
An Observation­based Approach Towards Self­managing Web Servers

Prashant Pradhan, Renu Tewari, Sambit Sahu Abhishek Chandra, Prashant Shenoy

Networking Software and Services Department of Computer Science

IBM T. J. Watson Research Center University of Massachusetts

Hawthorne, NY 10532 Amherst, MA 01003

fppradhan, tewarir, ssahug@us.ibm.com fabhishek, shenoyg@cs.umass.edu

Abstract— The web server architectures that provide perfor-
mance isolation, service differentiation, and QoS guarantees rely
on external administrators to set the right parameter values for
the desired performance. Due to the complexity of handling vary-
ing workloads and bottleneck resources, configuring such param-
eters optimally becomes a challenge. In this paper we describe an
observation-based approach for self-managing web servers that
can adapt to changing workloads while maintaining the QoS re-
quirements of different classes. In this approach, the system state
is monitored continuously and parameter values of various sys-
tem resources—primarily the accept queue and the CPU—are ad-
justed to maintain the system-wide QoS goals. We implement our
techniques using the Apache web server and the Linux operating
system. We first demonstrate the need to manage different re-
sources in the system depending on the workload characteristics.
We then experimentally demonstrate that our observation-based
system can adapt to workload changes by dynamically adjusting
the resource shares in order to maintain the QoS goals.

I. INTRODUCTION

A. Motivation

Current web applications have evolved from simple file

browsing to complex tools for commercial transactions, on-

line shopping, information gathering and personalized service.

To accommodate this diversity, web servers have become com-

plex software systems performing a variety of tasks from simple

HTTP protocol processing to dynamic page assembly and SSL

processing. With the advent of web hosting services that require

performance isolation and the trend towards service differenti-

ation, the server complexity has further increased as it needs

to interact with the operating system mechanisms for resource

management.

Numerous mechanisms for service differentiation and per-

formance isolation have been proposed in the literature. Such

mechanisms for web servers include QoS-aware extensions

for admission control[6], SYN policing and request classifica-

tion[14], accept queue scheduling [2], and CPU scheduling [3].

These mechanisms enable a web server to differentiate between

requests from different classes and provide class-specific guar-

antees on performance (for instance, by providing preferential

treatment to users who are purchasing items at an e-commerce

site over users who are merely browsing). One limitation of

This research was carried out when Abhishek Chandra was a summer intern
at IBM T.J. Watson.

these QoS mechanisms is that they rely on an external admin-

istrator to correctly configure various parameter values and set

policies on a system-wide basis. Doing so not only requires

a knowledge of the expected workload and the bottleneck re-

source but also a good understanding of the performance be-

havior for any change in a parameter’s value. Furthermore,

past studies have made contradictory claims about which re-

sources become the bottleneck. For instance, one recent study

has claimed that the (socket) accept queue is the bottleneck

resource in web servers [2], while another has claimed that

scheduling of requests on the CPU is the determining factor

in web server performance [3]. Thus, it is not evident a priori

as to which subset of QoS mechanisms should be employed by

a web server and under what operating regions.
The increasing complexity of the web server architecture, the

dynamic nature of web workloads, and the interactions between

various QoS mechanisms makes the task of configuring and

tuning modern web servers exceedingly complex. To address

this problem, in this paper, we develop an observation-based

adaptive architecture to make web servers self-managing. By

self-managing, we mean mechanisms to automate the tasks of

configuring and tuning the resource management parameters so

as to maintain the QoS requirements of the different service

classes.

B. Research Contributions

This paper focuses on the architecture of a self-managing

web server that supports multiple QoS classes—a scenario

where multiple virtual servers run on a single physical server

or where certain classes of customers are given preferential

service. Assuming such an architecture, we make three key

contributions in this paper. (1) We conduct an experimental

study using the Apache web server to identify bottleneck re-

sources for different web workloads; our study illustrates how

the bottleneck resource can vary depending on the nature of

the workload and the operating region. (2) Based on the work-

loads in our study, we identify a small subset of resource con-

trol mechanisms—the incoming request queue scheduler and

the CPU share-based scheduler— that are likely to provide the

most benefits in countering the performance degradation. (3)

We then present an observation-based technique to automate the

tasks of configuring and tuning of the parameters of these OS

mechanisms. A key feature of this technique is that it can han-

dle multiple OS resources in tandem. Our architecture consists



of techniques to monitor the workload and to adapt the server

configuration based on the observed workload. The adaptation

system can adjust to: (i) a change in the request load, (ii) the

QoS requirements of the classes, (iii) the workload behavior

and (iv) the system capacity. Since the system dynamically

monitors to adjust the parameters, it makes no underlying as-

sumption of the workload characteristics and the parameter be-

haviors (and hence, can handle non-linear operating regions).
We implement our techniques into the Apache web server on

the Linux operating system and demonstrate its efficacy using

an experimental evaluation. Our results show that we can adjust

dynamically to a change in workload, a change in response time

goal and a change in the type of workload.
The rest of this paper is structured as follows. Section II

presents our experimental study to determine the bottlenecks in

the Apache request path. Section III discusses the architecture

and kernel mechanisms used to support multiple classes of web

requests. Section IV presents our framework to configure and

tune the web server. Section V presents the results of our ex-

perimental evaluation. Section VI discusses related work, and

finally, Section VII present our conclusions.

