

Rules of Thumb in Data Engineering

Jim Gray, Prashant Shenoy

December 1999

Technical Report
MS-TR-99-100

Microsoft Research

Advanced Technology Division

Microsoft Corporation
One Microsoft Way

Redmond, WA. 98052

©: 1999 IEEE: This paper is scheduled to appear in the IEEE International Conference on Data

Engineering, San Diego, April 2000. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE

Rules of Thumb in Data Engineering
Jim Gray, Prashant Shenoy

Microsoft Research, U. Mass, Amherst.

Gray@Microsoft.com, shenoy@cs.umass.edu

Abstract

This paper reexamines the rules of thumb for the design

of data storage systems. Briefly, it looks at storage,

processing, and networking costs, ratios, and trends with

a particular focus on performance and

price/performance. Amdahl’s ratio laws for system

design need only slight revision after 35 years—the major

change being the increased use of RAM. An analysis also

indicates storage should be used to cache both database

and web data to save disk bandwidth, network bandwidth,

and people’s time. Surprisingly, the 5-minute rule for

disk caching becomes a cache-everything rule for web

caching.

1. Introduction

We engineer data using intuition and rules of thumb.
Many of these rules are folklore. Given the rapid changes
in technology, these rules need to be constantly re-

evaluated.

This article is our attempt to document some of the main

rules we use in engineering database systems. Since we
have to design for the future, the article also assesses
technology trends and predicts the sizes of future systems.

2. Storage performance and price

Many rules of thumb are a consequence of Moore’s
Law, which posits that circuit densities increase 4x each
three years. That means that memories get 4 times larger

each three years, or about 100x per decade. It also means
that in-memory data grows at this rate: creating the need
for an extra bit of addressing every 18 months. In 1970

we were comfortable with 16-bit address spaces: it was
rare to find a machine with a megaword of memory.
Thirty years later we need 20 extra address bits to address

the 64 GB memories (36 bit addresses) found in the larger
computers on the market. Today most computer

architectures give 64-bit logical addressing (e.g. MIPS,
Alpha, PowerPC, SPARC, Itanium) or 96-bit (e.g.

AS400) addressing. Physical addressing is 36-bits to 40-
bits, and growing a bit per 18 months. At this rate it will
take two or three decades to exceed 64-bit addressing.

Moore’s Law originally applied only to random

access memory (RAM). It has been generalized to apply

to microprocessors and to disk storage capacity. Indeed,
disk capacity has been improving by leaps and bounds; it
has improved 100 fold over the last decade. The

magnetic aerial density has gone from 20 Mbpsi
(megabits per square inch in 1985), to 35 Gbpsi late in
1999. Disks spin three times faster now, but they are also

5 times smaller than they were 15 years ago, so the data
rate has improved only 30 fold (see Figure 1). Today,
disks can store over 70 GB, have access times of about 10

milliseconds (~ 120 (kaps kilobyte accesses per second)),
and transfer rates of about 25MBps (~ 20 maps (megabyte
accesses per second)) and a scan time of 45 minutes [1].

These disks cost approximately 42 k$/TB today (15
k$/TB for lower-performance IDE drives packaged,
powered, and network served) [2]. Within 5 years, the

same form-factor should be storing nearly ½ terabyte,
support 150 kaps, and a transfer rate of 75 MBps. At that
rate, it will take nearly 2 hours to scan the disk. By then,

the prices should be nearing 1 k$/TB.

0.01

0.1

1

10

100

1000

10000

100000

1000000

84 88 92 96 00 04

tpi
kbpi
MBps
Gbpsi

Magnetic Disk Parameters vs Time

year

Figure 1: Disk capacity has improved 1,000 fold in the
last 15 years, consistent with Moore’s law, but the
transfer rate MBps has improved only 40x in the same

time. The metrics are tracks per inch (tpi), thousands of
bits per linear inch of track (kbpi), megabits per second
as the media spins (MBps), and gigabits per square inch

This paper appeared in the proceedings of the IEEE International
Conference on Data Engineering, Feb 28-30, San Diego, CA.
Copyright © 2000 Institute of Electrical and Electronics Engineers,
Inc. Personal use of this material, including hard copy
reproduction, is permitted. Permission to reprint, republish and/or
distribute this material in whole or in part for commercial purposes
must be obtained from the IEEE. For information on obtaining
permission, send an e-mail message to the Intellectual Property
Rights Administrator.

