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Abstract 

This paper reexamines the rules of thumb for the design 

of data storage systems.  Briefly, it looks at storage, 

processing, and networking costs, ratios, and trends with 

a particular focus on performance and 

price/performance.  Amdahl’s ratio laws for system 

design need only slight revision after 35 years—the major 

change being the increased use of RAM.  An analysis also 

indicates storage should be used to cache both database 

and web data to save disk bandwidth, network bandwidth, 

and people’s time.  Surprisingly, the 5-minute rule for 

disk caching becomes a cache-everything rule for web 

caching. 

 

1. Introduction 
 

We engineer data using intuition and rules of thumb.  
Many of these rules are folklore.  Given the rapid changes 
in technology, these rules need to be constantly re-

evaluated.  
 
This article is our attempt to document some of the main 

rules we use in engineering database systems.  Since we 
have to design for the future, the article also assesses 
technology trends and predicts the sizes of future systems. 

 

2. Storage performance and price 
 

Many rules of thumb are a consequence of Moore’s 
Law, which posits that circuit densities increase 4x each 
three years. That means that memories get 4 times larger 

each three years, or about 100x per decade.  It also means 
that in-memory data grows at this rate: creating the need 
for an extra bit of addressing every 18 months.  In 1970 

we were comfortable with 16-bit address spaces: it was 
rare to find a machine with a megaword of memory.  
Thirty years later we need 20 extra address bits to address 

the 64 GB memories (36 bit addresses) found in the larger 
computers on the market.  Today most computer 

architectures give 64-bit logical addressing (e.g. MIPS, 
Alpha, PowerPC, SPARC, Itanium) or 96-bit (e.g. 

AS400) addressing.  Physical addressing is 36-bits to 40-
bits, and growing a bit per 18 months.  At this rate it will 
take two or three decades to exceed 64-bit addressing.   

 
Moore’s Law originally applied only to random 

access memory (RAM).  It has been generalized to apply 

to microprocessors and to disk storage capacity.  Indeed, 
disk capacity has been improving by leaps and bounds; it 
has improved 100 fold over the last decade.  The 

magnetic aerial density has gone from 20 Mbpsi 
(megabits per square inch in 1985), to 35 Gbpsi late in 
1999.  Disks spin three times faster now, but they are also 

5 times smaller than they were 15 years ago, so the data 
rate has improved only 30 fold (see Figure 1).  Today, 
disks can store over 70 GB, have access times of about 10 

milliseconds (~ 120 (kaps kilobyte accesses per second)), 
and transfer rates of about 25MBps (~ 20 maps (megabyte 
accesses per second)) and a scan time of 45 minutes [1].  

These disks cost approximately 42 k$/TB today (15 
k$/TB for lower-performance IDE drives packaged, 
powered, and network served) [2].  Within 5 years, the 

same form-factor should be storing nearly ½ terabyte, 
support 150 kaps, and a transfer rate of 75 MBps.  At that 
rate, it will take nearly 2 hours to scan the disk.  By then, 

the prices should be nearing 1 k$/TB.   
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Figure 1:  Disk capacity has improved 1,000 fold in the 
last 15 years, consistent with Moore’s law, but the 
transfer rate MBps has improved only 40x in the same 

time.  The metrics are tracks per inch (tpi), thousands of 
bits per linear inch of track (kbpi), megabits per second 
as the media spins (MBps), and gigabits per square inch 
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The ratio between disk capacity and disk accesses per 
second is increasing more than 10x per decade.  Also, the 

capacity/bandwidth ratio is increasing by 10x per decade.  
These changes have two implications: (1) disk accesses 
become more precious; and (2) disk data becomes cooler 

with time [3].  
 
