively). Let R
i

denote the playback rate (expressed

in images/sec) of video stream S

i

; 1 � i � n. Due to the periodic nature of media playback, a

multimedia server services these clients by proceeding in rounds. During each round, the server retrieves

a fixed number of images for each client. Thus, if T denotes the duration of a round, then to ensure

continuous playback, the number of images of streams S
1

; S

2

; :::; S

n

retrieved during each round is given

by: f

i

= T � R

i

; 8i 2 [1; n]. To access f
1

; f

2

; :::; f

n

images, the server will be required to retrieve

k

1

; k

2

; :::; k

n

media blocks, respectively, of streams S
1

; S

2

; :::; S

n

;. If a media stream is encoded using a

variable bit rate (VBR) compression algorithm, then the sizes of images will vary. Hence, the mapping from

f

i

to k
i

may vary from one round to another. For media streams encoded using a constant bit rate (CBR)

compression algorithm, on the other hand, the mapping from f

i

to k

i

is fixed. Regardless of the actual

compression algorithm, during the fault-free state, a server only retrieves media blocks and skips over all

the parity blocks.

In the presence of a disk failure, when a client requests the retrieval of a block stored on the failed disk,

the server must access the parity and data blocks stored on the surviving disks to recover the lost information.

In the simplest case, the server retrieves blocks of the parity group to recover lost information, transmits the

set of requested blocks to the client site, and then discards the additional blocks. Although relatively simple

to implement, the transient increase in load on disks induced by such a scheme may yield service times (i.e.,

the total time spent in retrieving images during a round) that exceed T , resulting in playback discontinuities

at client sites.

Alternatively, consider a multimedia server that always computes parity over a sequence of (G � 1)

media blocks from the same video stream [32]. That is, all (G� 1) media blocks within a parity group are

successive blocks of the same video stream. In such a scenario, the server can exploit sequentiality of media

playback to minimize the increase in load due to a failure by using media blocks retrieved during playback

for failure recovery and vice-versa. Observe that the server can recover blocks stored on the failed disk

either in the round in which they are accessed, or at least one round prior to their access. These recovery

policies are referred to as lazy and eager failure recovery, respectively. In what follows, we present these

policies in detail and discuss their tradeoffs.

To describe the lazy failure recovery algorithm, consider a disk array with a parity group size of G.

Let the set of disks within a parity group be denoted as 1; 2; :::; G, and let us assume that, disk i(i � G)

fails in round r. In such a scenario, for each block accessed from the failed disk during round r, the server

will access an additional block from each of the surviving (G� 1) disks in the parity group. Then, due to

sequentiality of video playback, a subset of the (G�1) blocks (namely, blocks from disks (i+1) throughG)

accessed for recovering the lost block will be requested by the client within the next few rounds. The server
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Procedure OnlineParity

begin

Let R
j

denote the set of k
j

blocks to be retrieved for client j.

for every block b in set R
j

do

if b belongs to the same parity group as the blocks over which online parity p
j

has been computed then

p

j

= p

j

� b

else

p

j

= b f* new parity group starts with b *g

fi

end for

end.

Figure 7 : Procedure for computing online parity

can buffer these blocks and service requests for their access from the buffer. Consequently, an increase in

load on disks (i+1) throughG during round r due to a client will be followed by a corresponding reduction

in load due to that client in the next few rounds. Observe that, while blocks from disks (i + 1) through G

are reused for servicing retrieval requests, blocks from disks 1 through (i� 1) are not. Hence, these blocks

must be retrieved for reconstructing lost blocks and subsequently discarded. However, due to the sequential

nature of playback, the client would have accessed blocks on disk 1 through (i�1) in the past few rounds for

normal playback. Hence, the server can further reduce the overhead of failure recovery by maintaining an

exclusive-or of these blocks when the client accesses them for playback. The server can then use the result

of this exclusive-or computation for reconstructing the block on disk i, instead of retrieving these blocks

again from the array. We refer to the result of this exclusive-or computation as online parity. The server

can maintain online parity only in the event of a disk failure or even in the fault-free state. Since a disk

failure can not be anticipated in advance, maintaining online parity even in the fault free state minimizes