The ratio between disk capacity and disk accesses per
second is increasing more than 10x per decade. Also, the

capacity/bandwidth ratio is increasing by 10x per decade.
These changes have two implications: (1) disk accesses
become more precious; and (2) disk data becomes cooler

with time [3].

We reduce disk accesses by (1) using a few large

transfers rather than many small ones, (2) favoring
sequential transfers, and (3) using mirroring rather than
RAID5. To elaborate on these three points. (1) We can

reduce disk accesses by caching popular (hot) pages in
main memory, and writing a log of their changes to disk.
This reduces random reads, and converts random writes to

sequential (log) writes. Periodically, the written data
needs to be checkpointed to disk to minimize redo work
at restart, but often this checkpoint work can be done in

the background piggybacking on other IOs, and can be
sorted so that it is nearly sequential. These important
optimizations are used by database systems today. Over

the last decade, disk pages have grown from 2KB to 8KB
and are poised to grow again. In ten years, the typical
small transfer unit will probably be 64KB, and large

transfer units will be a megabyte or more. (2) A random
access costs a seek time, half a rotation time, and then the
transfer time. If the transfer is sequential, there is no seek

time, and if the transfer is an entire track, there is no
rotation time. So track-sized sequential transfers
maximize disk bandwidth and arm utilization. The move

to sequential IO is well underway. As already mentioned,
caching, transaction logging, and log-structured file
systems convert random writes into sequential writes.

This has already had large benefits for database systems
and operating systems. These techniques will continue to
yield benefits as disk accesses become more precious. (3)

The argument in favor of mirrors is that they double the
read bandwidth to each data item, and they cost only one
extra access for a write. RAID5 uses up to 4 disk

accesses to do a write, and improves read bandwidth only
if the data requests go to different disks.

Ten years ago, disks offered 50 Kaps (kilobyte
accesses per second) to 1GB of data, and 5-minute disk
scan times. Current disks offer 120 Kaps to 80 GB of data

with a 45-minute scan times. This is 1 kaps per 20MB
then vs. 1 kaps per 500MB now. So, modern disk data
needs to be at least 25x colder than data of 10 years ago.

In fact, all the “hot” data of 1990 has migrated to RAM:
disk cost 10$/MB in that era, five times what RAM costs
today. So 1990s disk data can afford to live in RAM

today. The use of large main memories is one way to
cool the data on disk. Another way is to store the data
multiple times and spread the reads among the copies:

again suggesting mirroring.

Meanwhile, there has been great progress in tape
storage: tapes now store 40 GB. A drive with a 15 tape

cartridges costs about 10k$ and stores about 600GB
nearline. These drives provide 6 MBps data rates, so the
scan time for all the cartridges is about 1.2 days. Such

nearline tape archives deliver approximately zero Kaps
and Maps (10-2 Kaps is typical). Such a tape archive is
half the cost per terabyte of disk storage, but tape does not

provide easy access to the data - the cost per random tape
access is about 10e5 times higher (100
accsses/second/1K$ disk vs .01 accesses/second/10,000$

tape). In five years, this situation should be even more
dramatic -- a million-to-one is compelling. Tape
capacities are expected to improve faster than tape speed,

and access time is expected to stay about the same,
making the access problem even more dramatic: several
days to scan the archive.

Historically, tape, disk, and RAM have maintained

price ratios of about 1:10:1000. That is, disk storage has

been 10x more expensive than tape, and RAM has been
100x more expensive than disk. Indeed, today one can
buy a 40 GB tape cartridge for 80$, a 36 GB disk for

1200$ (DELL and SCSI are not the least expensive), and
1 GB of memory for about 2400$ [4]. These ratios
translate to 2$/GB, 32 $/GB and 2.4k$/GB giving a ratio

of 1:16:1200 for storage.

But when the offline tapes are put in a nearline tape

robot, so the price per tape rises to 10K$/TB while
packaged disks are 30K$/TB. This brings the ratios back
to 1:3:240. It is fair to say that the storage cost ratios are

now about 1:3:300.

The cost/MB of RAM declines with time: about 100x

a decade. Since disk and RAM have a 1:100 price ratio,
this price decline suggests that what is economical to put

on disk today will be economical to put in RAM in about

10 years.

A striking thing about these storage cost calculations

is that disk prices are approaching nearline tape prices.
By using RAID (mirroring or parity), administrators
sacrifice disk storage capacity to protect against disk

media failures. Administrators are discovering that you
may be able to backup a terabyte to tape, but it takes a
very long time to restore a terabyte. As they see petabyte

stores looming on the horizon, administrators are moving
to strategies that maintain multiple disk versions online so
that one never has to restore the database from tape.