We reduce disk accesses by (1) using a few large 

transfers rather than many small ones, (2) favoring 
sequential transfers, and (3) using mirroring rather than 
RAID5.  To elaborate on these three points. (1) We can 

reduce disk accesses by caching popular (hot) pages in 
main memory, and writing a log of their changes to disk.  
This reduces random reads, and converts random writes to 

sequential (log) writes.  Periodically, the written data 
needs to be checkpointed to disk to minimize redo work 
at restart, but often this checkpoint work can be done in 

the background piggybacking on other IOs, and can be 
sorted so that it is nearly sequential.  These important 
optimizations are used by database systems today. Over 

the last decade, disk pages have grown from 2KB to 8KB 
and are poised to grow again.  In ten years, the typical 
small transfer unit will probably be 64KB, and large 

transfer units will be a megabyte or more. (2) A random 
access costs a seek time, half a rotation time, and then the 
transfer time.  If the transfer is sequential, there is no seek 

time, and if the transfer is an entire track, there is no 
rotation time.  So track-sized sequential transfers 
maximize disk bandwidth and arm utilization.  The move 

to sequential IO is well underway.  As already mentioned, 
caching, transaction logging, and log-structured file 
systems convert random writes into sequential writes. 

This has already had large benefits for database systems 
and operating systems.  These techniques will continue to 
yield benefits as disk accesses become more precious.  (3) 

The argument in favor of mirrors is that they double the 
read bandwidth to each data item, and they cost only one 
extra access for a write.  RAID5 uses up to 4 disk 

accesses to do a write, and improves read bandwidth only 
if the data requests go to different disks.  

 

Ten years ago, disks offered 50 Kaps (kilobyte 
accesses per second) to 1GB of data, and 5-minute disk 
scan times. Current disks offer 120 Kaps to 80 GB of data 

with a 45-minute scan times.  This is 1 kaps per 20MB 
then vs. 1 kaps per 500MB now.  So, modern disk data 
needs to be at least 25x colder than data of 10 years ago.  

In fact, all the “hot” data of 1990 has migrated to RAM: 
disk cost 10$/MB in that era, five times what RAM costs 
today.  So 1990s disk data can afford to live in RAM 

today.  The use of large main memories is one way to 
cool the data on disk.  Another way is to store the data 
multiple times and spread the reads among the copies: 

again suggesting mirroring. 
 

Meanwhile, there has been great progress in tape 
storage: tapes now store 40 GB.  A drive with a 15 tape 

cartridges costs about 10k$ and stores about 600GB 
nearline.  These drives provide 6 MBps data rates, so the 
scan time for all the cartridges is about 1.2 days. Such 

nearline tape archives deliver approximately zero Kaps 
and Maps (10-2 Kaps is typical).  Such a tape archive is 
half the cost per terabyte of disk storage, but tape does not 

provide easy access to the data - the cost per random tape 
access is about 10e5 times higher (100 
accsses/second/1K$ disk vs .01 accesses/second/10,000$ 

tape).  In five years, this situation should be even more 
dramatic -- a million-to-one is compelling.  Tape 
capacities are expected to improve faster than tape speed, 

and access time is expected to stay about the same, 
making the access problem even more dramatic: several 
days to scan the archive.   

 
Historically, tape, disk, and RAM have maintained 

price ratios of about 1:10:1000.  That is, disk storage has 

been 10x more expensive than tape, and RAM has been 
100x more expensive than disk.  Indeed, today one can 
buy a 40 GB tape cartridge for 80$, a 36 GB disk for 

1200$ (DELL and SCSI are not the least expensive), and 
1 GB of memory for about 2400$ [4].  These ratios 
translate to 2$/GB, 32 $/GB and 2.4k$/GB giving a ratio 

of 1:16:1200 for storage. 
 

But when the offline tapes are put in a nearline tape 

robot, so the price per tape rises to 10K$/TB while 
packaged disks are 30K$/TB.  This brings the ratios back 
to 1:3:240.  It is fair to say that the storage cost ratios are 

now about 1:3:300.   
 

The cost/MB of RAM declines with time: about 100x 

a decade.  Since disk and RAM have a 1:100 price ratio, 
this price decline suggests that what is economical to put 

on disk today will be economical to put in RAM in about 

10 years. 
 

A striking thing about these storage cost calculations 

is that disk prices are approaching nearline tape prices.  
By using RAID (mirroring or parity), administrators 
sacrifice disk storage capacity to protect against disk 

media failures.  Administrators are discovering that you 
may be able to backup a terabyte to tape, but it takes a 
very long time to restore a terabyte.  As they see petabyte 

stores looming on the horizon, administrators are moving 
to strategies that maintain multiple disk versions online so 
that one never has to restore the database from tape.  