II. BOTTLENECKS IN WEB REQUEST PROCESSING

In this section, we examine the bottlenecks encountered in

the processing of web requests. We use Apache as a represen-

tative example of a web server and subject it to a variety of

different workloads. For each workload, we determine the bot-

tlenecks in the request path at different operating regions. In

what follows, we first present a brief overview of the software

architecture employed by Apache before presenting our exper-

imental results.
Apache employs a process-based software architecture.

Apache spawns a pool of child processes at startup time, all

of which listen on a common port (typically, port 80). A newly

arriving request is handed over to one of the children for further

processing; the process rejoins the pool after it is done servic-

ing the request and waits for subsequent requests. Apache can

vary the size of the process pool dynamically depending on the

load. A limit is imposed on the maximum number of concur-

rent Apache processes through a statically defined parameter,

MaxClients (to prevent memory exhaustion and thrashing in the

system). Once this limit is reached, no additional children are

spawned and newly arriving requests must wait for an existing

child to become idle before getting serviced. With this back-

ground, we now present the results of our experimental study to

determine the bottlenecks in the Apache request path.
The testbed for our experiments consists of an unmodified

Apache server running on a Pentium III PC with 512MB RAM

and Redhat Linux 7.1. The client workload is generated us-

ing an off-the-shelf web workload generator—httperf [11]—

that can emulate various kinds of workloads (e.g., persistent

HTTP, SSL encryption) and different request rates. All ma-

chines were interconnected by a 100 Mb/s Ethernet switch on a

lightly loaded network.
We instrumented the Linux kernel to measure various param-

eters that affect the performance of web requests, namely (i) the

length of the socket accept queue and the time spent by an in-

coming request in the accept queue, (ii) the amount of CPU time

spent in servicing a request, and (iii) the time spent by a request

waiting in the CPU run queue. Other metrics such as the net-

work transfer time and the end-to-end response time were mea-

sured at the client using httperf. Unless specified otherwise, all

kernel and Apache configuration parameters were set to their

default values. The only (kernel) parameter that was modified

was the maximum length of the accept queue, which was in-

creased from its default value of 128 to 65536 (this was done to

avoid TCP SYN packet drops due to accept queue overflow at

heavy loads).

For this setup, we examined the performance of Apache

for the following workloads: (i) static web requests over non-

persistent HTTP connections, (ii) static web requests over per-

sistent HTTP connections, (iii) static requests using SSL en-

cryption, and (iv) dynamic requests using Apache’s CGI script-

ing. Whereas the first two workloads are I/O-intensive, the

last two are predominantly CPU-intensive. Due to the memory

sizes on our machines, we observed that the OS buffer cache

was able to easily cache popular files in memory, and hence,

most requests were serviced directly from the cache and did not

result in disk I/O. Because of this, we find that I/O time is in-

dependent of the load and depends only on the file size, and

hence, do not report it in our results1.

We now present our experimental results. Due to space con-

straints, we present detailed results only for two scenarios (per-

sistent HTTP and SSL processing).

Static Web Requests using Persistent HTTP: In this experi-

ment, we configured httperf to use persistent HTTP connections

and to request multiple (static) files over the same connection.

We increased the connection rate and observed its impact on the

web server and client performance. As shown in Figure 1(a), at

low loads, Apache can easily handle all incoming connections

(and requests over those connections); requests do not incur any

significant delays in the socket accept queue or the CPU run

queue. Note that the persistent nature of each connection causes

each Apache process to keep the client connection open for a

timeout duration waiting for subsequent requests (which delays

its return to the idle process pool). Hence, as the load increases,

Apache spawns additional child processes to service newly ar-

riving connections until the MaxClients limit is reached (Max-

Clients was set to 50 in this experiment). Beyond this point, the

accept queue delay increases rapidly and becomes the dominant

factor of the total response time (this is because a newly arriving

connection must now wait in the accept queue until an Apache

process is freed up). Figure 1(a) also shows that the CPU ser-

vice time and the CPU run queue delay are relatively constant,

indicating that most Apache processes are waiting for requests

over persistent connections, rather than actively servicing re-

quests. This indicates that the accept queue is the bottleneck

resource in this scenario, while the CPU is under-utilized.

1This assumption does not hold for scenarios where, for instance, a web re-
quest triggers a query in a backend database server; however, such scenarios
are outside the scope of this paper, given our focus on web server performance.



0.01

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

D
el

ay
 (

m
s)

Request Rate (conn/sec)

Server delay measurement with 95% CI

Accept Queue Delay
Run Queue Delay
CPU Service Time

0.01

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

D
el

ay
 (

m
s)

Request Rate (conn/sec)

Server delay measurement with 95% CI

Accept Queue Delay
Run Queue Delay
CPU Service Time

(a) Accept Queue bottleneck (b) Run Queue bottleneck

Fig. 1. Bottleneck resources for different workloads

Static Web Requests using SSL Encryption: In this exper-

iment, we configure httperf to request static files using SSL

encryption over non-persistent HTTP connections. The SSL

protocol involves public-key authentication and key exchange

during connection setup, after which it uses symmetric key en-

cryption for transmitting data over the connection. Due to the

computational overhead involved in encrypting data, this is a

CPU-intensive workload. Similar to the previous experiment,

we increase the client request rate and measure its impact on

server performance. Figure 1(b) depicts our results. The figure

shows that the CPU run queue waiting times increase steadily

with the load—the larger the CPU load, the greater is the time a

request needs to wait in the run queue before it can be scheduled

on the CPU (since the CPU is busy servicing other requests).

The figure also shows that the CPU run queue delay dominates

the server response time. Observe that the CPU service time of

a request is independent of the load, since the time to service

a request (e.g., encrypt data) depends only on the request size.

