
Handling Client Mobility and Intermittent Connectivity

in Mobile Web Accesses?

Purushottam Kulkarni, Prashant Shenoy and Krithi Ramamritham??

Department of Computer Science, University of Massachusetts, Amherst

fpurukulk,shenoy,krithig@cs.umass.edu

Abstract. Wireless devices are being increasingly used to access data on the

web. Since intermittent connectivity and client mobility are inherent in such envi-

ronments, in this paper, we examine the impact of these factors on coherent dis-

semination of dynamic web data to wireless devices. We introduce the notion of

eventual–delta consistency, and in the context of push and pull–based dissemina-

tion propose (i) buffering techniques at the proxy to mask the effects of client dis-

connections and (ii) application–level handoff algorithms to handle client mobil-

ity. Our experimental evaluation demonstrates that push is better suited to handle

client disconnections due to its lower message overhead and better fidelity, while

pull is better suited to handle client mobility due to its lower handoff overheads.

1 Introduction

1.1 Motivation

Recent advances in computing and networking technologies have led to a proliferation

of mobile devices with wireless networking capabilities. Like traditional wired hosts,

wireless mobile devices are frequently used to access data on the web. These devices

differ significantly from their wired counterparts with respect to their capabilities and

characteristics—(i) mobile clients can move from one location to another, while the lo-

cation is fixed for wired hosts and (ii) disconnections and reconnections are frequent

in mobile wireless environments, while network failures are an exception in the wired

domain. A concurrent trend is the increasing use of dynamic data in today’s web. Un-

like static web pages that change infrequently, dynamic web data is time–varying and

changes frequently (once every few seconds or minutes). In this paper, we address the

challenges arising from the intersection of these two trends, namely, the access of dy-

namic web data using networked mobile wireless devices.

1.2 Problem Formulation and Research Contributions

Consider a mobile client that accesses dynamic data items over a wireless network (see

Figure 1(a)). Like in many wired environments, we assume that client web requests are

sent to a proxy. The proxy and the server are assumed to communicate over a wired

network, while the proxy and the client communicate over a wireless network via a

base station(access point); the latter network can be either be a wireless LAN such as

802.11b or a wireless WAN such as a GSM data network. Each base station in the

wireless network is assumed to be associated with a proxy.

?

This research was supported n part by NSF grants CCR-0098060, EIA-0080119 and CCR-0219520.
??

Also with the Indian Institute of Technology Bombay, India.

Intermittent connectivity and client mobility are common in such wireless environ-

ments; we discuss each issue in turn. We assume an environment where mobile clients

can get disconnected at any time—disconnections occur primarily due to poor network

coverage at a particular location or due to the mobile device powering down to save en-

ergy. Since the proxy and the server are unreachable during a disconnection, dynamic

data items cached at the client can not be refreshed and may become stale. Conse-

quently, to prevent a violation of coherency guarantees, client disconnections should be

detected in a timely fashion so that preventive measures can be initiated. Observe that,

since the proxy and the server are on a wired network, the proxy can continue to receive

updates from the server during a disconnection (but can not propagate these updates

to the client). Hence, data cached at a proxy continues to be coherent even during a

disconnection—an observation that can be exploited for efficient resynchronization of

the client cache upon reconnection. Thus, coherency maintenance in the presence of

intermittent connectivity requires: (i) techniques for timely detection of client discon-

nections and reconnections, and (ii) techniques for efficient resynchronization of cache

state at the client upon reconnection.

A second consideration in wireless environments is client mobility. Since a mobile

client can move locations, the proxy may decide to hand over responsibility for servic-

ing the client to another proxy in the client’s vicinity. Such a handoff is desirable since

a nearby proxy can reduce network overheads and provide better latency to client re-

quests; the handoff involves a transfer of client–specific cache state from the initiator to

the recipient proxy. The design of such application–level handoff mechanisms involves

two research issues: (i) the proxy needs to decide when to initiate the handoff and (ii)

how to perform a handoff, the steps involved in such a procedure. These design deci-

sions have implications on the overheads imposed by handoffs and the latency seen by

user requests. For instance, the handoff process should be seamless to end-clients—the

client should not miss any updates to cached data due to the handoff and all temporal

coherency guarantees should be preserved with minimal overheads.