Increasingly, sites that need to be online all the time are 
replicating their entire state at a remote site, so that they 
have two online copies of the data.  If one site fails, the 

other offers access to the data, and the failed site can 
recover from the data stored at the second site.  In 
essence, disks are replacing tapes as backup devices.  



    

   

Tapes continue to be used for data interchange, but if 
Gilders’ Law holds (see below), then someday all data 

interchange will go over the Internet rather than over 
sneaker net, and that means that tape will be less 
frequently used for data interchange. 

 
Storage prices have dropped so low that the storage 

management costs now exceed storage costs (similarly, 

PC management costs exceed the cost of the hardware).  
In 1980, there was a rule of thumb that one needed a data 
administrator for 1GB of storage.  At that time a GB of 

disk cost about a million dollars, and so it made sense to 
have someone optimizing it and monitoring the use of 
disk space.  Today, a million dollars can buy 1 TB to 100 

TB of disk storage (if you shop carefully).  So, today, the 
rule of thumb is that a person can manage 1 TB to 100 TB 
of storage – with 10 TB being typical.  The storage 

management tools are struggling to keep up with the 
relentless growth of storage.  If you are designing for the 
next decade, you need build systems that allow one 

person to manage a 10 PB store. 
 

Summarizing the Storage rules of thumb: 

1. Moore’s Law: Things get 4x better every three years. 

2. You need an extra bit of addressing every 18 months. 

3. Storage capacities are increasing 100x per decade. 

4. Storage device throughput is increasing 10x per 

decade. 

5. Disk data cools 10x per decade. 

6. Disk page sizes increase 5x per decade. 

7. NearlineTape:OnlineDisk:RAM storage cost ratios  

 are approximately 1:3:300. 

8. In ten years DRAM will cost what disk costs today. 
9. A person can administer a million dollars of disk 

storage: that is 30TB of storage today 

And two observations: 
* Disks are replacing tapes as backup devices. 

* Mirroring rather than Parity to save disk arms. 

 

3. Amdahl’s system balance rules 
 

Gene Amdahl is famous for many rules of thumb.  
For data engineering, there are four famous ones [6]:   
10. Amdahl’s parallelism law: If a computation has a 

serial part S and a parallel component P, then the 

maximum speedup is (S+P)/S. 

11. Amdahl’s balanced system law: A system needs a bit 

of IO per second per instruction per second: about 8 

MIPS per MBps.   

12. Amdahl’s memory law: ? =1: that is the MB/MIPS 

ratio (called alpha (? )), in a balanced system is 1. 

13. Amdahl’s IO law: Programs do one IO per 50,000 

instructions. 

 
How have Amdahl’s law changed in the last 35 years?  
The parallelism law is algebra, and so remains true and 

very relevant to this day.  The thing that is surprising is 
that the other 35-year-old “laws” have survived while 

speeds and sizes have grown by orders of magnitude and 
while ratios have changed by factors of 10 and 100.   

  

To re-evaluate Amdahl’s IO laws, one can look at the 
Transaction Processing Performance Council benchmark 
systems [4].  These systems are carefully tuned to have 

the appropriate hardware for the benchmark.  For 
example, the OLTP systems tend to use small disks 
because the benchmarks are arm limited, and they tend to 

use the appropriate number of controllers. The following 
paragraphs evaluate Amdahl’s balanced system law: 
concluding that with current technology it should be 

amended to say:  
 

10. Amdahl’s revised balanced system law: A system 

needs 8 MIPS/MBpsIO, but the instruction rate and 

IO rate must be measured on the relevant workload. 

(Sequential workloads tend to have low CPI (clocks 

per instruction), random workloads tend to have 

higher CPI.) 

12. Alpha (the MB/MIPS ratio) is rising from 1 to 4. This 

trend will likely continue. 

13. Random IO’s happen about once each 50,000 

instructions.  Based on rule 10, sequential IOs are 

much larger and so the instructions per IO are much 

higher for sequential workloads. 
 