recovery overhead. On the other hand, since parity computations can be expensive, maintaining parity only

in the event of a disk failure and only for the parity group containing the failed disk significantly reduces

parity computation overheads. However, this approach yields a transient increase in the load on disks 1

through (i� 1) immediately after a disk failure, since additional blocks must be accessed from these disks

to reconstruct lost blocks. The exact algorithms for maintaining online parity and lazy failure recovery

are described in Figures 7 and 8, respectively. The lazy recovery algorithm presented in Figure 8 assumes

that online parity is maintained even in the fault-free state, and can be easily modified if online parity is

maintained only in presence of disk failures.

In the eager failure recovery algorithm, on the other hand, instead of recovering blocks stored on a

failed disk only when they are accessed, the multimedia server exploits the sequentiality of video playback

to prefetch data blocks so that blocks on the failed disk are recovered sufficiently prior to their access. To

precisely describe the recovery algorithm, let kmax

j

and k

min

j

, respectively, denote the maximum and the

minimum number of media blocks requested by client j in a round. Then the following theorem determines

the number of blocks that must be prefetched to reconstruct blocks on the failed disk prior to their access.

Theorem 2 By maintaining (k

max

j

+ G � 2) blocks per client in the buffer, the server can ensure the

reconstruction of lost media blocks at least one round prior to their access.
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Procedure LazyRecovery

begin

Let R
j

denote the set of k
j

blocks to be retrieved for client j and p
j

denote its online parity block.

for each client j do

if R
j

consists of a block on the failed disk i then

Let b
l

denote the lost block

Let Q
j

consist of data blocks from disks (i+ 1) through G for client j

Retrieve blocks R
j

� fb

l

g.

Retrieve blocks Q
j

�R

j

. f* Retrieve any remaining blocks of the parity group *g

Retrieve the parity block p

b

l

= p

j

� p� blocks of the parity group in Q
j

[ R

j

Buffer blocks in Q
j

�R

j

for future rounds.

else

Retrieve blocks in R
j

(do not retrieve blocks present in the buffer).

fi

Compute online parity p
j

over R
j

Schedule blocks of R
j

for transmission to client j.

end for

end.

Figure 8 : Lazy Failure Recovery Algorithm

Proof: To reconstruct a media block stored on the failed disk, all the blocks in its parity group must be

accessed. Thus, in the worst case, if kmax

j

blocks are requested by client j from the server during a round,

and if the last of these blocks is stored on the failed disk and none of the remaining (k

max

j

� 1) requested

blocks belong to its parity group, then the server will require (G� 1) additional blocks to recover the lost

block. Hence, if the server ensures that
�

(k

max

j

� 1) + (G� 1)

�

= (k

max

j

+ G � 2) blocks have been

prefetched into its buffer, then it can reconstruct any lost block at least one round prior to its access.

In the simplest case, regardless of the presence or absence of failures, a multimedia server can prefetch

(k

max

j

+ G � 2) blocks per client prior to initiating playback. In such a scenario, if a client requests the

retrieval of k
j

blocks in a round, then the server transmits these blocks from its buffer and retrieves the

next k
j

blocks from the array so that (kmax

j

+ G � 2) blocks are always in its buffer. By maintaining

(k

max

j

+G� 2) blocks per client, the server ensures that an entire parity group is retrieved and buffered at

least one round before any of its blocks are accessed. Hence, media blocks on the failed disk can always

be reconstructed prior to their access. The disadvantage of this approach is the increase in initiation latency

experienced by clients due to the prefetch operation. Alternatively, the server can maintain (k

max

j

+G� 2)

blocks per client only in the event of a disk failure. In this case, assuming that the ith disk (i � G) of the

parity group fails in round r, the server suspends transmission of media blocks to clients until (kmax

j

+G�2)

blocks are prefetched for each client. Observe that, if the server is lightly loaded, then the duration for

which transmission (and hence, the playback) is required to be suspended is relatively short. In the worst

case, however, the prefetch operation may take up to

�

k

max

j

+G�2

k

min

j

�

rounds. In addition to these blocks,

if the first of the requested blocks for a client in round r is stored on disk m of the parity group, and if

m � i, then the server must retrieve additional blocks from disks 1 to (m� 1) to reconstruct the lost block.
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Procedure EagerRecovery

begin

for each client j do

(1) Suspend transmission of blocks, and prefetch (kmax

j

+G� 2) media blocks

(2) If the first requested block in R
j

is on the mth disk of the parity group of the failed disk and m � i then

Retrieve additional media blocks from disks 1 though m� 1.