Increasingly, sites that need to be online all the time are
replicating their entire state at a remote site, so that they
have two online copies of the data. If one site fails, the

other offers access to the data, and the failed site can
recover from the data stored at the second site. In
essence, disks are replacing tapes as backup devices.

Tapes continue to be used for data interchange, but if
Gilders’ Law holds (see below), then someday all data

interchange will go over the Internet rather than over
sneaker net, and that means that tape will be less
frequently used for data interchange.

Storage prices have dropped so low that the storage

management costs now exceed storage costs (similarly,

PC management costs exceed the cost of the hardware).
In 1980, there was a rule of thumb that one needed a data
administrator for 1GB of storage. At that time a GB of

disk cost about a million dollars, and so it made sense to
have someone optimizing it and monitoring the use of
disk space. Today, a million dollars can buy 1 TB to 100

TB of disk storage (if you shop carefully). So, today, the
rule of thumb is that a person can manage 1 TB to 100 TB
of storage – with 10 TB being typical. The storage

management tools are struggling to keep up with the
relentless growth of storage. If you are designing for the
next decade, you need build systems that allow one

person to manage a 10 PB store.

Summarizing the Storage rules of thumb:

1. Moore’s Law: Things get 4x better every three years.

2. You need an extra bit of addressing every 18 months.

3. Storage capacities are increasing 100x per decade.

4. Storage device throughput is increasing 10x per

decade.

5. Disk data cools 10x per decade.

6. Disk page sizes increase 5x per decade.

7. NearlineTape:OnlineDisk:RAM storage cost ratios

 are approximately 1:3:300.

8. In ten years DRAM will cost what disk costs today.
9. A person can administer a million dollars of disk

storage: that is 30TB of storage today

And two observations:
* Disks are replacing tapes as backup devices.

* Mirroring rather than Parity to save disk arms.

3. Amdahl’s system balance rules

Gene Amdahl is famous for many rules of thumb.
For data engineering, there are four famous ones [6]:
10. Amdahl’s parallelism law: If a computation has a

serial part S and a parallel component P, then the

maximum speedup is (S+P)/S.

11. Amdahl’s balanced system law: A system needs a bit

of IO per second per instruction per second: about 8

MIPS per MBps.

12. Amdahl’s memory law: ? =1: that is the MB/MIPS

ratio (called alpha (?)), in a balanced system is 1.

13. Amdahl’s IO law: Programs do one IO per 50,000

instructions.

How have Amdahl’s law changed in the last 35 years?
The parallelism law is algebra, and so remains true and

very relevant to this day. The thing that is surprising is
that the other 35-year-old “laws” have survived while

speeds and sizes have grown by orders of magnitude and
while ratios have changed by factors of 10 and 100.

To re-evaluate Amdahl’s IO laws, one can look at the
Transaction Processing Performance Council benchmark
systems [4]. These systems are carefully tuned to have

the appropriate hardware for the benchmark. For
example, the OLTP systems tend to use small disks
because the benchmarks are arm limited, and they tend to

use the appropriate number of controllers. The following
paragraphs evaluate Amdahl’s balanced system law:
concluding that with current technology it should be

amended to say:

10. Amdahl’s revised balanced system law: A system

needs 8 MIPS/MBpsIO, but the instruction rate and

IO rate must be measured on the relevant workload.

(Sequential workloads tend to have low CPI (clocks

per instruction), random workloads tend to have

higher CPI.)

12. Alpha (the MB/MIPS ratio) is rising from 1 to 4. This

trend will likely continue.

13. Random IO’s happen about once each 50,000

instructions. Based on rule 10, sequential IOs are

much larger and so the instructions per IO are much

higher for sequential workloads.

Amdahl’s balanced system law becomes more
complex to interpret in the new world of quad-issue
pipelined processors. Table 2 summarizes the following

analysis. In theory, the current 550 MHz Intel processors
are able to execute 2 billion instructions per second, so
Amdahl’s IO law suggests that each 550 MHz processor

needs 160 MBps of disk bandwidth (all numbers
rounded). However, on real benchmarks, these
processors demonstrate 1.2 clocks per instruction on

sequential workloads (TPC-D,H,R) and 2.2 clocks per
instruction on random IO workloads (TPC-C, W) [7,8].
These larger CPIs translate to 450 MIPS on sequential

and 260 MIPS on random workloads. In turn, Amdahl’s
law says these processors need 60 MBps sequential IO
bandwidth (~450/8) and 30 MBps random of IO

bandwidth (~260/8) per cpu respectively (for tpcH and
tpcC). A recent tpcH benchmark by HP [5] used eight
550 MHz processors with 176 disks. This translates to 22

disks per cpu, or about 70 MBps of raw disk bandwidth
per cpu and 120 MBps of controller bandwidth per cpu
(consistent with Amdahl’s prediction of 60MBps).