The figure also shows that the accept queue delay is initially

small and then increases rapidly beyond a certain load. This is

because the CPU saturates at those loads, causing newly arriv-

ing requests to wait in the accept queue until an Apache process

can be scheduled on the CPU to accept the connection. At very

heavy loads, the MaxClients limit is reached, further adding to

the accept queue delay. Thus, our experiment indicates that the

CPU is the primary bottleneck in this scenario. Although the

accept queue delays are significant, this is primarily due to the

saturation of the CPU, which applies back-pressure on the ac-

cept queue.

Together, these experiments indicate that depending on the

workload and the operating region, different resources can be-

come bottlenecks in the request path2. This indicates that a web

server needs to intelligently detect these scenarios and manage

these resources accordingly.

2We found the CPU and the accept queue to be the primary bottlenecks in
our experiments. Cache hits in the OS buffer cache prevented the disk from
becoming a bottleneck. The network interface did not appear to be a bottleneck
either. As noted earlier, these observations may not hold for environments that
differ significantly from those considered here—for instance, e-commerce sites
with large amounts of backend database I/O.

class-based
accept queue

WFQAQ 
scheduler

incoming 
HTTP/TCP
request

HSFQ
CPU scheduler

Web Server

kernel
user

syscall API

Monitor

Adaptation 
Engine

SYN
Classifier

Fig. 2. Architecture for Adaptive QoS

III. ADAPTIVE QOS ARCHITECTURE

Our experimental study in the previous section highlighted

that different resources could become the bottleneck based on

the workload characteristics. Based on these insights we choose

a small set of kernel mechanisms to control these resources

via dynamic resource scheduling. In this paper we target two

resources—the accept queue and the CPU—that most affected

server performance for our selection of workloads, to highlight

the need for multi-resource adaptation. Observe that our goal

is not to design new resource control mechanisms; rather it is

to pick existing mechanisms in current commercial or open-

source operating systems and build an adaptive framework to

parameterize and control these mechanisms.

We assume that the web server supports multiple classes of

requests (also referred to as service classes) each with its spec-

ified QoS requirement. In this paper we consider class-specific

response time as the default QoS metric. Throughput is another

metric that can be controlled, but discussion of such metrics is

beyond the scope of this paper. To control the performance of-

fered to requests within each class, we employ an adaptive QoS

architecture that consists of three main components.

� Kernel resource controllers: The two resources, the



socket’s accept queue and the CPU run queue, are con-

trolled by a proportional-share scheduler to meet the per-

formance goals of different service classes. Specifically,

we use a weighted fair queuing scheduler for the accept

queue, and the hierarchical start-time fair queuing (HSFQ)

scheduler for the CPU. A SYN classifier is used to classify

incoming TCP connections into their service classes.

� Monitoring framework : The monitoring framework con-

tinuously obtains measurements from the system for each

resource, and each class, which are used by the adaptation

engine. Examples of these measurements include per-class

delays, request service times and resource utilizations.

� Adaptation engine: The adaptation engine uses an

observation-based approach to adjust the resource alloca-

tions for each class based on the monitored performance

and the desired QoS goal. The adaptation progresses on

two levels—a local, per-resource level and a global one

across resources.

Figure 2 illustrates the interactions between these compo-

nents. The kernel performs early demultiplexing and classifica-

tion of incoming TCP (SYN) packets and adds the request to a

class-based accept queue that employs a weighted fair queuing

scheduler to determine the order in which requests are accepted

by the Apache processes. The web server process is attached to

the corresponding CPU service class of the request and sched-

uled by the HSFQ CPU scheduler. The adaptation engine ad-

justs the share values of the classes in both the resources based

on the QoS goals and the monitored performance.

In what follows, we first describe the kernel mechanisms

used in our adaptive QoS architecture and then describe the

monitoring framework and the adaptation algorithms.

A. SYN Classifier

The SYN classifier uses the network packet headers (IP ad-

dress and port number) to perform classification of incoming

requests into different service classes based on the classifica-

tion rules. In [14] there is a description of how to extend the

classification within the kernel to include application headers.

The classifier includes mechanisms for admission control via

SYN policing, however, we do not focus on the admission con-

trol aspects in this paper. In our prototype on Linux, the ipt-

ables command is used to insert and delete rules in the kernel

packet filtering tables. These filters are maintained by the net-

filter framework inside the Linux kernel [1].

B. Accept Queue Scheduler

For a new incoming request, after the three-way TCP hand-

shake is complete, the connection is moved from the SYN

queue (called the partial-listen queue in a BSD-based stack) to

the listening socket’s accept queue. Instead of a single FIFO

accept queue for all requests, our architecture employs a sep-

arate accept queue for each service class. Requests in these

queues are scheduled using a work-conserving weighted fair

queuing accept queue (WFQAQ) scheduler. The scheduler con-

trols the order in which requests are accepted from these queues

for service by the web server processes. The scheduler allows a

weight to be assigned to each class; the rate of requests accepted

from a class is proportional to its weight. Thus, the weight set-

ting of a class allows us to control its delay in the accept queue.

As soon as an Apache process becomes idle, a request is de-

queued from one of the class-specific accept queues in accor-

dance with their weight assignments. Thus, the Apache process

pool is not statically partitioned across classes. WFQAQ is a

work-conserving scheduler—an Apache process will not idle if

there is a request in any one of the accept queues. If a queue

is empty, the unused allocation of that class is proportionately

redistributed among other classes.