Retrieve the parity block and reconstruct block on disk i.

Discard blocks retrieved from disks 1 through m� 1.

end if.

(3) Resume transmission of media blocks to the user.

(4) If in a round, k
j

prefetched blocks are transmitted to the user then

Retrieve the next k
j

blocks from the disk array so that (kmax

j

+G� 2) blocks are always in the buffer.

If a requested block belongs to a failed disk then

Retrieve the corresponding parity block instead.

end if.

end if.

(5) Reconstruct lost blocks as soon as all remaining blocks within its parity group have been read into

the buffer.

end for.

end.

Figure 9 : Eager failure recovery algorithm

These additional blocks are discarded by the server after reconstructing the block on disk i. On resuming

transmission (and hence, playback), the server retrieves sufficient number of blocks in each round so as to

ensure that the (k

max

j

+ G � 2) blocks per client are always in buffer. Observe that this approach shifts

the latency from playback initiation time to the time when the server experiences a disk failure. Since disk

failures are infrequent events, most clients will not experience this latency in the common case. However, a

disadvantage of the approach is the temporary pause in playback that clients experience immediately after a

disk failure. The precise eager failure recovery algorithm is described in Figure 9. The algorithm presented

in Figure 9 assumes that media blocks are prefetched only in the event of a disk failure, and can be easily

modified if blocks are prefetched prior to initiating playback.

3.2 Failure Recovery Overheads

Whereas in standard RAID each media block within the parity group would be accessed twice in the worst

case, once for playback and once for reconstructing the lost block, in the lazy and eager schemes each

media block is accessed precisely once. Thus, the only additional load on the disks is due to the retrieval of

parity blocks, thereby considerably reducing the overhead of failure recovery. Recall that, the lazy scheme

causes a sequence of load fluctuations since an increase in load due a client (caused by accessing a block

on the failed disk) is followed by a reduction in load due to that client in the following rounds. Hence, the

fundamental difference between the lazy and the eager recovery algorithms is that the latter trades buffer

space to replace a sequence of load fluctuations possible in the former by a constant increase in the load.

Observe that, both the lazy and the eager recovery schemes make no assumptions about the array

architecture, and hence can be used with many different architectures. In what follows, we analyze the
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Table 1 : Overhead of the lazy/eager algorithms

Standard Array Array with lazy/

eager recovery

RAID level 4 Data Disks: 100 % increase Data Disks: No increase

Parity Disk: same load as the Parity Disk: same load as the

failed disk prior to fault failed disk prior to the fault

RAID level 5 G�1

G�1

= 100 % increase 1

G�1

Declustered parity G�1

C�1

1

C�1

Flat parity Data Disks: 100% increase Data Disks: No increase

Parity Disk: 1

C�(G�1)

Parity Disk: 1

C�(G�1)

overhead of these schemes for various architectures including RAID level 4, RAID level 5, declustered

parity, etc., and compare it with standard recovery techniques.

Assuming that the load on each disk is balanced prior to a failure, the recovery overhead for different

architectures is shown in Table 1. Since the only additional blocks that are retrieved by the lazy and

eager schemes are parity blocks, the data disks in a RAID level 4 array experience no increase in the

load. The parity disk, however, experiences a load equal to that of the failed disk prior to failure (since

every access to the failed disk causes an access on the parity disk). For RAID level 5 arrays, since parity

blocks are uniformly distributed among all disks in the parity group (see Fig 1(a)), the recovery overhead

is 1=(G � 1). This is a significant reduction over the 100% load increase seen by each disk in standard

RAID level 5 arrays. In declustered parity arrays, since parity blocks are uniformly distributed across the

(C � 1) surviving disks within the cluster, the recovery overhead is 1=(C � 1). Lastly, consider a uniform

flat parity placement scheme in which: (1) each cluster is partitioned into groups of (G � 1) disks (i.e.,

C = n � (G� 1); n = 1; 2; ::), and (2) each group of (G� 1) disk stores the data blocks of a parity group

with the parity block uniformly distributed among the remainingC� (G�1) disks within the cluster. In the

presence of a failure, while the (G� 1) disks storing data blocks see no increase in the load, the remaining

(C � (G � 1)) disks see a load increase due to retrieval of parity blocks. Thus, the overhead of failure

recovery on these disks is 1=(C � (G� 1)).