Amdahl’s balanced system law becomes more 
complex to interpret in the new world of quad-issue 
pipelined processors.  Table 2 summarizes the following 

analysis.  In theory, the current 550 MHz Intel processors 
are able to execute 2 billion instructions per second, so 
Amdahl’s IO law suggests that each 550 MHz processor 

needs 160 MBps of disk bandwidth (all numbers 
rounded).  However, on real benchmarks, these 
processors demonstrate 1.2 clocks per instruction on 

sequential workloads (TPC-D,H,R) and 2.2 clocks per 
instruction on random IO workloads (TPC-C, W) [7,8].  
These larger CPIs translate to 450 MIPS on sequential 

and 260 MIPS on random workloads.  In turn, Amdahl’s 
law says these processors need 60 MBps sequential IO 
bandwidth (~450/8) and 30 MBps random of IO 

bandwidth (~260/8) per cpu respectively (for tpcH and 
tpcC).  A recent tpcH benchmark by HP [5] used eight 
550 MHz processors with 176 disks. This translates to 22 

disks per cpu, or about 70 MBps of raw disk bandwidth 
per cpu and 120 MBps of controller bandwidth per cpu 
(consistent with Amdahl’s prediction of 60MBps). 

Amdahl’s law predicts that system needs 30MBps of IO 
bandwidth.  Using 8KB pages and 100 IOps per disk 
implies 38 disks per processor – a number comparable to 

the 50 disks Dell actually used [4].   
 



    

   

Both TPC results mentioned here use approximately 
½ gigabyte of RAM per processor.  Based on the MIPS 

column of Table 2, approximately 1 to 2 MB per MIPS.  
These are Intel IA32 processors that are limited to 4 GB 
of memory.  When one considers HP, IBM, and Sun 

systems that do not have the 4GB limit, there is between 
1GB/cpu and 2.5GB/cpu (12 to 64 GB overall).  This 
roughly translates to 2 MB/MIPS to 6 MB/MIPS 6.  As 

argued by many people working in main memory 
databases (for example [9]), as disk IOs become more 
precious, we are moving towards relatively larger main 

memories.  Alpha, the MB to MIPS ratio is rising from 1 
to 4.   

 

What about the execution interval?  How many 
instructions are executed per IO?  In essence, if there are 
8 instructions per byte, and 50 K instructions/IO, then IOs 

are about 6 KB (~50/8).  Again, there is a dichotomy 
between sequential and random workloads: On TPC-C 
benchmarks which do a lot of random IO, there are about 

60 k instructions between 8 KB IOs (~7*8) and on 
sequential workloads there are 200 k instructions between 
64 KB IOs (~3*64). 

 
In summary, Amdahl’s laws are still good rules of 

thumb in sizing the IO and memory systems.  The major 

changes are that (1) the MIPS rate must be measured, 
rather than assuming a CPI of 1 or less, (2) sequential IOs 
are much larger than random IOs and hence the 

instructions per IO are much higher for sequential 
workloads, (3) Alpha (the MB/MIPS ratio) is rising from 
1 to 2 or 4, this trend will likely continue.  Given the 100x 

and 1,000x changes in speeds and capacities, it is striking 
that Amdahl’s ratios continue to hold. 

 
Interestingly, Hsu, Smith, and Young, came to 

similar conclusions in their very detailed study of TPC-C 

and other workload behaviors in [10].  Their detailed 
study shows the wide spectrum of behaviors, both across 
workloads, and within a given workload. 

 
 

4. Networking: Gilder’s Law  
 

George Gilder predicted in 1995 that network 
bandwidth would triple every year for the next 25 years 
[13].  So far his prediction seems to be approximately 

correct.  Individual wavelength channels run at 40 Gbps. 
Wave-division multiplexing gives 10 or 20 channels per 
fiber. Multi-terabit links are operating in the laboratory. 

Several companies are deploying thousands of miles of 
fiber optic networks.  We are on the verge of having very 
high-speed (Gbps) wide-area networks.  When telecom 

deregulation or competition works, these links will be 
very inexpensive.   
14. Gilder’s law: Deployed bandwidth triples every year. 

15. Link bandwidth improves 4x every 3 years. 

 
Paradoxically, the fastest link on the Microsoft 

campus  today is the 2.5 Gbps WAN link to the Pacific 
Northwest GigaPOP.  It takes three 1 Gbps Ethernet links 
to saturate the WAN link.  LAN speeds are about to rise 

to 1 Gbps, and then to 10 Gbps via switched point-to-
point networking.   