Amdahl’s law predicts that system needs 30MBps of IO
bandwidth. Using 8KB pages and 100 IOps per disk
implies 38 disks per processor – a number comparable to

the 50 disks Dell actually used [4].

Both TPC results mentioned here use approximately
½ gigabyte of RAM per processor. Based on the MIPS

column of Table 2, approximately 1 to 2 MB per MIPS.
These are Intel IA32 processors that are limited to 4 GB
of memory. When one considers HP, IBM, and Sun

systems that do not have the 4GB limit, there is between
1GB/cpu and 2.5GB/cpu (12 to 64 GB overall). This
roughly translates to 2 MB/MIPS to 6 MB/MIPS 6. As

argued by many people working in main memory
databases (for example [9]), as disk IOs become more
precious, we are moving towards relatively larger main

memories. Alpha, the MB to MIPS ratio is rising from 1
to 4.

What about the execution interval? How many
instructions are executed per IO? In essence, if there are
8 instructions per byte, and 50 K instructions/IO, then IOs

are about 6 KB (~50/8). Again, there is a dichotomy
between sequential and random workloads: On TPC-C
benchmarks which do a lot of random IO, there are about

60 k instructions between 8 KB IOs (~7*8) and on
sequential workloads there are 200 k instructions between
64 KB IOs (~3*64).

In summary, Amdahl’s laws are still good rules of

thumb in sizing the IO and memory systems. The major

changes are that (1) the MIPS rate must be measured,
rather than assuming a CPI of 1 or less, (2) sequential IOs
are much larger than random IOs and hence the

instructions per IO are much higher for sequential
workloads, (3) Alpha (the MB/MIPS ratio) is rising from
1 to 2 or 4, this trend will likely continue. Given the 100x

and 1,000x changes in speeds and capacities, it is striking
that Amdahl’s ratios continue to hold.

Interestingly, Hsu, Smith, and Young, came to

similar conclusions in their very detailed study of TPC-C

and other workload behaviors in [10]. Their detailed
study shows the wide spectrum of behaviors, both across
workloads, and within a given workload.

4. Networking: Gilder’s Law

George Gilder predicted in 1995 that network
bandwidth would triple every year for the next 25 years
[13]. So far his prediction seems to be approximately

correct. Individual wavelength channels run at 40 Gbps.
Wave-division multiplexing gives 10 or 20 channels per
fiber. Multi-terabit links are operating in the laboratory.

Several companies are deploying thousands of miles of
fiber optic networks. We are on the verge of having very
high-speed (Gbps) wide-area networks. When telecom

deregulation or competition works, these links will be
very inexpensive.
14. Gilder’s law: Deployed bandwidth triples every year.

15. Link bandwidth improves 4x every 3 years.

Paradoxically, the fastest link on the Microsoft

campus today is the 2.5 Gbps WAN link to the Pacific
Northwest GigaPOP. It takes three 1 Gbps Ethernet links
to saturate the WAN link. LAN speeds are about to rise

to 1 Gbps, and then to 10 Gbps via switched point-to-
point networking.

Latency due to the speed of light (60 ms round trip
within North America, within Europe, and within Asia)
will be with us forever, but terabit-per-second bandwidth

will allow us to design systems that cache data locally,
and quickly access remote data if needed.

Traditionally, high-speed networking has been
limited by software overheads. The cost of sending a
message is [11]:

Time = senderCPU + receiverCPU + bytes/bandwidth
The sender and receiver cpu costs have typically been

10,000 instructions and then 10 instructions per byte. So

to send 10 KB cost 120,000 instructions or something
like a millisecond of cpu time. The transmit time of
10,000 bytes on 100 Mbps Ethernet is less than a

millisecond – so the LAN was cpu limited, not transmit
time limited.

A rule of thumb for traditional message systems has
been
16. A network message costs

10,000 instructions and 10 instructions per byte.

17. A disk IO costs

 5,000 instructions and 0.1 instructions per byte.