3.3 Discussion

Recently a scheme similar to the lazy recovery algorithm was proposed in [1]. In this scheme, on

experiencing a disk failure, the cluster with a failed disk switches to the degraded mode with requests

reading and buffering entire parity groups at a time. Thus, the entire cluster acts like a single logical disk. In

the lazy recovery algorithm, accessing a block on the failed disk i causes blocks from disk (i + 1) through

G to be retrieved. Thus, disks (i + 1) through G act as a single logical disk, and only blocks of the parity

group retrieved from these disks need to be buffered. Whereas both schemes have identical worst case buffer

requirements, the lazy scheme has a lower average case buffer requirement.

Recall that, both the lazy and the eager failure recovery algorithms require that all media blocks

contained within a parity group belong to the same video stream. However, most of the existing array

controllers provide the abstraction of a single large disk addressable by logical blocks numbers to the

operating system software. Thus, details such as the logical to physical block mapping, membership of a

parity group, etc., are implemented by the controller logic and are hidden from the operating system. Without
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Table 2 : Comparative evaluation of fault-tolerant schemes

multiple RAID-5 Declustered Declustered Parity IRAD

Parity (Standard) (Lazy/Eager)

Storage Overhead 1=C 1=G 1=G depends on N

Load Overhead (G� 1)=(G� 1) (G� 1)=(C � 1) 1=(C � 1) 0

Buffer (fault-free) nbk

max

nbk

max eager: nbkmax

nb

0

Nk

0max

lazy: nb(kmax

+ 1)

Buffer (fault) nb[I(k

max

+G� 1) nb[I(k

max

+G� 1) eager: nb(kmax

+G� 1) nb

0

Nk

0max

+(D � I)k

max

]=D +(D � I)k

max

]=D lazy: depends on kmin

MTTDL MTTF

2

D(C�1)MTTR

MTTF

2

D(C�1)MTTR

MTTF

2

D(C�1)MTTR

depends on the

rebuild algorithm

these details, a multimedia server can not determine the block numbers of data blocks constituting a parity

group, and hence can not control the membership of media blocks within a parity group. Consequently,

to implement our failure recovery algorithms, conventional array controllers must be suitably extended.

Specifically, if the controller can implement a function that takes a logical block number as its input and

returns a list of logical block numbers of all blocks which belong to its parity group, then a multimedia

server can exercise precise control over membership of blocks within a parity group.

Since a multimedia workload is dominated by read requests, the preceding discussion focussed on the

overhead of read requests and ignored write requests. We assume that standard techniques such as full-stripe

writes in which entire parity groups are written at a time will be used for the large sequential writes seen in

a multimedia workload. Regardless of the presence or absence of failures, in full-stripe writes, the server

computes the new parity information and writes it to the appropriate disk along with the data blocks in the

parity group. In case of a disk failure, the server either discards the block to be stored on the failed disk,

or writes it to a replacement disk. Since the array operation is unchanged in the presence of failures, these

full-stripe writes impose no extra overhead on the server as compared to the fault-free state.

4 Comparative Evaluation

A comparison of the schemes presented in this paper with standard RAID level 5 and declustered parity

arrays is shown in Table 2. The array architectures are compared with respect to their storage space overhead,

overhead imposed by to failure recovery, buffer space requirements, and mean time to data loss (MTTDL).