Thus, in the context of intermittent connectivity and client mobility we make three

contributions in this paper. First, we propose coherency semantics appropriate for dy-

namic data access in mobile environments. We then consider two canonical techniques

for dynamic data dissemination—push and pull—and show how to adapt these tech-

niques to (i) reduce the overheads of coherency maintenance in the presence of client

mobility and (ii) provide temporal coherency guarantees even in the presence of inter-

mittent connectivity.

2 Handling intermittent connectivity in mobile environments

2.1 Coherency semantics

Due to the time–varying nature of dynamic data, cached versions of data items need

to be temporally coherent with the data source. To ensure this property, we define a

coherency semantics called eventual–delta consistency (�
e

) for mobile environments.

�

e

semantics provide stricter guarantees when a mobile client is connected and weaken

the guarantees upon a disconnection. Formally, �
e

consistency is defined as follows

�

e

consistency)

�

jS

t

� C

t

j � � if connected

C

t

; S

t

if disconnected
(1)

���
���
���
���

������

server

server client

client

proxy

proxy
push push

pull pull

���
���
���
���

���
���
���
���
���

���
���
���
���
���

wireless
base station

server

wired network

proxy

mobile host

PDA

cache

cache

proxy 2proxy 1

client

1. initiate handoff
2. ack

3. client state

4. switch to
 proxy 2

5. subsequent
 requests

(a) System model (b) Handoff mechanism

Fig. 1. System model and mechanisms for intermittent connectivity and client mobility.

where C
t

and S

t

denote the state of a data item d at the client and the server, respec-

tively, at time t, � denotes the desired coherency bound, and C
t

; S

t

indicates that C
t

will eventually catch up with S
t

on reconnection.

Coherency mechanisms that implement�
e

consistency can be buffered or unbuffered.

In the unbuffered scenario, each new update from the server overwrites the previously

cached version—the proxy cache only maintains the version corresponding to the most

recently received update. In the buffered scenario, the proxy buffers recent updates from

the server that are yet to be propagated to the client. Thus, updates not yet seen by the

client can be buffered at the proxy and delivered next time the client refreshes its cache.

2.2 Maintaining�
e

consistency using Push and Pull

There are two possible techniques to implement �
e

consistency — push and pull. In

the push approach, cache coherency is maintained by pushing updates to dynamic data

items from the server to the proxy and from proxy to the clients. In the pull approach,

the onus is on the proxy to poll the server for updates and on the client to poll the proxy

to fetch the updates.

We assume that a client registers each data item of interest with the proxy and spec-

ifies a coherency tolerance of � for each item. In the push approach, the proxy in turn

registers these data items with the corresponding server along with the corresponding

coherency tolerances. The server then tracks changes to each such data item and pushes

all updates that exceed the tolerance � to the proxy. The proxy in turn pushes these

updates to the client. In the event the client is disconnected, the updates are buffered

and propagated to the client upon reconnection. The proxy uses heartbeat messages

and client requests as implicit heartbeats to detect client disconnections and reconnec-

tions [3]. In the pull approach, the proxy periodically polls the server to fetch updates.

To meet client–specified coherency guarantees the proxy should poll the server at a

minimum rate of �. The time between successive refreshes, time-to-refresh(TTR), for

each data item can be statically or dynamically determined. The TTR value has an im-

pact on the fidelity of data at the proxy and the number of polls. The proxy buffers all

the updates fetched from the server and on a client poll delivers those that are new since

the previous poll. Observe that in the push approach, both the proxy and the server are

stateful, whereas in the pull approach only the proxy is stateful.

