
1

New Resource Control Issues in Shared Clusters
Position Statement

Timothy Roscoe Prashant Shenoy

Sprint Advanced Technology Labs Department of Computer Science

1 Adrian Court University of Massachusetts

Burlingame, CA 94010, USA Amherst, MA 01003, USA

troscoe@sprintlabs.com shenoy@cs.umass.edu

Abstract—We claim that the renting of machine resources

on clusters of servers introduces new systems challenges

which are different from those hitherto encountered, either

in multimedia systems or cluster-based computing. We char-

acterize the requirements for such “public computing plat-

forms” and discuss both how the scenario differs from more

traditional multimedia resource control situations, and how

some ideas from multimedia systems work can be reapplied

in this new context. Finally, we discuss our ongoing work

building a prototype public computing platform.

I. INTRODUCTION AND MOTIVATION

T

HIS paper argues that the growth of shared comput-

ing platforms poses new problems in the field of re-

source control that are not addressed by the current state of

the art, and consequently there exist important unresolved

resource control issues of interest to the multimedia sys-

tems community.

The scenario we examine in detail is that of a public

computing platform. Such a platform consists of a clus-

ter of processing nodes interconnected by a network of

switches and provides computational resources to a large

number of small third-party service providers who pay the

provider of the platform for the resources: CPU cycles,

network bandwidth, storage space, storage bandwidth, etc.

The platform provider offers service providers a platform

which can be, for example, highly available, managed, and

located in a geographically advantageous location such as

a metropolitan area. In return, the platform provider can

use economies of scale to offer service hosting at an at-

tractive rate and still generate profit.

Public computing platforms differ from current hosting

solutions in that there are many more services than ma-

chines: lots of services share a relatively small number of

nodes. The challenge for the platform provider is to be

able to sell resources like processor cycles and predictable

service to many service providers, who may be mutually

antagonistic, in a cost-effective manner.

This engineering problem subsumes other important

scenarios as well. One example is workgroup clusters: a

cluster of compute servers shared by a workgroup or an

university department. Here the basic challenges are the

same, but there can be more trust between applications

sharing the computing facility and users are not necessar-

ily directly paying for computation.

There is evidence that this problem is becoming impor-

tant. Systems for running one, specialized class of applica-

tion (e.g. web servers, caches, some Application Service

Providers) in this manner are already appearing in the mar-

ketplace. However, the lack of solutions for the more gen-

eral problem has prevented the range of services offered

in this way from being widened, for example to include

multimedia traffic.

Two research areas feed directly in to this area: both

have much to offer, but do not address areas specific to

the support of time- and resource-sensitive applications on

public computing platforms.

A. Resource control in multimedia systems

Resource control has been central question in multime-

dia systems research for at least the past 10 years or so.

Control of resources within a machine is now relatively

well-understood: it has been addressed in completely new

operating systems (e.g. [1], [2]), modifications to existing

operating systems (e.g. [3]), schedulers ([4]), and abstrac-

tions ([5]).

Many of these advances were motivated by the desire to

handle multimedia and other time-sensitive applications.

Such mechanisms clearly have a place in a public com-

puting platform designed to handle a diversity of services,

not simply for multimedia applications but to provide per-

formance isolation between services owned by providers

who are paying for resources. Consequently, public com-

puting platforms enable much of the past and on-going re-

search on resource control for multimedia systems to be

applied to a new and more general setting. The caveat

though is that most of these techniques were developed for

single machine environments and do not directly general-



ize to multi-resource environments (multiprocessors, clus-

ters), for example see [6]. Consequently we argue the need

for additional research to tailor these techniques to clus-

tered environments such as public computing platforms.

B. Cluster-based computing platforms

Much work has been performed recently on the use of

clustered computing platforms for network services (see

[7] for an example and convincing arguments in favor of

the approach). This work aims at delivering high-capacity,

scalable, highly-available applications, usually web-based.