C. CPU scheduler

Traditionally, the CPU scheduler on Unix-based systems

schedules application processes using a time-shared priority

based scheduler. The scheduling priority depends on the CPU

usage of the process, the I/O activity, and the process priority.

To achieve the desired response time goal of a class and pro-

vide performance isolation, we use a hierarchical proportional-

share scheduler that dynamically partitions the CPU bandwidth

among the classes. Specifically, we use the hierarchical start-

time fair queuing (HSFQ) [8] scheduler, to share the CPU band-

width among various classes. HSFQ is a hierarchical CPU

scheduler that fairly allocates processor bandwidth to different

service classes and uses a class-specific scheduler for processes

within a class. The scheduler uses a tree-like structure with

each process (or thread) belonging to exactly one leaf node.

The internal nodes implement the start-time fair queuing (SFQ)

scheduler that allocates weighted fair shares, i.e., the bandwidth

allocated to a node is in proportion to its weight. Unused band-

width is redistributed to other nodes according to their weights.

The properties of SFQ, namely: i) it does not require the CPU

service time to be known apriori, and ii) it can provide prov-

able guarantees on fairness, delay and throughput received by

each process (or thread), make it a desirable proportional-share

scheduler for service differentiation.

In our implementation, we use only a 2-level hierarchy (con-

sisting of the root and various service classes).

D. Monitoring Framework

The monitoring framework continuously obtains measure-

ments on the state of each resource and class that are used by the

adaptation engine. These measurements can be broadly catego-

rized into per-class, or local measurements, and resource-wide,

or global measurements. Examples of local measurements in-

clude per-class delays in a resource, per-class request arrival

rates, or the work required by a class’s requests in a resource.

Examples of global measurements include resource utilization,

or global queue lengths.

The monitoring subsystem is essentially a set of kernel mech-

anisms to extract measurements from each of the resources

managed by the adaptation framework. As an example, we

briefly describe the per-class delay measurement implemented



for the accept queue and the CPU run queue. In case of the ac-

cept queue, when a connection is enqueued in the accept queue,

we timestamp its arrival in the associated socket data structure.

When TCP dequeues a request from the accept queue, as dic-

tated by the accept queue scheduler, we timestamp the depar-

ture of the request and compute the time spent in the accept

queue. This measurement is aggregated in a running counter

together with the number of requests seen by the accept queue.

In a similar manner, for CPU, we measure the time spent by a

process waiting in the run queue and running on the CPU.

A system call interface is used to allow the adaptation algo-

rithm to perform monitoring as well as resource control. We

added an ioctl like system call, sys multisched(), to the

Linux kernel for this purpose. sys multisched() takes as

arguments a command and some command-specific arguments.

The commands allow the local class-specific values and global

resource values to be queried or updated.

Operationally, two timers are used, viz a monitoring timer

and an adaptation timer. The values are measured by the moni-

tor every monitoring instant, or “tick”, where the time-interval

per tick, T
m

, is a configurable value. The time-interval be-

tween the adaptation instants, T
a

= kT

m

, i.e., an adaptation

instant happens after multiple monitoring instants, or every k

ticks. The measured values over the k ticks are averaged to give

the current value at the start of a new adaptation instant. The

value at the previous adaptation instant is exponentially aver-

aged using a weighting factor �. For a resource parameter a,

whose exponentially averaged value in the last cycle was a
prev

and the new set of values at the start of the current adaptation

instant were a
1

; a

2

; :::a

k

, the new value, a

ur

is given by

a


ur

= � � a

prev

+ (1� �) �

�

k

i=1

a

i

k

; (0 � � � 1)

IV. ADAPTATION ENGINE

The adaptation engine builds upon the monitoring, schedul-

ing and control infrastructure described in the previous section.

Based on the measurements at the monitoring agent, the adap-

tation algorithm computes and sets new shares and weights in

the schedulers in order to meet the QoS goals of each class.

A. Adaptation Techniques

There are three general approaches that can be used to build

an adaptation framework: (i) a control theoretic approach with a

feedback element, (ii) an open-loop approach based on a queu-

ing model of the system, and (iii) an observation-based adaptive

system that uses run-time measurements to compute the rela-

tionship between resource parameters and the QoS goal.

We chose an observation-based approach for adaptation as it

is most suited for handling varying workloads and non-linear

behaviors. The differences of this approach from the others

mentioned above is discussed in more detail in [13]. Fig-

ure 3 depicts how delay may vary with share assigned to a

class (the share for a class translates to its resource utilization).

This figure illustrates that (i) the delay-share relationship may

�d

d

D

�w

m

1

�

2

�

1

w

1

Delay

Share

Fig. 3. Delay-share relation for different request arrival rates

change with the request arrival rate �
i

(as depicted by the two �

curves), and (ii) the delay-share relationship is non-linear even

when the request rate remains the same. The basic idea in our

observation-based approach is to approximate the non-linear re-

lationship between the delay of a class and its share (or weight),

by multiple piece-wise linear parts. The algorithm continuously

keeps track of the current operating point of each class on its

delay-share curve. It is important to note that our technique

does not assume any a priori knowledge of the curve in Fig. 3;

rather it is only aware of various operating regions that the sys-

tem visits, which are then approximated in a piece-wise linear

fashion. Thus, the observation-based approach depends on run-

time adaptation, not requiring any training phase, and hence is

well-suited for highly variable and dynamic workloads. The

observation-based adaptation proceeds on two levels—a local

per-resource adaptation and a global system-wide adaptation.

The next two sections describe the adaptation algorithm in de-

tail.