1. P
1

! P

2

: initiating handoff for C
2. P

2

! P

1

: ACK
3. P

1

! P

2

: C needs f< d

1

;�

1

; S(d

1

) >; : : :g

4. P
2

! P

1

: ACK
5. P

1

! S: Send updates for object in C to P
2

6. S ! P

1

: ACK
7. if C is connected

i. P
1

! C: Switch to P
2

ii. C ! P

1

: ACK
else if C is disconnected

Update record of handoff for C at P
1

8. P
1

! P

2

: Take-over client C f< d

1

; S(d

1

) >; : : :g

9. P
2

! P

1

: ACK
10. P

1

! S: Update state of objects in C transferred from P

1

11. S ! P

1

: ACK

1. P
1

! P

2

: initiating handoff for C
2. P

2

! P

1

: ACK
3. P

1

! P

2

: C needs f< d

1

; ttr

1

; S(d

1

) >; : : :g

4. P
2

! P

1

: ACK
5. ifC is connected

i. P
1

! C: Switch to P
2

ii. C ! P

1

: ACK
else if C is disconnected

Update record of handoff for C at P
1

6. P
1

! P

2

: Take-over client C f< d

1

; S(d

1

) >; : : :g

7. P
2

! P

1

: ACK

(a) Handoff algorithm for push (b) Handoff algorithm for pull

Fig. 2. Handoff algorithms

3 Handling client mobility

As a mobile client moves from one location to another, it switches between base-stations

to maintain connectivity. As explained earlier, each mobile client uses a proxy to request

web content and it is possible for a mobile client to use the same proxy to service its re-

quests even when it moves locations (since it can always communicate with this proxy

so long it remains connected). However, other proxies may be more advantageously

located with respect to the new client location. In such a scenario, having the mobile

client use a nearby proxy to service its requests may result in improved response times

and lower network overhead. To enable such a transition, the proxy needs to hand over

responsibility for servicing client requests to the new proxy and also transfer client–

specific state to the new proxy. The important steps of such a procedure are: (i) initi-

ating a handoff, (ii) transferring client–state and (iii) committing the handoff (refer to

Figure 1(b) and see [3] for details).

Several issues arise in the design of such application–level handoff mechanisms.

First, the proxy needs to be aware of the client’s physical location so that it can deter-

mine whether a handoff is necessary. A second issue is how to ensure that the handoff

is seamless and transparent to the end–client. A third issue in the design of handoff

algorithms is when and how client–specific state information is transferred from the

initiator proxy to the recipient proxy. Depending on the exact mechanisms, following

types of handoffs are possible: (i) Optimistic versus pessimistic: Objects are transferred

lazily in pessimistic handoffs, while they are transferred in an eager fashion in op-

timistic handoffs and (ii) Complete versus partial: In complete handoffs, information

about all objects accessed by the client is transferred, while in partial handoffs the recip-

ient proxy transfers information only about a fraction of the objects. Figures 2(a) and

2(b) are handoff algorithms for push–based and pull–based mechanisms respectively,

detailed explanations of the two algorithms can be found in [3].

4 Experimental Evaluation

We evaluate the efficacy of our approaches using simulations. We use a Fixed-path mo-

bility model [3] to simulate client mobility and an ON–OFF process to simulate client

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

P
er

ce
nt

ag
e

no
rm

al
iz

ed
 lo

st
 u

ni
ts

Number of buffers associated with each object

Effect of number of buffers for each object

discon time=250 secs
discon time=500 secs

discon time=1000 secs

0

20000

40000

60000

80000

100000

120000

140000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of objects in handoff

Effect varying fraction of objects per handoff

saved forwards

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of objects in handoff

Effect varying fraction of objects per handoff

objects in handoff
objects present at recipient

(a) Buffers per object (b) Saved forwards (c) Objects in handoff

Fig. 3. Effect of intermittent connectivity and client mobility in push–based data dissemination.

disconnections and reconnections. The simulation environment consists of a number

of cells and mobile clients that use the above processes to simulate mobility and in-

termittent connectivity during web accesses. The workload used for our experiments

consisted of the publicly available proxy DEC trace and a synthetic trace (see [3] for

details). Updates to objects at the server are simulated by an update process.