Typically, a single application is supported, or else the

applications are assumed to be mutually trusting—a rea-

sonable assumption in the large enterprise case. Conse-

quently, little attention is paid to resource control, either

for real-time guarantees to applications or performance

isolation between them [8]. Similarly, intra-cluster secu-

rity is relaxed as a simplifying assumption within the plat-

form [9].

One notable exception to this is recent work on provid-

ing differential service to web-based applications, for ex-

ample Cluster Reserves [10]. This work assumes a large

application running on a cluster of servers, where the aim

is to provide differential service to clients based on some

notion of service class, for example requested content or

source address. Many, though by no means all, services on

the Internet today fall into this category. In the future we

can expect a wider variety of services with a wider range

of resource requirements.

While the arguments for an approach based on clusters

of commodity machines carry over into the public comput-

ing space, the assumptions about resource control and trust

clearly do not: the applications we can expect to be run-

ning on such platforms will have diverse requirements and

the operators of such applications will be paying money to

ensure that those requirements are met. In addition, they

may be in competition with each other. Lack of trust be-

tween competing applications as well as between applica-

tions and the platform provider introduces new challenges

in design of cluster control systems.

C. What’s different about public computing platforms

This paper argues that the systems problems of public

computing platforms are conveniently similar to the two

fields above, but have a specificity of their own. They both

present new challenges, but also have properties that help

to ground and concretize general classes of solutions.

The most significant property of systems like this that

set them apart from traditional multimedia systems and

cluster-based servers is that resources are being sold. From

a cluster architecture point of view this means that perfor-

mance isolation becomes central: it is essential to provide

some kind of quantitative resource guarantees since this is

what people are paying for.

From a multimedia systems point of view this property

has two effects. Firstly, resource allocation must extend

over multiple machines running a large number of ser-

vices. This amounts to a problem of placement: which

components of which services are to share a machine?

Secondly, the policies used to drive both this placement

and the resource control mechanisms on the individual ma-

chines are now driven by a clear business case. Resource

control research in the past has been marked by a lack of

clear consensus over what is being optimized by the var-

ious mechanisms and policies: processor utilization, ap-

plication predictability, application performance, etc. The

notion of graceful degradation is also made more quanti-

tative in this scenario: we can relate degradation of ser-

vice to a change in platform revenue. This represents a

significant advance over current so-called “economic” or

“market-driven” resource allocation policies since they can

now be explicitly linked to a “real” market.

We elaborate on these issues below.

II. CHALLENGES IN DESIGNING A PUBLIC

COMPUTING PLATFORM

We first describe the design challenges that arise from

the perspective of a platform provider. We then discuss

challenges that must be addressed from the perspective of

platform users (i.e., service providers). Finally we discuss

the implications of these challenges for system design.

A. Challenges for the Platform Provider: The Need for

Overbooking and Yield Management

The primary goal for the operator of a public computing

platform is to maximize revenues obtained from renting

platform resources to service providers. A public com-

puting platform services a wide variety of customers; de-

pending on how much each customer pays for resources,

not all users are treated equally. This process is known

as yield management, and adds an important twist to the

policy side of the resource control problem. Maximizing

yield (revenue) requires that platform resources be over-

booked. Overbooking of resources is typically based on

an economic cost-benefit analyses, which explicitly links

resource allocation not to closed market abstractions (e.g.

[11]) but to a “real” commercial operation.

Beyond this, resource policies will take into account

such factors as demographics and psychometric models of

client behavior in determining allocations and pricing. In

2



other industries where similar challenges exist (for exam-

ple, the airline industry [12]), much of this is in the domain

of business decision-making and operations research mod-

els. The challenge for a public computing platform is to

allow as much flexibility as possible in business decisions

regarding its operation: it must not impose undue restric-

tions on business policies, but at the same time should fa-

cilitate their implementation.

From a systems design point of view this has a number

of implications. Firstly, business assessments and policies

must be representable in the system, without the system

constraining this representation (in other words, without

the system taking over too much of the decision-making

process). Secondly the system should aid the process of

overbooking and reacting to the overloads resulting from

overbooking. For instance, service providers that pay more

should be better isolated from overloads than others; to

achieve this goal, resource control policies should help de-

termine (i) how to map individual applications to nodes in

the cluster, (ii) the amount of overbooking on each indi-

vidual node depending on the yield from that node and the

service guarantees that need to be provided to applications,

and (iii) how to handle an overload scenario. Thirdly, the

system should provide timely feedback into the business

domain as the results of the process and the behavior of

other commercial parties involved (principally the service

providers).