B. Resource-specific Local Adaptation

The local adaptation algorithm of each resource needs to en-

sure that each class achieves its QoS (in this case response time)

goal for that resource. For each class i, let D
i

represent its de-

sired response time and d

i

be its observed average delay in that

resource. Furthermore, for each class i, the algorithm maintains

an estimate of the slope, m
i

of its delay-share (or delay-weight)

curve at the current operating point. The adaptation algorithm

tries to adapt the share of each class, w
i

, such that the delay

value d
i

, lies in the range [(1 � �)D

i

; (1 + �)D

i

℄. The adapta-

tion proceeds in the following four steps.
Determining class state: At every adaptation instant, the lo-

cal adaptation engine computes the current value of d

i

from

the monitored values, as described in Section III-D. At every

adaptation instant, the algorithm checks whether each class is

missing its local response time goal by comparing the values of

d

i

and D

i

. A class that is missing its goal i.e., d
i

� (1 + �)D

i

,

is called an underweight class. Similarly, a class that is more

than meeting its goal, i.e., d
i

� (1 � �)D

i

is called an over-

weight class. Other classes that have their delay within the

range of the desired delay are called balanced classes. The

underweight classes are ordered to determine the most under-

weight class. The algorithm tries to borrow shares from the



overweight classes such that the most underweight class be-

comes balanced. This redistribution step, however, must ensure

that the overweight classes are not over compensated to make

them underweight as a result.

Redistribution: For redistributing the share across classes, the

algorithm needs to quantify the effect of changing the share al-

location of a class on its delay. This is computed by using the

slope estimate m

i

, at the current operating point on the delay-

share curve. The total extra share needed by an underweight

class i is given by, �w

i

=

(d

i

�D

i

)

m

i

; as shown in Figure 3. The

extra share required by the underweight class is not equally dis-

tributed among the overweight classes. Instead, the amount of

share that an overweight class can donate is based on its sensi-

tivity to a change in share. There are two factors that affect the

sensitivity of an overweight class j: (i) its delay slack given by

(D

j

� d

j

), which measures how much better off it is from its

desired delay goal, and (ii) the current slope of its delay-share

curve m

j

, which measures how fast the delay changes with a

change in share. Based on these factors, the surplus s
j

, for an

overweight class j is given by

s

j

=

(D

j

� d

j

)

m

j

The surplus of each overweight class is proportionally do-

nated to reduce the likelihood of an overweight class becoming

underweight. The donation, donation
j

, of an overweight class

is a fraction of the required extra share weighted by its surplus,

and is given by

donation

j

= �w

i

� (

s

j

P

k

s

k

)

Before committing these donations, we must check that the

new delay value does not make the overweight class miss its

delay goal. Based on the slope m
j

we can predict that the new

delay value of the overweight class would be given by

d

j

0

= d

j

+m

j

� donation

j

If the new delay value misses the delay goal, i.e., d
j

0

� (1 +

�)D

j

, the donation is clamped down to ensure that new delay is

within the range of the desired delay. The clamped donation is

given by


lamped donation

j

=

[(1� �) �D

j

� d

j

℄

m

j

The actual donation of an overweight class is, therefore,

a
tual donation

j

= minfdonation

j

; 
lamped donation

j

g

The total donation available to the underweight class i, which

is the sum of the actual donations of all the overweight classes,

i.e.,
P

j

a
tual donation

j

, is never greater than the required

extra share �w

i

.

One underlying principle of the redistribution step is that

the overweight classes are never penalized more than required.

This is necessary because the slope measurements are accurate

only in a localized operating region and could result in a large,

but incorrect, surplus estimate. When workloads are changing

gradually, it is most likely that the extra share requirements of

an underweight class will be small, thereby, making the propor-

tional donation of the overweight classes to be smaller.
Gradual adjustment: Before committing the actual donations

to the overweight and underweight classes, the algorithm re-

lies on gradual adjustment to maintain stability. This is another

hook to ensure that there are no large donations by the over-

weight classes. A large donation could change the operating re-

gion of the classes which would make the computations based

on the current slope value, incorrect.
Hence, we perform gradual adjustment by only committing

a fraction � (0 � � � 1), of the computed actual donation,

which is given by,


ommit donation

j

= � � a
tual donation

j

The algorithm commits the new shares (or weights) to all the

involved classes by using the resource control hooks described

in Section III-D.
Settling: After committing the donations, the adaptation algo-

rithm delays the next adaptation instant, by scaling the adap-

tation timer, to allow the effect of the changes to settle before

making further adaptation decisions. We keep the adaptation

cycle short during stable states to increase responsiveness and

only increase it when settling is required after a change to in-

crease stability.
The committed donations change the current operating points

of the involved classes along their delay-share curves. At the

next adaptation instant, the algorithm measures the actual ob-

served change in the per-class delays, and uses these values

to obtain updated values of the slope m

i

for each class. The

updated m

i

values are used in the above adaptation equations

whenever adaptation is performed next.

C. System-Wide Global Adaptation

The system-wide global adaptation algorithm maps the over-

all response time goals for each class to local response time

goals for each resource used by that class. One approach is to

use the same value for both system-wide response time goal and

the local goal per resource. Although this is a nice choice for

initial values, it can reduce performance when different classes

have a different bottleneck resource. The main intuition behind

our utilization-based heuristic for determining local goals is to

give a class a more relaxed goal in its bottleneck resource, i.e.,

the resource where the class requirements are high relative to

the resource capacity.
To determine the per-class resource utilizations the global

adaptation engine, at every adaptation instant, uses the moni-

tored values of the work required C

i;j

, by each class i using

resource j, and the total capacity C

j

of each resource j. While

the capacity may be a fixed constant (e.g., MIPS) in the case of

CPU, for the accept queue it is the measured process regener-

ation rate of the web server, i.e., the rate at which connections

are accepted from the accept queue.