Storage Space Overhead

To compute the storage space required to maintain parity information, consider a disk array with a cluster

size ofC . Then, the storage space overhead of a RAID level 5 array is 1=C , while that of a declustered parity

array is 1=G. Since G < C , declustered parity arrays have a higher overhead as compared to RAID level 5

arrays. For the IRAD architecture, the storage space overhead is primarily due to the loss in compression

efficiency during image partitioning in the LRM and LRJ algorithms. The replication of motion vectors

adds to this overhead in the LRM algorithm. The overhead increases initially with increase in the degree of

image partitioning, and then becomes independent of the degree of image partitioning for large values of

N . Finally, if the IRAD architecture rebuilds failed disks using parity information rather than from tertiary

storage, then it incurs an additional overhead of 1=C .
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Failure Recovery Overhead

Recall from Section 1 that the recovery overhead due to read requests for RAID level 5 and declustered

parity arrays is (G � 1)=(G � 1) and (G � 1)=(C � 1), respectively. As shown in Section 3, if the lazy

and eager recovery algorithms are used, this overhead reduces to 1=(G � 1) and 1=(C � 1) for RAID

level 5 and declustered parity arrays, respectively. For the IRAD architecture, on the other hand, since the

array operation is unchanged even in the presence of a failure, there is no overhead due to failure recovery.

However, this is at the expense of a slightly higher load in the fault free state caused by the degradation in

compression efficiency due to image partitioning in LRJ and LRM.

Buffer Requirements

To compute the buffer overhead, let us assume that the load on each disk in the array is balanced in the

fault-free state. Let n denote the total number of clients accessing the disk array, and let b denote the media

block size. Since in the worst case, each client accesses kmax blocks in the fault-free state, the total buffer

requirement for RAID level 5 and declustered parity arrays is nbkmax. Assuming that the eager recovery

scheme prefetches media blocks only in the event of a failure, its fault-free buffer requirement is nbkmax.

Similarly, assuming that the lazy scheme maintains online parity even in the fault free state, it incurs a buffer

requirement of nb(kmax

+1). In the IRAD architecture, assuming that each client accesses k0max blocks of

size b0 from each of the N sub-streams during a round, the total buffer required is nb0Nk

0max (k0max and b0

can be distinct from those for parity-based arrays). While choosing b0 = b yields an array utilization that is

comparable to parity-based arrays, it increases the buffer space requirement. On the other hand, choosing

b

0

< b lowers the buffer required for IRAD architectures at the expense of a lower array utilization. Hence,

the block size must be chosen to balance these tradeoffs.

To compute the buffer requirement in the presence of disk failures, let us assume that I clusters

in the array have experienced a single disk failure (I � D=C). Further, assume for simplicity, that a

client accesses at most one failed disk in each round. For RAID level 5 and declustered parity arrays, in

the worst case, each client accessing a block on the failed disk would access (G � 1) additional blocks.

Since each disk is accessed by n=D clients and the array contains I failed disks, the total buffer required is

nb(k

max

+G�1)I=D+nbk

max

(D�I)=D. In the eager recovery scheme, the server buffers (kmax

+G�2)

blocks per client and requires an additional block per client to store the reconstructed block. Hence, the total

buffer required is nb(kmax

+G� 1). The buffer requirement for lazy recovery is dictated by the following

lemma:

Lemma 1 The worst case buffer requirement for the lazy failure recovery algorithm is

nb(k

max

+G� 1)I=D + nbk

max

(D � I)=D if (G� 2) � k

min

((G� 2)(j + 1) + k

max

� k

min

j(j � 1)=2)Inb=D + (n� (j + 1)In=D)bk

max otherwise

where kmin denotes the minimum number of blocks accessed by a client in a round,kmin

� 1, and j = b

G�2

k

min

c.

Proof: In the lazy scheme, when a client requests a block on the failed disk i, the server accesses and

buffers blocks stored on disks (i + 1) through G of the parity group. Then in the worst case, the server

will buffer (G� 2) data blocks per client and these blocks will be used to service requests in the following

(

G�2

k

min

) rounds. If (G� 2) � k

min, then all the (G� 2) buffered blocks would be accessed by the client in
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the following round. In such a scenario, the total buffer required would be the same as that in a RAID 5

array. That is, total buffer required is nb(kmax

+G� 1)I=D + nbk

max

(D � I)=D.