 

Latency due to the speed of light (60 ms round trip 
within North America, within Europe, and within Asia) 
will be with us forever, but terabit-per-second bandwidth 

will allow us to design systems that cache data locally, 
and quickly access remote data if needed.  

 

Traditionally, high-speed networking has been 
limited by software overheads.  The cost of sending a 
message is [11]:  

Time = senderCPU + receiverCPU + bytes/bandwidth 
The sender and receiver cpu costs have typically been 

10,000 instructions and then 10 instructions per byte.  So 

to send 10 KB cost 120,000 instructions or something 
like a millisecond of cpu time.  The transmit time of 
10,000 bytes on 100 Mbps Ethernet is less than a 

millisecond – so the LAN was cpu limited, not transmit 
time limited. 
 

A rule of thumb  for traditional message systems has 
been  
16.  A network message costs  

10,000 instructions and 10 instructions per byte. 

17. A disk IO costs 

 5,000 instructions and 0.1 instructions per byte. 

 
Why are disk IOs so efficient when compared to 

network IO?  After all, disk IOs are just messages to the 

disk controller.  There have been substantial strides in 
understanding that simple question.  The networking 
community has offloaded much of the protocol to the 

NICs (much as SCISI and IDE/ATA do), and use memory 
more aggressively to buffer requests and correct errors.  
Checksumming, fragmentation/assembly, and DMA have 

Table 2: Amdahl’s balanced system law and the parameters 

of two recent TPC benchmarks (www.tpc.org).  The CPI 
varies among the workloads, and the IO sizes also vary, 
still, the instructions/byte are similar to Amd ahl’s prediction 

of eight instructions per byte (a bit of IO per instruction). 

 
MHz/ 
cpu 

CPI mips 
KB/ 
IO 

IO/s/ 
disk 

Disks
Disks/ 

cpu 
MB/s/ 

cpu 

Ins/ 
IO  

Byte  

Amdahl 1 1 1 6     8 

TPC-C 
= random 

550 2.1 262 8 100 397 50 40 7 

TPC-H 
= sequential 

550 1.2 458 64 100 176 22 141 3 



    

   

all been added to high-speed NICs.  Much of this work 
has gone on under the banner of System Area Networking 

(SAN) and the Virtual Interface Architecture [12]. The 
current revision to rule of thumb is: 
18. The cpu cost of a SAN network message is  

   3,000 clocks and 1 clock per byte. 

 
In particular, it is now possible to do an RPC in less 

than 10 microseconds, and to move a Gbps from node to 
node while the processor is only half busy doing network 
(tcp/ip) tasks.  The network carries 100,000 packets per 

second (300 M clocks) and 128 M bytes per second (128 
M clocks) so on a 650 MHz machine, there are 200 M 
clocks to spare for useful work.  

 
Currently, it costs a more than a dollar to send 

100MB via a WAN (see Table 7 of Odlyzko [14]), while 

local disk and LAN access are 10,000 times less 
expensive.  This price gap is likely to decline to 10:1 or 
even 3:1 over the next decade.  As suggested in 

subsequent sections, when bandwidth is sufficient and 
inexpensive, local disks can act as a cache for commonly 
used data and a buffer for pre-fetched data.  

 

5. Caching: Location, Location, and Location 
 

Processor clock speeds have been improving, as has 
the parallelism within the processor.  Modern processors 
are capable of issuing four or more instructions in parallel 

and pipelining instruction execution.   
 
In theory, current quad-issue Intel processors are able 

to execute three billion instructions per second 4 
instructions per clock and 750 M clocks per second.  In 
practice, real benchmarks see CPI (clocks per instruction) 

of 1 to 3.  The CPI is rising as processor speeds outpace 
memory latency improvements [6,7,8].   

 

The memory subsystem cannot feed data to the 
processor fast enough to keep the pipelines full.  
Architects have added 2-level and 3-level caches to the 

processors in order to improve this situation, but if 
programs do not have good data locality, there is not 
much the architects can do to mask “compulsorily” cache 

misses. 
 
Software designers are learning that careful program 

and data placement and cache sensitive algorithms with 
good locality give 3x speedups on current processors.  As 
processor speeds continue to outpace memory speeds, 

there will be increasing incentives for software designers 
to look for algorithms with small instruction cache 
footprints, with predictable branching behavior, and with 

good or predictable data locality (i.e., clustered or 
sequential access). 