Why are disk IOs so efficient when compared to

network IO? After all, disk IOs are just messages to the

disk controller. There have been substantial strides in
understanding that simple question. The networking
community has offloaded much of the protocol to the

NICs (much as SCISI and IDE/ATA do), and use memory
more aggressively to buffer requests and correct errors.
Checksumming, fragmentation/assembly, and DMA have

Table 2: Amdahl’s balanced system law and the parameters

of two recent TPC benchmarks (www.tpc.org). The CPI
varies among the workloads, and the IO sizes also vary,
still, the instructions/byte are similar to Amd ahl’s prediction

of eight instructions per byte (a bit of IO per instruction).

MHz/
cpu

CPI mips
KB/
IO

IO/s/
disk

Disks
Disks/

cpu
MB/s/

cpu

Ins/
IO

Byte

Amdahl 1 1 1 6 8

TPC-C
= random

550 2.1 262 8 100 397 50 40 7

TPC-H
= sequential

550 1.2 458 64 100 176 22 141 3

all been added to high-speed NICs. Much of this work
has gone on under the banner of System Area Networking

(SAN) and the Virtual Interface Architecture [12]. The
current revision to rule of thumb is:
18. The cpu cost of a SAN network message is

 3,000 clocks and 1 clock per byte.

In particular, it is now possible to do an RPC in less

than 10 microseconds, and to move a Gbps from node to
node while the processor is only half busy doing network
(tcp/ip) tasks. The network carries 100,000 packets per

second (300 M clocks) and 128 M bytes per second (128
M clocks) so on a 650 MHz machine, there are 200 M
clocks to spare for useful work.

Currently, it costs a more than a dollar to send

100MB via a WAN (see Table 7 of Odlyzko [14]), while

local disk and LAN access are 10,000 times less
expensive. This price gap is likely to decline to 10:1 or
even 3:1 over the next decade. As suggested in

subsequent sections, when bandwidth is sufficient and
inexpensive, local disks can act as a cache for commonly
used data and a buffer for pre-fetched data.

5. Caching: Location, Location, and Location

Processor clock speeds have been improving, as has
the parallelism within the processor. Modern processors
are capable of issuing four or more instructions in parallel

and pipelining instruction execution.

In theory, current quad-issue Intel processors are able

to execute three billion instructions per second 4
instructions per clock and 750 M clocks per second. In
practice, real benchmarks see CPI (clocks per instruction)

of 1 to 3. The CPI is rising as processor speeds outpace
memory latency improvements [6,7,8].

The memory subsystem cannot feed data to the
processor fast enough to keep the pipelines full.
Architects have added 2-level and 3-level caches to the

processors in order to improve this situation, but if
programs do not have good data locality, there is not
much the architects can do to mask “compulsorily” cache

misses.

Software designers are learning that careful program

and data placement and cache sensitive algorithms with
good locality give 3x speedups on current processors. As
processor speeds continue to outpace memory speeds,

there will be increasing incentives for software designers
to look for algorithms with small instruction cache
footprints, with predictable branching behavior, and with

good or predictable data locality (i.e., clustered or
sequential access).

There is a hardware trend to design huge (256 way)
multiprocessors that operate on a shared memory. These

systems are especially prone to instruction stretch in
which bus and cache interference from other processors
causes each processor to slow down. Getting good

performance from these massive SMPs will require
careful attention to data partitioning, data locality, and
processor affinity.

An alternative design opts for many nodes each with

its own IO and bus bandwidth and all using a dataflow

programming model and communicating via a high-speed
network [15]. These designs have given rise to very
impressive performance, for example, the sort speed of

computer systems has been doubling each year for the last
15 years through a combination of increased node speed
(about 60%/year) and parallelism (about 40%/year). The

1999 terabyte sort used nearly 2,000 processors and disks,
http://research.microsoft.com/~gray/sort_benchmark.

The argument for the many-little scalable design tries
to leverage the fact that mainframe:mini:commodity price
ratios are approximate 100:10:1. That is, mainframes cost

about 100 times more than commodity components, and
semi-custom mini-computers have a 10:1 markup over
commodity components (see prices for comparable

systems at the www.tpc.org benchmarks). The cluster
advocates admit the many-little design is less efficient,
but they argue that it is more cost-effective.

There seems no good general rule of thumb for cpu-

caches beyond bigger-is-better and locality-is-better. But,

two good rules have evolved for disk data locality and
caching. It is possible to quantitatively estimate when
you should cache a disk page in memory: trading off

memory consumption against disk arm utilization.