To study the effect of intermittent connectivity of clients, we varied three different

parameters, one at a time: the maximum disconnection time of clients, the size of the

per–object circular buffer and the average time between updates of mutable objects at

the server. As the dependent variable, we measured the percentage of normalized lost

units. Figure 3(a) shows the impact of varying size of the circular buffer associated with

each object on the normalized lost units in a push–based approach. We see that, for a

given disconnection time, the loss curve has a “knee” beyond which the loss percentage

is small. Choosing a buffer size that lies beyond the knee ensures that the proxy can

effectively mask the effect of a disconnection (by delivering all updates received during

such periods). In general, we find that a small number of buffers (15–20) seem to be

sufficient to handle disconnections as large as 15 minutes. As few as 5 buffers can

reduce the loss rate from 33% to 2.8% for disconnections of up to 500 seconds.

Figure 3(b) shows the benefit of using application–level handoffs to handle client

mobility. The measured metric saved–forwards is the number of requests served from

the proxy as a result of previous handoffs. Greater the fraction of client–specific state

transferred, larger are the savings at an increased message overhead (see Figure 3(c)).

Next we compare the push and pull approaches. Figure 4(a) plots fidelity of data for

push and pull in presence of disconnections. As expected, the push–based and the pull

with static TTR approaches yield perfect fidelity. Pull with dynamic TTR, which dy-

namically adjusts TTR values based on observed rate of change of object yields 83:9%–

91:7% fidelity. Figure 4(b) compares the average message overhead per handoff in cases

of push and pull. We see that pull has lower handoff overhead than push regardless of

the fraction of client–state transferred. A detailed experimental evaluation of our tech-

niques is presented in [3].

0

10

20

30

40

50

60

70

80

90

100

0.5 1 2 4 8 10 15 20 60 120

P
er

ce
nt

ag
e

F
id

el
ity

Average interval between updates for each object (min)

Effect of varying update rate on fidelity with Dynamic TTR

discontime=500s

Fraction of
objects in handoff Pull Push

0.1 5.34 7.14
0.2 9.25 11.02
0.3 14.35 16
0.4 20.65 22.5
0.5 28.82 31.15
0.6 40 44.15
0.7 57.14 64.43
0.8 87.8 102.94
0.9 174 215.64
1 1323.75 2057.85

(a) Fidelity of objects at clients (b) Handoff overhead

Fig. 4. Comparison of push and pull based dissemination approaches.

5 Related work

File systems such as CODA [2] and distributed systems like Bayou [1] have investigated

disconnected operations for mobile clients, techniques for hoarding files and maintain-

ing consistency in weakly connected systems. Several other techniques for maintaining

coherency of data in disconnected environments and disseminating data using broad-

casts exist and we compare them in [3]. While the previous efforts are for disseminating

static web data and for reconciling changes at clients with other hosts on reconnection,

our solution is better suited for dynamic data that changes frequently and disseminating

data from servers to mobile read–only clients.

6 Conclusions

In this paper, we studied the impact of client mobility and intermittent connectivity on

disseminating dynamic web data to mobile hosts. We introduced the notion of eventual–

delta consistency and in the context of push–based and pull–based dissemination pro-

posed: (i) proxy–based buffering techniques to mask the effects of client disconnections

and (ii) application–level handoff algorithms to handle client mobility. As part of on-

going work, we are implementing these techniques in a prototype proxy for mobile

environments.

References

1. W. K. Edwards, E. D. Mynatt, K. Petersen, M. Spreitzer, D. B. Terry, and M. Theimer. De-

signing and Implementing Asynchronous Collaborative Applications with Bayou. In ACM

Symposium on User Interface Software and Technology, pages 119–128, 1997.

2. J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. In

Thirteenth Symposium on Operating Systems Principles, volume 25, pages 213–225, 1991.

3. P. Kulkarni, P. Shenoy, and K. Ramaritham. Handling Client Mobility and Intermittent Con-

nectivity in Mobile Web Access. Technical Report TR02–35, University of Massachusetts,

Amherst, 2002.