B. End-User Challenges: The Need for Appropriate Ab-

stractions

Applications running on a public computing platform

will be inherently heterogeneous. One can expect such

platforms to run a mix of applications such as stream-

ing audio and video servers, real-time multiplayer game

servers, vanilla web servers, and ecommerce applica-

tions. These applications have diverse performance re-

quirements. For instance, game servers need good inter-

active performance and thus low average response times,

ecommerce applications need high aggregate throughput

(in terms of transactions per second), and streaming me-

dia servers require real-time performance guarantees. For

each such application (or service), a service provider

contracts with the platform provider for the desired per-

formance requirements along various dimensions. Such

requirements could include the desired reservation (or

share) for each capsule as well as average response times,

throughput or deadline guarantees. To effectively service

such applications, the platform should support flexible ab-

stractions that enable applications to specify the desired

performance guarantees along a variety of dimensions.

We propose the abstraction of a capsule to express these

requirements. A capsule is defined to be that component

of an application that runs on an individual node; each ap-

plication can have one or more capsules, but not more than

one per node. It’s important to note that capsules are a post

facto abstraction: for reasons detailed in [13] we try not to

mandate a programming model for service authors. Cap-

sules are therefore an abstraction used by the platform for

decomposing an existing service into resource principals.

A capsule can have a number of attributes, such as the

desired CPU, network and disk reservations, memory re-

quirements, deadline guarantees, etc., that denote the per-

formance requirements of that capsule. Due to the com-

mercial nature of a public computing platform, capsules

are a flexible and natural abstraction for expressing the per-

formance requirements of applications to the system and

for appropriate accounting of resource usage.

C. Implications for System Design

The above research challenges have a number of impli-

cations on the design of a public computing platform. In

what follows, we discuss some of these issues.

C.1 Capsule Placement

A typical public computing platform will consist of tens

or hundreds of nodes running thousands of third-party ap-

plications. Due to the large number of nodes and applica-

tions in the system, manual mapping of capsules to nodes

in the platform is infeasible. Consequently, an automated

capsule placement algorithm is a critical component of any

public computing platform. The aim of such an algorithm

is clearly to optimize revenue from the platform, and in

general this coincides with maximizing resource usage.

However, a number critical factors and constrains modify

this:

Firstly, the algorithm must run incrementally: services

come and go, nodes fail, and are added or upgraded, and

all this must occur with minimal disruption to service. This

means, for instance, that introducing a new capsule must

have minimal impact of the placement of existing capsules,

since moving a capsule is costly and may involve violating

a resource guarantee.

Secondly, capsule placement should take into account

the issue of overbooking of resources to maximize yield;

sophisticated statistical admission control algorithms are

needed to achieve this objective. Much of the past work

on statistical admission control has focussed on a single

node server; extending these techniques to clustered envi-

ronments is non-trivial.

Thirdly, there are technological constraints on capsule

placement, for example capsules are generally tied to

3



a particular operating system or execution environment

which may not be present on all nodes.

Finally, there are less tangible security and business-

related constraints on capsule placement. For example, we

might not wish to colocate capsules of rival customers on a

single node. On the other hand, we might colocate a num-

ber of untrusted clients on a single node if the combined

revenue from the clients is low.

To help make this last constraint tractable, and also in-

tegrate notions of overbooking, we introduce the twin ab-

stractions of trustworthiness and criticality, explored in

more detail in [14]. These concepts allow us to represent

business-level assessments of risk and cost-benefit at the

system level.

Trustworthiness is clearly an issue, since third-party ap-

plications will generally be untrusted and mutually antag-

onistic; isolating untrusted applications from one another

by mapping them onto different nodes is desirable. Trust-

worthiness is a function of many factors outside the scope

of the system (including legal and commercial considera-

tions), but the placement of capsules must take trust rela-

tionships into account.