As mentioned before, disk arms are precious. If a

disk costs $1200 and does 120 accesses per second, then a
disk access per second costs $10. It would be
advantageous to spend up to $10, to save one access per

second. Well, $10 buys about 10MB of DRAM, so if a
cache of that size would indeed save one access per
second, it would be a good investment.

One can ask the question, how frequently must a

disk-resident object be accessed to justify caching it in

main memory? When does the rent of RAM space
balance the cost of an access? The analysis in [16] shows
that:
BreakEvenReferenceInterval (seconds) =

 PagesPerMBofRAM x PricePerDiskDrive

 AccessPerSecondPerDisk PricePerMBofDRAM

For randomly accessed data, the first term (call the
technology ratio) is approximately 1; the second term
(called the economic ratio) varies from 100 to 400 today.

So, the breakeven interval is about 2 minutes to 5 minutes
for randomly accessed pages.

For sequentially accessed data the technology ratio is

approximately 0.1 (1MB “pages” and 10 pages per

second) so the break-even interval is 10 to 40 seconds.

This analysis gives the rules:

19. The 5-minute random rule: cache randomly accessed

disk pages that are re-used every 5 minutes.

20. The 1-minute sequential rule: cache sequentially

accessed disk pages that are re-used within a minute.

Both of these time constants are rising slowly as

technology evolves.

A related rule that has not seen much use is that one

can spend 1 byte of RAM to save 1 MIPS. The argument
goes that RAM costs about 1$/MB and today one can get
a 100 extra MIPS from Intel for 100 extra dollars

(approximately). So, the marginal cost of an instruction
per second is approximately the marginal cost of a byte.
Fifteen years ago, the ratio was 10:1, but since then Intel

and VLSI has made processors much less expensive.
21. Spend 1 byte of RAM to save 1 IPS.

Now let’s consider web page caching. We can use

logic similar to the five-minute rule to decide when it

pays to cache web pages. The basic diagram is shown in
Figure 2, where the link speed varies from 100 KBps for
intranets, to modem speeds of 5 KBps, to wireless speeds

of 1 KBps. In case of a modem and wireless links, we
assume a local browser cache. For high-speed links, the
cache could either be a browser cache or a proxy cache.

In case of a proxy, we assume a fast connection between
the user and the cache (e.g., a 100Mb/s LAN), so that the
time cost of accessing data from a remote proxy disk is

not significantly larger than that from a local disk.

Given these assumptions consider three questions:

(1) How much does web caching improve response
times?

(2) When should a web page be cached?

(3) How large should a web cache be?

Assume that the average web object is 10KB. Define

 R_remote: response time to access an object at server.
 R_local: response time to access the object from cache.

 H: cache hit ratio (fraction of requests that cache
satisfies)

Then: Response_Time_Improvement =
 R_remote - (H * R_local + (1-H) * R_remote) =

H * (R_remote - R_local)

We now estimate R_remote and R_local. R_remote

consists the server response time and the download
network time. The server response time (the queuing

delay and the service time) can range from several
hundred milliseconds to several seconds. Assume a
response time of 3 seconds.

The download time over the network depends on

network conditions and on link speeds. WAN Links are

typically shared, so the user bandwidth is smaller than the
typical link bandwidth (a bottlenecked link at the server
may further reduce the bandwidth/request). Assume that

the effective LAN/WAN bandwidth is 100KB/s; hence
time to transmit a 10KB object is a tenth of a second, and
the R_remote of 3 seconds is dominated by the server

time.

Modem bandwidth available on a dial-up link is 56

KBps. With compression, the effective bandwidth is often
twice that, but there are also start/stop overheads. We
assume an effective modem bandwidth of 5KB/s. Hence,

the modem transmit time for a 10 KB object is 2 seconds,
and R_remote is 5 seconds.

A mobile user on a wireless link gets 1KB/s, and so it

takes 10 seconds to download a 10KB object and
R_remote is 13 seconds. We ignore the fact that mobile
systems often compress the data to make the objects much

smaller. Summarizing:
R_remote

 = 3 + .1 = 3s (high speed connection)

 = 3 + 2 = 5s (modem connection)
 = 3 + 10 = 13s (wireless connection)

R_local depends many details, but fundamentally

local access avoids the server-time wait (3 seconds in the
examples above), and if the object is in the browser cache
local access avoids the transmission time. If the local

access saves both, then the R_local is a few hundred
milliseconds.
Hence,

R_local = 100ms (browser cache)

= 300ms (proxy cache intranet)

= 2s (proxy cache modem)

= 10s (proxy cache wireless)
Proxy cache studies indicate that H_proxy_cache =

0.4 is an upper bound [17,18]. Anecdotal evidence

suggests browser hit ratios are smaller: assume.
H_browser_cache = 0.20. Assuming a 20$/hr human
cost, each second costs 0.55 cents. Using that, Table 3

client cache serverLinkclient cache serverLink
Figure 2. The client-side or proxy web cache improves
response time by eliminate link transmission times and

server times.

computes the response-time savings using the
Response_Time_Improvement equation at left.