On the other hand, if (G � 2) > k

min, then in the worst case, the server uses the buffered blocks to

service client requests for up to j = b

G�2

k

min

c rounds after the client has accessed a block on the failed disk.

To compute the buffer requirement in this scenario, consider the set of clients who have accessed a failed

disk in the current round or the any of previous j rounds. The buffer required for these clients is

[(k

max

+G� 2) + (G� 2) + (G� 2� k

min

) + (G� 2� 2k

min

) � � � + (G� 2� (j � 1)k

min

)]Inb=D

Simplifying, this yields

[k

max

+ (G� 2)(j + 1)� k

min

(1 + 2 + � � � + (j � 1))]Inb=D

or

[k

max

+ (G� 2)(j + 1)� k

min

j(j � 1)=2]Inb=D

The buffer required for the remaining clients is [n� (j +1)In=D]bk

max. Thus, when kmin

< (G� 2), the

total buffer required is

[k

max

+ (G� 2)(j + 1)� k

min

j(j � 1)=2]Inb=D + [n� (j + 1)In=D]bk

max

(3)

Lastly, for the IRAD architecture, since no additional blocks are accessed by a client in the presence of

failures, there is no increase in the buffer requirement.

Mean Time To Data Loss

RAID level 5, declustered parity, and the lazy/eager recovery based disk arrays experience data loss if a

disk within a cluster fails while another disk within that cluster is being rebuilt. The mean time to data loss

(MTTDL) for these architectures is given as

MTTDL =

MTTF

2

D(C � 1)MTTR

(4)

where MTTF is the mean time to failure for an individual disk, and MTTR is the mean time to rebuild a

failed disk [7]. To illustrate, consider an array of 32 disks and a cluster size of 8. If the MTTR of a disk is

2 hours and its MTTF is 300,000 hours, then the mean time to data loss for the array is about 23,000 years.

Since the MTTR of a disk is proportional to the load on the array during the online rebuild process, and

since the lazy/eager recovery schemes impose a lower recovery overhead on the array, they have a higher

MTTDL than standard RAID level 5 or declustered parity arrays.

The MTTDL for the IRAD architecture, on the other hand, depends on the rebuild algorithm used

by the array. If parity information is used to rebuild failed disks, then the MTTDL is given by Equation

4. Since a disk failure imposes no additional load on the surviving disks, the IRAD architecture has a

lower MTTR for a failed disk, and hence, a higher MTTDL as compared to RAID level 5 or declustered

parity architectures. For IRAD arrays that rebuild failed disks from tertiary storage, it is not meaningful

to compute MTTDL since lost data can always be recovered from backup tapes. Hence, we define a new

metric to compute the resilience of the array to failures. The mean time to shutdown (MTTS) for the IRAD

architecture is defined as the average time before the array is taken offline for repairs. Since the architecture
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Figure 10 : Markov model for determining MTTS. State j represents j failed disks in a cluster. With j

failed disks in a cluster, the failure rate is (N � j)f , and the repair rate is r. The system is taken offline

when it reaches state i.

supports graceful degradation in the image quality in the presence of multiple failures, the array must be

taken offline when i disks fail within any group of N disks and the resulting image quality is too poor to be

acceptable. Let f denote the failure rate of a single disk (i.e., f = 1=MTTF ), and let r denote the rate of

repair of a disk from tertiary storage (i.e., r = 1=MTTR). Then the IRAD architecture that tolerates i� 1

disk failures per cluster can be modeled as an i + 1 state Markov chain as shown in Figure 10. The mean

time to shutdown can be either computed analytically using the theory of Markov chains [30], or computed

numerically using tools such as SHARPE [27]. In the simplest case, where the array can tolerate two

failures per cluster (i.e., i = 3), MTTS = MTTF

3

=[D(C � 1)(C � 2)MTTR

2

]. Thus, when D = 32,

N = C = 8, and MTTR = 3 hours, the MTTS is over 250 million years.

To summarize, the lazy/eager recovery based arrays and the IRAD architecture have a storage space

overhead and MTTDL that is comparable to conventional arrays. However, they have a lower failure recovery

overhead and a higher buffer requirement as compared to conventional arrays. Thus, our approaches trade

buffer space for lower recovery overhead. Whereas lazy/eager recovery scheme may be chosen for perfect

recovery of images, the IRAD architecture may be chosen for its advantages such as tolerance to multiple

disk failures, resilience to network losses, etc. The choice of a particular recovery scheme depends on the

application requirements.