The complementary notion of criticality is a measure of

how important a capsule or an application is to the plat-

form provider. For example, criticality could be a function

of how much the service provider is paying for applica-

tion hosting. Clearly, mapping capsules of critical applica-

tions and untrusted applications to the same node is prob-

lematic, since a denial of service attack by the untrusted

application can result in revenue losses for the platform

provider.

In summary, capsule placement becomes a multi-

dimensional constrained optimization problem—one that

takes into account the trustworthiness of an application, its

criticality and its performance requirements.

C.2 Resource Control

A public computing platform should employ resource

control mechanisms to enforce performance guarantees

provided to applications and their capsules. As argued ear-

lier, these mechanisms should operate in multi-node en-

vironments, should isolate applications from one another,

enforce resource reservations on a sufficiently fine time-

scale, and meet requirements such as deadlines. These is-

sues are well understood within the multimedia commu-

nity for single node environments. For instance, hierar-

chical schedulers [15] meet these requirements within a

node. However, these techniques do not carry over to

multi-resource (multi-node) environments. For instance,

it was shown in [6] that uniprocessor proportional-share

scheduling algorithms can cause starvation or unbounded

unfairness when employed for multiprocessor or multi-

node systems. Consequently, novel resource control tech-

niques need to be developed to meet the performance re-

quirements of distributed applications in public computing

platforms.

C.3 Failure Handling

Since high availability is critical to a public computing

platform, the platform should handle failures in a graceful

manner. In contrast to traditional clusters, the commercial

nature of a public computing platform has an important

effect on how failures are handled: we can classify failures

as to whose responsibility it is to handle them, the platform

provider or a service provider.

We distinguish three kinds of failures in a public com-

puting platform: (i) platform failures, (ii) application fail-

ures, and (iii) capsule failures.

A platform failure occurs when a node fails or some

platform-specific software on the node fails. Interestingly,

resource exhaustion on a node also constitutes a platform

failure—the failure to meet performance guarantees (since

resources on each node of the platform may be overbooked

to extract statistical multiplexing gains, resource exhaus-

tion caused due to the total instantaneous demand exceed-

ing capacity results in a violation of performance guaran-

tees). Platform failures must be dealt with by detecting

them in a timely manner and recovering from them au-

tomatically (for instance, by restarting failed nodes or by

offloading capsules from an overloaded node to another

node).

An application failure occurs when an application run-

ning on the platform fails in a manner detectable by

the platform. Depending on the application and the

service contract between the platform provider and the

service provider, handling application failures could be

the responsibility of the platform provider or the service

provider (or both). In the former scenario, application se-

mantics that constitute a failure will need to be specified a

priori to the platform provider and the platform will need

to incorporate application-specific mechanisms to detect

and recover from such failures.

A capsule failure occurs when an application capsule

fails in a way undetectable to the platform provider, for

example an internal deadlock condition in an application.

Capsule failures must be assumed to be the responsibil-

ity of the service provider and the platform itself does not

provide any support for dealing with them.

We have found this factorization of failure types highly

useful in designing fault-tolerance mechanisms for a pub-

lic computing platform.

4



III. STATUS OF ON-GOING WORK

We are building a public computing platform that ad-

dresses the requirements outlined in the previous section.

In this section, we describe some of our initial research on

yield management, resource control mechanisms for appli-

cation isolation in such platforms.

We have begun investigating techniques for yield man-

agement in a public computing platform. These tech-

niques involve attributing notions of trustworthiness and

criticality to individual applications and providers, and us-

ing these attributes to overbook resources [14]. The key

challenge in designing these capsule placement and admis-

sion control techniques is that traditional metrics such as

utilization and predictable performance guarantees are no

longer adequate. In a public computing platform, these

techniques will be driven by the need to maximize yield.

Admission control and placement based on this new met-

ric can yield results different from those using more tra-

ditional metrics, and consequently novel techniques are

needed to address this issue. For instance, as explained

earlier, a cost-benefit analysis of admitting each new ap-

plication and the resulting impact on overbooking is nec-

essary in this approach, in addition to the traditional focus

on the ability to meet performance guarantees.