 

There is a hardware trend to design huge (256 way) 
multiprocessors that operate on a shared memory.  These 

systems are especially prone to instruction stretch in 
which bus and cache interference from other processors 
causes each processor to slow down.  Getting good 

performance from these massive SMPs will require 
careful attention to data partitioning, data locality, and 
processor affinity. 

 
An alternative design opts for many nodes each with 

its own IO and bus bandwidth and all using a dataflow 

programming model and communicating via a high-speed 
network [15].  These designs have given rise to very 
impressive performance, for example, the sort speed of 

computer systems has been doubling each year for the last 
15 years through a combination of increased node speed 
(about 60%/year) and parallelism (about 40%/year).  The 

1999 terabyte sort used nearly 2,000 processors and disks, 
http://research.microsoft.com/~gray/sort_benchmark.  

 

The argument for the many-little scalable design tries 
to leverage the fact that mainframe:mini:commodity price 
ratios are approximate 100:10:1. That is, mainframes cost 

about 100 times more than commodity components, and 
semi-custom mini-computers have a 10:1 markup over 
commodity components (see prices for comparable 

systems at the www.tpc.org benchmarks).  The cluster 
advocates admit the many-little design is less efficient, 
but they argue that it is more cost-effective. 

 
There seems no good general rule of thumb  for cpu-

caches beyond bigger-is-better and locality-is-better.  But, 

two good rules have evolved for disk data locality and 
caching.  It is possible to quantitatively estimate when 
you should cache a disk page in memory: trading off 

memory consumption against disk arm utilization.  
 
As mentioned before, disk arms are precious.  If a 

disk costs $1200 and does 120 accesses per second, then a 
disk access per second costs $10.  It would be 
advantageous to spend up to $10, to save one access per 

second.  Well, $10 buys about 10MB of DRAM, so if a 
cache of that size would indeed save one access per 
second, it would be a good investment.   

 
One can ask the question, how frequently must a 

disk-resident object be accessed to justify caching it in 

main memory?  When does the rent of RAM space 
balance the cost of an access?  The analysis in [16] shows 
that: 
BreakEvenReferenceInterval (seconds) = 

  PagesPerMBofRAM           x    PricePerDiskDrive      

  AccessPerSecondPerDisk       PricePerMBofDRAM 

For randomly accessed data, the first term (call the 
technology ratio) is approximately 1; the second term 
(called the economic ratio) varies from 100 to 400 today.  



    

   

So, the breakeven interval is about 2 minutes to 5 minutes 
for randomly accessed pages. 

 
For sequentially accessed data the technology ratio is 

approximately 0.1 (1MB “pages” and 10 pages per 

second) so the break-even interval is 10 to 40 seconds.  
 
This analysis gives the rules: 

19. The 5-minute random rule: cache randomly accessed 

disk pages that are re-used every 5 minutes. 

20. The 1-minute sequential rule: cache sequentially 

accessed disk pages that are re-used within a minute. 
 
Both of these time constants are rising slowly as 

technology evolves. 
 
A related rule that has not seen much use is that one 

can spend 1 byte of RAM to save 1 MIPS.  The argument 
goes that RAM costs about 1$/MB and today one can get 
a 100 extra MIPS from Intel for 100 extra dollars 

(approximately).  So, the marginal cost of an instruction 
per second is approximately the marginal cost of a byte.  
Fifteen years ago, the ratio was 10:1, but since then Intel 

and VLSI has made processors much less expensive. 
21. Spend 1 byte of RAM to save 1 IPS. 

 
Now let’s consider web page caching.  We can use 

logic similar to the five-minute rule to decide when it 

pays to cache web pages.  The basic diagram is shown in 
Figure 2, where the link speed varies from 100 KBps for 
intranets, to modem speeds of 5 KBps, to wireless speeds 

of 1 KBps.  In case of a modem and wireless links, we 
assume a local browser cache. For high-speed links, the 
cache could either be a browser cache or a proxy cache.  

In case of a proxy, we assume a fast connection between 
the user and the cache (e.g., a 100Mb/s LAN), so that the 
time cost of accessing data from a remote proxy disk is 

not significantly larger than that from a local disk.   
 