5 Experimental Evaluation

5.1 LRJ/LRM algorithms and the IRAD Architecture

To evaluate the efficacy of our loss-resilient algorithms, as well as the IRAD architecture, we have developed

prototype codecs for LRJ and LRM. We carried out several experiments using these prototype codecs. In

the LRJ algorithm, when the information contained in a sub-image is not available, the quality of the

reconstructed image is directly dependent on the amount of original image data available for reconstruction.

Hence, increasing the value of the degree of image partitioning,N , improves the quality of the reconstructed

images. However, with increase in N , the efficiency of the compression algorithm deteriorates. Figure 11

illustrates the visual quality of the reconstructed image for various values of N .

To quantitatively capture the improvement in the quality of the reconstructed images with increase in

N , we have also computed the Peak Signal to Noise Ratio (PSNR) for all the images. For an M �N image

of resolution r bits/pixel, if p(x; y) and p0(x; y) denote the pixel values at location (x; y) in the original and

the reconstructed images, respectively, then the PSNR value can be defined as:

PSNR = 10 � log

 

(2

r

� 1)

2

�

2

!

dB
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Figure 11 : Reconstructed image for N = 4; 8; 12; 16 with a single disk failure

where

� =

M

X

x=1

N

X

y=1

(p(x; y)� p

0

(x; y))

2

Figure 12(a) depict the variation in the PSNR value of the recovered image with increase in N for

the LRJ algorithm. Figure 12(b), on the other hand, illustrates the degradation in compression efficiency

(measured in terms of percentage increase in compressed image size) with increase in N . In practice, a

server can choose an appropriate value of N depending upon the desired quality of the reconstructed image

and the maximum tolerable degradation in compression efficiency. Our experiments indicate that N = 8

yields acceptable image quality, and results in an increase in compressed image size by about 6%.

Next, we conducted experiments to determine the efficacy of the LRM algorithm. The characteristics

of the MPEG streams used in our experiments are shown in Table 4. Figure 13(a) depicts the picture quality

(i.e., PSNR) for LRM streams obtained by varying the degree of image partitioning N , while Figure 13(b)

shows the loss in compression efficiency due to image partitioning for these streams. Table 3 tabulates
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Figure 12 : Variation of PSNR and compression efficiency with number of sub-images in LRJ
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Frasier 5.3%

Simpsons 3.35 %

Hockey 4.8%

Animation 8.08%

Space 2.39%

Table 3 : Overhead of Motion Vector Replication. The table shows the percentage increase in size of the

original MPEG streams due to motion vector replication.

Table 4 : Characteristics of MPEG traces

File Encoding Pattern Length Average Motion

(frames) bit rate (Mb/s)

Frasier MPEG I(BBP )

3

BB 6000 1.498 Moderate

Ice Hockey MPEG I(BBP )

4

BB 750 1.53 High

Simpsons MPEG I(BBP )

2

BB 720 0.8 High

Animation MPEG I(B

9

P )

3

B

9 1200 0.7 Moderate

Space MPEG IBBPBB 550 0.61 Low

the overhead of maintaining an additional copy of the motion vectors. The overhead of replicating motion

vectors varied from 2% to 8%. The overhead of 8% was obtained for the animation sequence which had

an abnormally large number of B frames as compared to I and P frames (see Table 4), and hence a larger

number of motion vectors. However, for all other streams, the overhead was much lower with an average

overhead of 4%. We observed reasonable recovery for 8 � N � 10, with an 8% loss in compression

efficiency. Thus, the total storage space overhead was around 12%.

Finally, to demonstrate that the IRAD architecture can tolerate multiple disk failures, we carried out

several experiments. Figure 14 illustrates that the quality of the reconstructed image gradually deteriorates

with increase in number of failed disks for the LRJ algorithm. It also demonstrates that the simple methods

employed by the LRJ algorithm to extrapolate DC and AC coefficient values significantly improve the

quality of the reconstructed image.