If a user makes ten requests per hour, and uses the

web 400 hours per year then the benefit of caching is

about 3 cents/hour to 14 cents per hour. For our
hypothetical user, this is a savings of between 12$/year to
48$/year. This should be balanced against the cost of the

disk to store the pages – but as mentioned earlier, $12 will
buy a LOT of disk space. Indeed, our hypothetical user
is accessing 4,000 10KB pages that are at most 40 MB.

This is only ½ dollar worth of disk space.

Having computed the savings for a cached page

(Table 3), we can now compute the point where caching a
page begins to pay off. Table 4 has the calculation. The
first column of Table 4 estimates download costs from

Odlyzko [14 table 7] and assumes a wireless (1KBps) link
costs $0.1/minute ($6/hr). The second column assumes
desktop disks cost 30$/GB and last 3 years, while mobile

storage devices are 30x more expensive.

The break-even cost of storing a page happens when

the storage rent matches the download cost. The
download cost has two components: the network time (A
in Table 4) and the people time C. The fourth column of

the table shows the calculation ignoring people’s time, C.
In that case the break-even interval is a year or more
rather than many decades. When people time is included,

the reference interval rises to many decades. In either
case, the table indicates that caching is very attractive:
cache a page if will be referenced within the next 5 years

(longer than the lifetime of the system (!)).

Certainly, our assumptions are questionable, but the
astonishing thing is that a very wide spectrum of

assumptions concludes that a “cache everything”
strategy is desirable.

How will Table 4 change with time? Network
speeds are predicted to increase and network costs are
predicted to drop. Column 4, Time=A/B, may drop from

10 months to one day. But column 6, Time=(A+C)/B,
will grow as people’s time grows in value, while the
cost of technology (A and B) decline. In summary,

technology trends suggest that web page caching will
continue be popular, especially for bandwidth-limited
mobile devices.

How much would it cost to cache all web accesses

for a year? If users make 10 requests per hour with a hit

ratio of H=0.4 the cache gets 4 hits and 6 new objects per
user hour. For an 8-hour workday, this is 480KB per user
per day. If H=0.2, then it is 640KB per user per day. In

both cases, this is about a penny a day. So, again we
conclude a simple “cache everything” strategy is a good
default.

These calculations suggest the simple rule:
22. Cache web pages if there is any chance they will be

re-referenced within their lifetime.

Web object lifetimes are bi-modal, or even tri-modal

in some cases. Studies show median lifetimes to be a few
days or few tens of days [19]. The average page has a 75-
day lifetime (ignoring the modalities and non-uniform

access.) A heuristic that recognized high-velocity pages
would both improve usability (by not showing stale
cached pages) and would save cache storage.

A major assumption in these calculations is that

server performance will continue to be poor: 3 seconds on

average. Popular servers tend to be slow because web site
owners are not investing enough in servers and
bandwidth. With declining costs, web site owners could

invest more and reduce the 3-second response time to less
than a second. If that happens, then the web cache’s
people cost savings will evaporate, and the need for

caching would be purely to save network bandwidth and
download time -- which we believe will not be a
scarce resource except for mobile devices.

6. Summary

Data stores will become huge. Our biggest
challenge is to make it easy to access and manage
them. Automating all the tasks of data

organization, accesses, and protection.