Given these assumptions consider three questions: 

(1) How much does web caching improve response 
times? 

(2) When should a web page be cached? 

(3) How large should a web cache be?   
 
Assume that the average web object is 10KB. Define  

 R_remote: response time to access an object at server. 
 R_local: response time to access the object from cache.  

 H: cache hit ratio (fraction of requests that cache 
satisfies) 

Then: Response_Time_Improvement =   
 R_remote - (H * R_local + (1-H) * R_remote) = 

H * (R_remote - R_local) 

 
We now estimate R_remote and R_local.  R_remote 

consists the server response time and the download 
network time.  The server response time (the queuing 

delay and the service time) can range from several 
hundred milliseconds to several seconds.  Assume a 
response time of 3 seconds. 

 
The download time over the network depends on 

network conditions and on link speeds.  WAN Links are 

typically shared, so the user bandwidth is smaller than the 
typical link bandwidth (a bottlenecked link at the server 
may further reduce the bandwidth/request).  Assume that 

the effective LAN/WAN bandwidth is 100KB/s; hence 
time to transmit a 10KB object is a tenth of a second, and 
the R_remote of 3 seconds is dominated by the server 

time. 
 
Modem bandwidth available on a dial-up link is 56 

KBps. With compression, the effective bandwidth is often 
twice that, but there are also start/stop overheads.  We 
assume an effective modem bandwidth of 5KB/s. Hence, 

the modem transmit time for a 10 KB object is 2 seconds, 
and R_remote is 5 seconds. 

 
A mobile user on a wireless link gets 1KB/s, and so it 

takes 10 seconds to download a 10KB object and 
R_remote is 13 seconds.  We ignore the fact that mobile 
systems often compress the data to make the objects much 

smaller.  Summarizing: 
R_remote 

     = 3 +    .1 = 3s  (high speed connection) 

     = 3 +    2  = 5s  (modem connection) 
     = 3 + 10 = 13s  (wireless connection) 
 

R_local depends many details, but fundamentally 

local access avoids the server-time wait (3 seconds in the 
examples above), and if the object is in the browser cache 
local access avoids the transmission time.  If the local 

access saves both, then the R_local is a few hundred 
milliseconds.  
Hence, 

R_local = 100ms (browser cache) 

= 300ms (proxy cache intranet) 

= 2s (proxy cache modem) 

= 10s (proxy cache wireless) 
Proxy cache studies indicate that H_proxy_cache = 

0.4 is an upper bound [17,18].  Anecdotal evidence 

suggests browser hit ratios are smaller: assume. 
H_browser_cache = 0.20.  Assuming a 20$/hr human 
cost, each second costs 0.55 cents.  Using that, Table 3 

client cache serverLinkclient cache serverLink
Figure 2.  The client-side or proxy web cache improves 
response time by eliminate link transmission times and 

server times. 



    

   

computes the response-time savings using the 
Response_Time_Improvement equation at left.  

 
If a user makes ten requests per hour, and uses the 

web 400 hours per year then the benefit of caching is 

about 3 cents/hour to 14 cents per hour.  For our 
hypothetical user, this is a savings of between 12$/year to 
48$/year.  This should be balanced against the cost of the 

disk to store the pages – but as mentioned earlier, $12 will 
buy a LOT of disk space.   Indeed, our hypothetical user 
is accessing 4,000 10KB pages that are at most 40 MB.  

This is only ½ dollar worth of disk space.   
 

Having computed the savings for a cached page 

(Table 3), we can now compute the point where caching a 
page begins to pay off.  Table 4 has the calculation.  The 
first column of Table 4 estimates download costs from 

Odlyzko [14 table 7] and assumes a wireless (1KBps) link 
costs $0.1/minute ($6/hr).  The second column assumes 
desktop disks cost 30$/GB and last 3 years, while mobile 

storage devices are 30x more expensive. 
 

The break-even cost of storing a page happens when 

the storage rent matches the download cost.  The 
download cost has two components: the network time (A 
in Table 4) and the people time C.  The fourth column of 

the table shows the calculation ignoring people’s time, C.  
In that case the break-even interval is a year or more 
rather than many decades. When people time is included, 

the reference interval rises to many decades.  In either 
case, the table indicates that caching is very attractive: 
cache a page if will be referenced within the next 5 years 

(longer than the lifetime of the system (!)).   