5.2 Parity-Based Failure Recovery

To evaluate the effectiveness of the lazy and the eager recovery schemes, we have developed an event-

driven disk array simulator called diskSim. We carried out extensive trace-driven simulations to evaluate

these failure recovery schemes. The simulation environment consisted of a disk array with 32 disks. The

characteristics of each disk is shown in Table 5. The conventional SCAN disk scheduling algorithm is

employed for retrieving media blocks from a disk during each round. Each VBR video stream stored on

the array is assumed to be encoded using the MPEG compression algorithm. We used the MPEG streams

shown in Table 4 for our experiments and simulations. Media blocks of a stream are assumed to be 64kB

in size and are interleaved across the disks in array. The placement strategy ensures that all data blocks in
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Disk capacity 2 GBytes

Number of disks in the array 32

Bytes per sector 512 KB

Sector per track 99

Tracks per cylinder 21

Cylinders per disk 2627

Minimum seek time 1.7 ms

Maximum seek time 22.5 ms

Maximum rotational latency 11.1 ms

Table 5 : Disk Parameters of Seagate-Elite3 disk

a parity group belong to the same media stream. The playback rate of each stream is assumed to be 30

frames/sec.

We compared the lazy and eager recovery schemes to the standard recovery scheme in a RAID level

5 array. Figure 15(a) depicts the total number of blocks retrieved by the entire array during each round

normalized by the number of disks in the array. Recall from Section 3, that the lazy and the eager schemes

impose a recovery overhead of 1=(G� 1) on a RAID level 5 array. As illustrated by the figure, for G = 2

or mirroring, all schemes show a 100% increase in load, which is consistent with the analytical result. For

larger parity group sizes, the recovery overhead decreases with increase inG for the lazy and eager recovery

schemes. On the other hand, for standard RAID level 5, the increase in load in smaller than 100% for

small values of G, (G > 2). This is because, the number of blocks accessed by each client in a round

approximately equals the parity group size. Since data blocks of the parity group requested for playback

need not be accessed again for failure recovery, the number of additional blocks that must be accessed to

reconstruct the lost block is smaller than the worst case value of G� 1. However, as the parity group size

increases, the number of additional blocks that must be accessed to reconstruct the lost block increases and

hence, the recovery overhead approaches 100%.

Figure 15(b) shows the total buffer requirements of different recovery schemes. The eager recovery

scheme has the highest buffer requirement with the buffer increasing linearly with the parity group size.

For small values of the parity group size (i.e., when G � 2 � k

min), the lazy recovery approach has the

same buffer requirements as the RAID level 5 array, consistent with the analytical result. However, as the

parity group size increases, (G � 2) becomes greater than kmin, and hence, the buffer requirements of the

lazy scheme become larger than that for RAID level 5. Thus, our simulation results validate the analytical

results derived in Section 4. They also demonstrate that the lazy/eager recovery schemes trade buffer space

for lower recovery overhead and hence, higher array utilization.

6 Concluding Remarks

In this paper, we have demonstrated the limitations of the conventional parity-based failure recovery algo-

rithms for multimedia servers, and have presented two disk failure recovery methods that utilize the inherent

characteristics of video streams to ensure that the user-invoked on-the-fly failure recovery process does not
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Figure 15 : Disk recovery and buffer space overhead for lazy, eager and standard RAID-5

impose any significant load on the disk array. Whereas the first approach utilizes the inherent redundancy

in video streams (rather than error-correcting codes) to recover from disk failures in multimedia servers, the

second exploits the sequential nature of playback of video streams to reduce the overhead of the recovery

process,. We have demonstrated the efficacy of the former technique in the context of JPEG and MPEG

compression algorithms. We have also shown that the latter technique significantly reduces the failure

recovery overhead as compared to standard RAID arrays. The IRAD architecture that we have presented

is an inherently distributed, scalable, end-to-end solution to failure recovery and supports supports graceful

degradation in the quality of the reconstructed images with increase in the number of disk failures. These

failure recovery algorithms are being incorporated into an integrated multimedia file server being built at

the Distributed Multimedia Computing Laboratory, UT Austin.
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