LetD
i

be the global response time goal of class i, andD
i;j

be

the the local response time goal of class i in resource j. The sum

of the local response time goals should equal the system-wide

goal. The local value depends on the utilization u

i;j

, for the

class i in resource j, which is given by, u

i;j

=

C

i;j

C

j

: Using the

utilization value, the global response time goal is proportionally

allocated between the resources, to give the local response time

goals for each class, i.e.,

D

i;j

= D

i

� (

u

i;j

P

k

u

i;k

)

A utilization-based deadline splitting approach has also been

used in [7], however, their optimization goal is to balance re-

source utilization. Our intent, instead, is to examine the work-

load of each class in isolation and relax the goal in the bottle-

neck resource for that class.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the effectiveness of our system’s

per-resource and global adaptation algorithms in providing re-

sponse time guarantees under varying workload conditions.

We first demonstrate adaptation of the two system resources—

accept queue and CPU—in isolation. We study adaptation be-

havior for workloads with both deterministic and Poisson re-

quest arrival distributions. As deterministic workloads do not

generate significant queuing delays in systems that are not over-

loaded, we consider only CPU adaptation with this type of

workload.

We demonstrate the adaptation behavior of the observation-

based approach for: i) changes in workload arrival rates that

shift the operating region, ii) changes in response time goals of

the classes that can change within a resource based on global

system state, and iii) change in workload characteristics that

shift the resource bottlenecks.

After evaluating adaptation for each resource along the above

dimensions, we evaluate system-wide global adaptation that

implements the adaptation machinery for both resources, and

adjusts resource allocations in the appropriate resource depend-

ing upon the current system workload, current resource utiliza-

tions, and the global response time goals.

A. Experimental Testbed

The experimental testbed consists of a server machine run-

ning a kernel with the adaptation mechanisms and algorithms,

and two client machines that generate workload. The server is

a 660 MHz P-III machine with 256 MB RAM and runs Linux

2.4.7. Each client machine is a 450 MHz P-II with 128 MB

RAM, also running Linux 2.4.7. The machines are connected

by a 100 Mbps Ethernet. The server runs Apache 1.3.19 with

SSL support enabled. The MaxClients parameter of Apache

was set to 150 processes.

The server kernel was modified to implement monitoring,

scheduling and control mechanisms for the accept queue and

the CPU, as discussed in Section III. These mechanisms form

the building blocks for the adaptation algorithm described in

Section IV.
The workload generator used at the clients was httperf [11].

To stress different resources in the system we use two kinds

of workloads, i.e., CGI workload and SSL worklaod. In CGI

workload, a CGI script is used that blocks for a variable time

duration before returning a response. This models blocking for

a back-end database request that reduces the Apache process

regeneration rate, thereby, stressing the accept queue without

loading the CPU. The SSL workload models a CPU-intensive

workload, which does not stress other resources in the system

for moderate request rates.
In the experiments that follow, the monitoring framework

records the measurements every system “tick” whose value is

set to be 5 seconds. For deterministic workloads, adaptation is

triggered every 10 ticks in the stable state. In case of Poisson

workloads, where the delays show significantly more deviation

about their mean, adaptation is triggered every 40 ticks to avoid

over-reaction to transient delays. To allow the system to settle

after a share is changed, the adaptation interval is increased by

a factor of 2.

B. CPU Adaptation

For evaluating the adaptation behavior of the CPU, we

choose SSL requests as the CPU-intensive workload. The

clients request an SSL-encrypted file from the server at a given

rate. At the server, response time goals are specified for two

classes. In each experiment, we start with an equal share allo-

cation to each class.
Figure 4 illustrates the results of CPU share adaptation with a

varying workload request rate and a deterministic arrival distri-

bution. The CPU target delay for both classes was 0.1 seconds.

Clients of both classes generate a combined aggregate work-

load of 12 SSL requests/sec. The fraction of the requests of

each class coming from every client was varied from 1:1 to 1:2

to 1:1 to 2:1, with the transitions occurring at 100 ticks, 500

ticks, and 900 ticks respectively. Figure 4(a) shows that adap-

tation was successfully triggered in each case such that the re-

sponse time of each class was close to its goal. Figure 4(b) plots

the relative shares assigned to each class. As the figure shows,

share of class 1 was increased at the first transition to handle its

increased load. This share could be borrowed from class 0 be-

cause it had a reduced load. The desired behavior in CPU share

allocation was observed at every workload transition.
Figure 5 illustrates the results of CPU share adaptation with

varying response time goals and a deterministic arrival distri-

bution. Both clients send requests at the rate of 6 SSL re-

quests/sec. Initially the goals of both classes were set to be

equal. After 100 ticks, the response time goal of class 0 and

1 was changed to 0.05 seconds and 0.15 seconds respectively.

After 500 ticks, the response time goal for these classes was

reversed. Note that this reversal causes a large relative change

in the response time goals. We use this to stress the adaptation

algorithm and verify that large changes do not send the system

into oscillations. Figure 5(a) plots the average per-class delays

and demonstrates the adaptation to the changes, whereas 5(b)



0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

D
el

ay
 (

se
c)

Time (ticks)

Class 0
Class 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200

S
ha

re

Time (ticks)

Class 0
Class 1

(a) Average delays (b) Share settings

Fig. 4. CPU Adaptation for deterministic request arrivals and dynamically changing request rates.

shows the CPU share adjustments performed by the adaptation

algorithm.