 

Certainly, our assumptions are questionable, but the 
astonishing thing is that a very wide spectrum of 

assumptions concludes that a “cache everything” 
strategy is desirable. 

 

How will Table 4 change with time?  Network 
speeds are predicted to increase and network costs are 
predicted to drop. Column 4, Time=A/B, may drop from 

10 months to one day.  But column 6, Time=(A+C)/B, 
will grow as people’s time grows in value, while the 
cost of technology (A and B) decline.  In summary, 

technology trends suggest that web page caching will 
continue be popular, especially for bandwidth-limited 
mobile devices. 

  
How much would it cost to cache all web accesses 

for a year?  If users make 10 requests per hour with a hit 

ratio of H=0.4 the cache gets 4 hits and 6 new objects per 
user hour. For an 8-hour workday, this is 480KB per user 
per day. If H=0.2, then it is 640KB per user per day.  In 

both cases, this is about a penny a day. So, again we 
conclude a simple “cache everything” strategy is a good 
default.  

 
These calculations suggest the simple rule: 
22. Cache web pages if there is any chance they will be 

re-referenced within their lifetime. 

 
Web object lifetimes are bi-modal, or even tri-modal 

in some cases. Studies show median lifetimes to be a few 
days or few tens of days [19].  The average page has a 75-
day lifetime (ignoring the modalities and non-uniform 

access.)  A heuristic that recognized high-velocity pages 
would both improve usability (by not showing stale 
cached pages) and would save cache storage.   

 
A major assumption in these calculations is that 

server performance will continue to be poor: 3 seconds on 

average.  Popular servers tend to be slow because web site 
owners are not investing enough in servers and 
bandwidth.  With declining costs, web site owners could 

invest more and reduce the 3-second response time to less 
than a second.  If that happens, then the web cache’s 
people cost savings will evaporate, and the need for 

caching would be purely to save network bandwidth and 
download time -- which we believe will not be a 
scarce resource except for mobile devices.  
 

6. Summary 
 

Data stores will become huge.  Our biggest 
challenge is to make it easy to access and manage 
them.  Automating all the tasks of data 

organization, accesses, and protection.   
 

Table 3: Shows the benefits of browser and proxy caching 
(pennies saved) assuming people’s time is worth 20$/hr.  
connection cache R_remote 

seconds 
R_local 
seconds 

H 
hit 
rate 

People 
Savings 
¢/page 

LAN proxy  3 0.3 .4 0.6 

LAN browser 3 0.1 .2 0.3 
Modem proxy  5 2 .4 0.7 

Modem browser 5 0.1 .2 0.5 
Mobile proxy  13 10 .4 0.7 

Mobile browser 13 0.1 .2 1.4 

Table 4:  Caching is a very good deal:  cache web pages if they 

will be re-used within the few years. 
 A 

$/10 KB 
download 

network cost

B 
$/10 KB 

storage/mo 

 Time =A/B 
Break-even  

cache 
storage time 

C 
People Cost 
Of download 
$ (table 3)  

Time= 
(A+C)/B 

Break Even 

Internet/LAN 1e-4 8.E-06 13 months 0.02 184 years 
Modem 2E-4 8.E-06 27 months 0.03 307 years 
Wireless 1E-2 2.E-04 44 months 0.07 30 years 

 



    

   

Disk technology is overtaking tapes, but at the same 
time disks are morphing into tape-like devices with 

primarily sequential access to optimize the use of disk 
arms.  Meanwhile, RAM improvements encourage us to 
build machines with massive main memory.  Indeed, the 

main change to Amdahl’s balanced system law is that 
alpha (=MIPS/DRAM size) is rising from 1 to 10. 

 

Network bandwidth is improving at a rate that 
challenges many of our design assumptions.  LAN/SAN 
software is being streamlined so it is no longer the 

bottleneck.  This may well allow a re-centralization of 
computing.  

 

Still, data caching is an important optimization.  Disk 
caching still follows the 5-minute random rule and the 
one-minute sequential rule.  Web caching encourages 

designs that simply cache all pages. 
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