Table 3: Shows the benefits of browser and proxy caching
(pennies saved) assuming people’s time is worth 20$/hr.
connection cache R_remote

seconds
R_local
seconds

H
hit
rate

People
Savings
¢/page

LAN proxy 3 0.3 .4 0.6

LAN browser 3 0.1 .2 0.3
Modem proxy 5 2 .4 0.7

Modem browser 5 0.1 .2 0.5
Mobile proxy 13 10 .4 0.7

Mobile browser 13 0.1 .2 1.4

Table 4: Caching is a very good deal: cache web pages if they

will be re-used within the few years.
 A

$/10 KB
download

network cost

B
$/10 KB

storage/mo

 Time =A/B
Break-even

cache
storage time

C
People Cost
Of download
$ (table 3)

Time=
(A+C)/B

Break Even

Internet/LAN 1e-4 8.E-06 13 months 0.02 184 years
Modem 2E-4 8.E-06 27 months 0.03 307 years
Wireless 1E-2 2.E-04 44 months 0.07 30 years

Disk technology is overtaking tapes, but at the same
time disks are morphing into tape-like devices with

primarily sequential access to optimize the use of disk
arms. Meanwhile, RAM improvements encourage us to
build machines with massive main memory. Indeed, the

main change to Amdahl’s balanced system law is that
alpha (=MIPS/DRAM size) is rising from 1 to 10.

Network bandwidth is improving at a rate that
challenges many of our design assumptions. LAN/SAN
software is being streamlined so it is no longer the

bottleneck. This may well allow a re-centralization of
computing.

Still, data caching is an important optimization. Disk
caching still follows the 5-minute random rule and the
one-minute sequential rule. Web caching encourages

designs that simply cache all pages.

7. References

[1] IBM UltraStar72, http://www.storage.ibm.com/

hardsoft/diskdrdl/ultra/72zxdata.htm.
[2] Brewster Kahle, private communication, http://archive.org
[3] Data heat is the number of times the data is accessed per

second.
[4] Dell tpcC: http://www.tpc.org/results/individual_results

/Dell/ dell_8450_99112201_es.pdf
[5] HP tpcH: http://www.tpc.org/new_result/h-

result1.idc?id=100021501
[6] J. L. Hennessy, D.A. Patterson, Computer Architecture, a

Quantitative Approach. Morgan Kaufman, San Francisco,
1990, ISBN 1-55860-069-8

[7] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, W. E.
Baker, “Performance Characterization Of A Quad Pentium
Pro SMP Using OLTP Workloads,” ACM ISCA p. 15-26.
June 1998.

[8] A. Ailamaki, D. J. DeWitt, M. D. Hill, D. A. Wood.
“DBMSs On A Modern Processor: Where Does Time Go?”
VLDB 99, pp. 266-277, Sept 1999.

[9] H. Garcia-Molina, A. Park, L.R. Rogers: “Performance
Through Memory.” ACM SIGMETRICS, Performance
Evaluation Review 15(1), May 1987. pp. 122-131.

[10] Hsu, W.H., Smith, A.J., Young, H.C., “I/O Reference
Behavior of Production Database Workloads and the TPC
Benchmarks -- An Analysis at the Logical Level.” TR
UCC/CSD-99-1071, UC Berkeley, Nov. 1999.

[11] J. Gray, “The Cost of Messages,” ACM PODC, 1988, p1-7
[12] Virtual Interface Architecture: http: //www.viarch.org
[13] G. Gilder, “Fiber Keeps Its Promise: Get ready. Bandwidth

will triple each year for the next 25.” Forbes, 7 April 1997.
http://www.forbes.com/asap/97/0407/090.htm

[14] A. M. Odlyzko “The Economics of the Internet: Utility,
Utilization, Pricing, and Quality of Service,
http://www.research.att.com/~amo/doc/networks.html

[15] R.H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D.E.
Culler, J.M. Hellerstein, D.A. Patterson, “Rivers. Cluster
I/O with River: Making the Fast Case Common.” IOPADS
'99.

[16] J. Gray, G. Graefe, “The 5 minute rule, ten years later,”
SIGMOD Record 26(4): 63-68, 1997

[17] R. Tewari and M. Dahlin and H M. Vin and J. Kay,
”Beyond Hierarchies: Design Considerations for
Distributed Caching on the Internet”, IEEE ICDCS'99
June, 1999.

[18] A. Wolman and G. Voelker and N. Sharma and N.
Cardwell, A. Karlin, H. Levy,”On the scale and
performance of cooperative web proxy caching”, ACM
SOSP'99, pp.16--21, Dec., 1999.

[19] J. Gwertzman, M. Seltzer, “World-Wide Web Cache
Consistency,” 1996 USENIX Annual Technical
Conference, Jan. 1996.

 [20] T. Kelley, D. Reeves, “Optimal Web Cache Sizing:
Scalable Methods for Exact Solution,” Feb. 2000, to appear
in 5th Int. Conf on Web Caching and Content Delivery
Workshop, 22 May, Lisbon, Portugal.

http://ai.eecs.umich.edu/~tpkelly/papers/wcp.pdf