Next we study the effectiveness of the adaptation algorithm

using a workload with Poisson request arrivals. Both clients

generate requests whose arrival is Poisson distributed with

mean 6 requests/sec. During the first 200 ticks, the queue length

is allowed to settle, and adaptation does not trigger during this

period. Then, at 200 ticks, class 0 is given a goal of 0.25 sec-

onds, whereas class 1 is given a goal of 1 second. At 600 ticks,

these goals are reversed, which is again a large relative change.

Figure 6 shows the adaptation results. Figure 6(a) plots the av-

erage delays that are seen by the adaptation algorithm while

making adaptation decisions. The weight adjustments made by

the algorithm are shown in figure 6(b).

C. Accept Queue Adaptation

For evaluating accept queue adaptation behavior, we use the

CGI workload as described earlier. Note that since the only kind

of delay in the accept queue is the queuing delay, only work-

loads with Poisson-distributed arrivals are relevant. Figure 7

shows the accept-queue share adaptation for varying response

time goals. Both classes of clients generate requests whose ar-

rival is Poisson distributed with a mean of 24.6 requests/sec.

During the the first 400 ticks, the queue length is allowed to set-

tle. During this period, the response time goal is kept at a high

value for both classes, so that adaptation does not trigger. Then,

at 400 ticks, class 0 is given a goal of 0.05 seconds, whereas

class 1 is given a goal of 0.15 seconds. At 900 ticks, a large rel-

ative change is made by reversing these goals. Figure 7(a) plots

the average per-class delays and figure 7(b) shows the accept

queue share adjustments. As can be seen from the graphs, the

adaptation algorithm changes the shares for the classes to meet

their delay goals. We do not show the initial 400 ticks of the

experiment, as there is no adaptation taking place there.

D. System-Wide Adaptation

In this experiment we demonstrate the combined adaptation

of both resources when a change in the type of workload shifts

the bottleneck resource.

For the experiment shown in Figure 8, the clients alternate

between CGI and SSL workloads. To keep the delay values

in each resource comparable, we use a combination of an SSL

workload with deterministic arrivals and a CGI workload with

Poisson arrivals. Figures 8(a) and (b) plot the average CPU

delay and the average accept queue delay respectively, for each

class.

The experiment proceeds in three phases. From 0 to 400

ticks, the clients generate SSL requests at the rate of 6 re-

quests/sec. No adaptation is triggered for the first 100 ticks

to allow the system state to stabilize. At 100 ticks, the global

response time goal of class 0 is set to 0.05 seconds and that

of class 1 is set to 0.15 seconds. For the rest of the exper-

iment these global target delays are kept fixed. As seen in

these figures, the accept queue delay is negligible (around 0.002

secs) for the first 400 ticks since the workload is CPU-intensive.

Hence, the entire delay budget is available to the CPU. As the

graph shows, the CPU shares adapt to provide each class with

their target delay values.

Between 400 to 800 ticks, the clients switch from an SSL

workload to a CGI workload with a request rate of 24.6 re-

quests/sec each. This reduces the CPU delay to a negligible

value (around 0.0002 seconds) but ramps up the accept queue

delay. Most of the delay budget for each class is now available

for the accept queue. The accept queue adaptation algorithm

responds by adjusting shares to achieve the target delays.

Finally, from 800 to 1200 ticks, the clients switch back to

an SSL workload, thus making the CPU the bottleneck re-

source again. Moreover, the request rates of the clients are also

changed to 4 requests/sec and 8 requests/sec respectively. Once

again, as shown in the graphs, the accept queue delay becomes

negligible while the CPU scheduler parameters are adjusted to

help the classes achieve their goal.

VI. RELATED WORK

Several research efforts have focused on the design of adap-

tive web servers. A control theoretic approach for adaptation

has been proposed in [2], [10], [15]. This approach involves a

training phase using a given workload to perform system iden-

tification, based on which a controller is designed that assumes



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900

D
el

ay
 (

se
c)

Time (ticks)

Class 0
Class 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

S
ha

re

Time (ticks)

Class 0
Class 1

(a) Average delays (b) Share settings

Fig. 5. CPU Adaptation for deterministic request arrivals and dynamically changing response time goals.

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200

D
el

ay
 (

se
c)

Time (ticks)

Class 0
Class 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200

S
ha

re

Time (ticks)

Class 0
Class 1

(a) Average delays (b) Share settings

Fig. 6. CPU Adaptation for Poisson request arrivals and dynamically changing response time goals.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

400 500 600 700 800 900 1000 1100 1200

D
el

ay
 (

se
c)

Time (ticks)

Class 0
Class 1

0

0.1

0.2

0.3

0.4

0.5

0.6

400 500 600 700 800 900 1000 1100 1200

S
ha

re

Time (ticks)

Class 0
Class 1

(a) Average delays (b) Weight settings

Fig. 7. Accept queue adaptation for Poisson request arrivals and dynamically changing response time goals.

a linear relationship between the QoS metric and the sched-

uler parameters. Unlike this effort, we employ an alternate

observation-based approach for adaptation. Since delay is not

linearly related to the share parameters of proportional-share

schedulers, and the system model changes with variations in the

workload, we perform adaptation by measuring the system state

on a continual basis and adapting based on the current operating

region. Thus, system identification is an ongoing process in our

system, and while we assume linearity around a particular op-

erating point, the operating region as a whole can be non-linear.