We are also investigating resource control techniques

for a public computing platform. The two canonical tech-

niques for single-node resource control developed by the

multimedia research community are reservations [1], [16]

and shares [17], [15]. Whereas a reservation-based ap-

proach allocates resources in absolute terms (e.g., 2ms of

CPU time every 20ms on a node), a proportional-share ap-

proach enables relative allocation of resources. In the latter

approach, each capsule is assigned a weight and receives

resources in proportion to its weight (allocation is rela-

tive because the share of each capsule depends not only

on its weight but also the cumulative weights of the re-

maining capsules). In a pure-reservation-based approach,

each capsule always receives at most its requested fraction;

any unused bandwidth is wasted. In the proportional-share

approach, a continuously runnable application always re-

ceives at least its assigned share and possibly more if other

capsules do not utilize their allocations (i.e., unused band-

width is redistributed among runnable capsules in propor-

tion to their weights). Conceptually, resources require-

ments specified using reservations are upper bounds, while

those specified using weights are lower bounds. Rather

than wasting unused bandwidth, it is possible to modify

a reservation-based approach to redistribute unused band-

width among competing applications. Similarly, it is pos-

sible to combine proportional-share scheduling algorithms

with admission control to limit the number of applica-

tions in the system and provide guarantees on delay and

throughput [18]. Due to these similarities, it has been

shown that reservations and shares are duals of one another

[19] in the sense that a single scheduler can simultaneously

allocate resources based on weights and reservations.

We are currently investigating resource control mech-

anisms that employ a novel combination of these two

approaches. Our approach employs a reservation-based

cluster-wide hierarchy; application providers can use this

hierarchy to specify their aggregate requirements as well

as those of individual capsules. Once an application is ad-

mitted and its capsules are mapped to individual nodes,

the platform translates these reservations into equivalent

shares and employs a proportional-share scheduler to en-

force these allocations. Since the number of capsules at

each node is constrained by admission control each appli-

cation can be provided with guarantees on processor band-

width and latency. This approach is conceptually equiv-

alent to using a reservation-based scheduler at each node

that can reassign idle bandwidth. Moreover, the hybrid ap-

proach permits a judicious combination of work conserv-

ing behavior and predictable allocation.

IV. CONCLUSIONS

We believe that there are compelling reasons to host

large numbers of Internet services on a cluster-based plat-

form. In particular, we are interested in the case where

there are many more services than machines – this is a dif-

ferent space from current commercial hosting solutions,

but one where we feel considerable innovation in applica-

tions is possible if the economic barrier to entry is very

low.

Facilitating this innovation requires support for highly

diverse resource guarantees: current application-level con-

nection scheduling work restricts applications to web-

based or similar request-response systems, and conse-

quently restricts the diversity of feasible services (and how

cheap it is to offer them). Much research from the field of

multimedia systems can be reapplied here – indeed this

may be a more compelling case for resource control facil-

ities in the real world than multimedia workstations.

However, both the clustered environment and the busi-

ness relationships involved in the design of public plat-

forms adds new challenges: (i) heterogeneity of applica-

tions, distributed application components, and processing

nodes; (ii) place of capsules within the platform; (iii) fail-

ure handling in a domain of split responsibility, and (iv)

overbooking and yield management. Our current research

focuses on these issues for a public computing platform.

5



ACKNOWLEDGMENTS

The authors would like to acknowledge the suggestions

of Bryan Lyles in writing this paper.

REFERENCES

[1] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,

and R. Fairbairns, “The design and implementation of an operat-

ing system to support distributed multimedia applications,” IEEE

JSAC, vol. 14, no. 7, pp. 1280–1297, 1996.

[2] O. Spatscheck and L. L. Peterson, “Defending Against Denial of

Service Attacks in Scout,” in Proceedings of the Third USENIX

Symposium on Operating Systems Design and Implementation,

February 1999.