A number of recent and ongoing research efforts ([4], [6],

[9]) have looked at various aspects of providing QoS support

for web servers. These efforts have proposed techniques for ad-

mission control, coarse-grained resource allocation and mecha-

nisms for service differentiation. The focus of our work is not

to design new scheduling or resource management mechanisms

per se, rather it is to to design an adaptive framework to effec-

tively parameterize existing mechanisms, and our intention is

to provide fine-grained allocation of multiple resources.

To achieve performance guarantees on a web server, vari-



0

0.05

0.1

0.15

0.2

0.25

0.3

0 200 400 600 800 1000 1200

D
el

ay
 (

se
c)

Time (ticks)

Class 0
Class 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 200 400 600 800 1000 1200

D
el

ay
 (

se
c)

Time (ticks)

Class 0
Class 1

(a) Average delays for CPU (b) Average delays for accept queue

Fig. 8. Delays for system-wide adaptation for the CPU and the accept queue.

ous predictable resource management mechanisms developed

for the host operating system ([5], [8], [12], [14]) can be used.

Our work is complementary to the development of such mech-

anisms. In fact, we assume the existence of such mechanisms

and show how to automate the task of parameterizing these

mechanisms to achieve self-manageability in the system.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an observation-based approach for

self-managing web servers that can adapt to changing work-

loads while maintaining the QoS requirements of different

classes. First, we illustrated the need to manage different re-

sources for different kinds of workloads. Later, we described an

adaptation framework of different classes. Later, we described

an adaptation framework which monitors the system state con-

tinuously and adjusts the various resource parameters to main-

tain the response time requirements of different classes. The

key contributions of our work are (i) development of an adapta-

tion technique for controlling multiple resources dynamically,

and (ii) accounting for the non-linear relationship between the

system parameters and the QoS goals.
As part of an ongoing effort, we are extending the scope of

the adaptation architecture to include other system resources

such as disk arrays, network interfaces, etc. This includes inte-

grating the adaptation system with the admission controller. In

future we plan to investigate more varieties of web workloads

and server architectures, in particular, workloads that involve

accessing a back-end server and multi-tier server architectures

that include a web server, an application server and a back-end

database. We would also like to explore the possibilities of us-

ing our adaptation technique in other self-managing scenarios

such as large storage systems, database systems, etc.
Overall, we believe that an observation-based approach is a

useful technique to adapt to unpredictable loads and other sys-

tem factors, and our techniques show how this approach can be

applied in a web server environment.

VIII. ACKNOWLEDGEMENTS

We would like to thank Douglas Freimuth for helping us with

our experimental setup. Prashant Shenoy was supported in part

by NSF grants CCR-9984030, CCR-0098060, EIA-0080119

and an IBM Faculty Partnership award. We would also like to

thank the anonymous reviewers for their insightful comments.

REFERENCES

[1] Netfilter: Firewalling, NAT and packet mangling for Linux 2.4.
http://netfilter.samba.org, 2002.

[2] T. Abdelzaher, K. G. Shin, and N. Bhatti. Performance Guarantees for
Web Server End-Systems: A Control-Theoretical Approach. IEEE Trans-
actions on Parallel and Distributed Systems, 13(1), January 2002.

[3] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Providing Differenti-
ated Quality-of-Service in Web Hosting Services. In Proceedings of the
SIGMETRICS Workshop on Internet Server Performance, 1998.

[4] J. Aman, C.K. Eilert, D. Emmes, P Yocom, and D. Dillenberger. Adaptive
Algorithms for Managing a Distributed Data Processing Workload. IBM
Sytems Journal, 36(2):242–283, 1997.

[5] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Facil-
ity for Resource Management in Server Systems. In Proceedings of the
Symposium on Operating Systems Design and Implementation, February
1999.

[6] N. Bhatti and R. Friedrich. Web server support for tiered services. IEEE
Network, 13(5), September 1999.

[7] K. Gopalan and T. Chiueh. Multi-resource Allocation and Scheduling
with Real-time Constraints. In Proceedings of MMCN, January 2002.

[8] P. Goyal, X. Guo, and H. Vin. A Hierarchical CPU Scheduler for Multi-
media Operating Systems. In Proceedings of the Symposium on Operat-
ing Systems Design and Implementation, October 1996.

[9] H. Jamjoom and J. Reumann. QGuard:Protecting Internet Servers from
Overload. Technical report, University of Michigan, CSE-TR-427-00,
2000.

[10] C. Lu, T. Abdelzaher, J. Stankovic, and S. Son. Feedback Control
Scheduling in Distributed Systems. In Proceedings of the IEEE Real-
Time Technology and Applications Symposium, June 2001.

[11] D. Mosberger and T. Jin. httperf – A Tool for Measuring Web Server
Performance. In Proceedings of the SIGMETRICS Workshop on Internet
Server Performance, June 1998.

[12] J. Nieh and M S. Lam. The Design, Implementation and Evaluation of
SMART: A Scheduler for Multimedia Applications. In Proceedings of
the ACM Symposium on Operating Systems Principles, December 1997.

[13] P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy. An
Observation-based Approach Towards Self-Managing Web Servers.
Technical report, University of Massachusetts, Amherst, CS-TR-02-06,
February 2002.

[14] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel Mechanisms for
Service Differentiation in Overloaded Web Servers. In Proceedings of the
Usenix Annual Technical Conference, June 2001.

[15] R. Zhong, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. ControlWare: A
Middleware Architecture for Feedback Control of Software Performance.
In Proceedings of ICDCS, July 2002.