[3] V Sundaram, A. Chandra, P. Goyal, P. Shenoy, J Sahni, and H Vin,

“Application Performance in the QLinux Multimedia Operating

System,” in Proceedings of the Eighth ACM Conference on Mul-

timedia, Los Angeles, CA, November 2000, pp. 127–136.

[4] J. Nieh and M. S. Lam, “The Design, Implementation and Eval-

uation of SMART: A Scheduler for Multimedia Applications,” in

Proceedings of the Sixteenth ACM Symposium on Operating Sys-

tems Principles, Saint-Malo, France, October 1997.

[5] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: a

new facility for resource management in server systems,” in Pro-

ceedings of the Third Symposium on Operating Systems Design

and Implementation, New Orleans, Louisiana, March 1999, pp.

45–68.

[6] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus Fair

Scheduling: A Proportional-Share CPU Scheduling Algorithm

for Symmetric Multiprocessors,” in Proceedings of the Fourth

Symposium on Operating System Design and Implementation

(OSDI 2000), San Diego, CA, October 2000.

[7] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,

“Cluster-Based Scalable Network Services,” in Proceedings of

the Sixteenth ACM Symposium on Operating Systems Principles,

San Malo, France, October 1997.

[8] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of idle

workstations,” in Proceedings of the 8th International Conference

of Distributed Computing Systems, June 1988, pp. 104–111.

[9] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler, “The Mul-

tispace: an Evolutionary Platform for Infrastructural Services,”

in Proceedings of the 1999 Usenix Annual Technical Conference,

Monterey, California, June 1999.

[10] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves:

A mechanism for Resource Management in Cluster-based Net-

work Servers,” in Proceedings of the ACM Sigmetrics 2000, Santa

Clara, CA, June 2000.

[11] Neil Stratford and Richard Mortier, “An economic approach to

adaptive resource management,” in Proc. 7th IEEE Workshop on

Hot Topics in Operating Systems (HotOS VII), March 1999.

[12] Barry C. Smith, John F. Leimkuhler, and Ross M. Darrow, “Yield

management at American Airlines,” Interfaces, vol. 22, no. 1, pp.

8–31, January-February 1992.

[13] T. Roscoe and B. Lyles, “Distributed Computing without DPEs:

Design Considerations for Public Computing Platforms,” in Pro-

ceedings of the 9th ACM SIGOPS European Workshop, Kolding,

Denmark, September 17-20 2000.

[14] T. Roscoe, B. Lyles, and R. Isaacs, “The case for supporting risk

assessment in systems,” Sprint Labs Technical Report, May 2001.

[15] P. Goyal, X. Guo, and H.M. Vin, “A Hierarchical CPU Scheduler

for Multimedia Operating Systems,” in Proceedings of the First

USENIX Symposium on Operating System Design and Implemen-

tation (OSDI’96), Seattle, October 1996, pp. 107–122.

[16] M. B. Jones, D. Rosu, and M. Rosu, “CPU Reservations and

Time Constraints: Efficient, Predictable Scheduling of Indepen-

dent Activities,” in Proceedings of the sixteenth ACM symposium

on Operating Systems Principles (SOSP’97), Saint-Malo, France,

December 1997, pp. 198–211.

[17] K. Duda and D. Cheriton, “Borrowed Virtual Time (BVT)

Scheduling: Supporting Lantency-sensitive Threads in a General-

Purpose Scheduler,” in Proceedings of the Seventeenth ACM Sym-

posium on Operating Systems Principles (SOSP’99), Kiawah Is-

land Resort, SC, December 1999, pp. 261–276.

[18] P. Goyal, S. S. Lam, and H. M. Vin, “Determining End-to-

End Delay Bounds In Heterogeneous Networks,” ACM/Springer-

Verlag Multimedia Systems Journal, vol. 5, no. 3, pp. 157–163,

May 1997.

[19] I. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the duality be-

tween resource reservation and proportional share resource allo-

cation,” in Proceedings of the ACM/SPIE Conference on Mul-

timedia Computing and Networking (MMCN’97), San Jose, CA,

February 1997, pp. 207–214.

6


