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Rapid advances in computing and communication technologies coupled with the dramatic

growth of the Internet has led to the emergence of a wide variety of multimedia applications

such as distance education, online virtual worlds, immersive telepresence, and scienti�c

visualization. These applications di�er from conventional distributed applications in at

least two ways. First, they involve storage, transmission, and processing of heterogeneous

data types|such as text, imagery, audio, and video|that di�er signi�cantly in their char-

acteristics (e.g., size, data rate, real-time requirements, etc.). Second, unlike conventional

best-e�ort applications, these applications impose diverse performance requirements|for

instance, with respect to timeliness|on the networks and operating systems. Unfortu-

nately, existing networks and operating systems do not di�erentiate between data types

and o�er to all applications a single class of best-e�ort service. Hence, to support emerg-

ing multimedia applications, existing networks and operating systems need to be extended

along several dimensions.

In this chapter, we discuss the issues involved in designing storage servers that can support

such a diversity of applications and data types. First, we describe the speci�c issues that

arise in designing a storage server for digital imagery and then discuss the architectural

choices for designing storage servers that e�ciently manage the storage and retrieval of

multiple data types. Note that since it is di�cult, if not impossible, to foresee requirements

imposed by future applications and data types, a storage server that supports multiple

data types and applications will needs to facilitate easy integration of new application

classes and data types. This dictates that the storage server architecture be extensible,

allowing it to be easily tailored to meet new requirements.

The rest of the chapter is organized as follows. We begin by examining techniques for

placement of digital imagery on a single disk, a disk array, and a hierarchical storage

architecture. We then examine fault-tolerance techniques employed by servers to guarantee

high availability of image data. Next, we examine retrieval techniques employed by storage

servers to e�ciently access images and image sequences. Finally, we examine architectural

issues in incorporating all of these techniques into a general purpose �le system.
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Figure 1 Architectural model of a conventional magnetic disk

1 STORAGE MANAGEMENT

1.1 Single Disk Placement

A storage server divides images into blocks while storing them on disks. In order to explore

the viability of various placement models for storing these blocks on magnetic disks, let us

�rst brie
y review some of the fundamental characteristics of magnetic disks. Generally,

magnetic disks consist of a collection of platters, each of which is composed of a number

of circular recording tracks (see Figure 1). Platters spin at a constant rate. Moreover, the

amount of data recorded on tracks may increase from the inner-most track to the outer-

most track (e.g., in the case of zoned disks). The storage space of each track is divided into

several disk blocks, each consisting of a sequence of physically contiguous sectors. Each

platter is associated with a read/write head that is attached to a common actuator. A

cylinder is a stack of tracks at one actuator position.

In such an environment, the access time of a disk block consists of three components:

seek time, rotational latency, and data transfer time. Seek time is the time needed to

position the disk head on the track containing the desired data, and is a function of the

initial start-up cost to accelerate the disk head as well as the number of tracks that are

traversed. Rotational latency, on the other hand, is the time for the desired data to rotate

under the head before it can be read or written, and is a function of the angular distance

between the current position of the disk head and the location of the desired data, as well

as the rate at which platters spin. Once the disk head is positioned at the desired disk

block, the time to retrieve its contents is referred to as the data transfer time, and is a

function of the disk block size and data transfer rate of the disk.

The placement of data blocks on disks in storage servers is generally governed by either

contiguous, random, or constrained placement policy. Contiguous placement policy re-

quires that all blocks belonging to an image be placed together on the disk. This ensures

that once the disk head is positioned at the beginning of an image, all of its blocks can
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be retrieved without incurring any seek or rotational latency. Unfortunately, the contigu-

ous placement policy results in disk fragmentation in environments with frequent image

creations and deletions. Hence, contiguous placement is well-suited for read-only systems

(such as compact discs, CLVs, etc.), but is less desirable for a dynamic, read-write storage

systems.

Storage servers for read-write systems have traditionally employed random placement of

blocks belonging to an image on disk [21, 39]. This placement scheme does not impose any

restrictions on the relative placement on the disks of blocks belonging to a single image.

This approach eliminates disk fragmentation, albeit at the expense of incurring high seek

time and rotational latency overhead while accessing an image.

Clearly, the contiguous and random placement models represent two ends of a spectrum;

whereas the former does not permit any separation between successive blocks of an image

on disk, the latter does not impose any constraints at all. The constrained or the clustered

placement policy is a generalization of these extremes; it requires the blocks to be clustered

together such that the maximum seek time and rotational latency incurred while accessing

the image is does not exceed a pre-de�ned threshold.

For the random and the constrained placement policies, the overall disk throughput de-

pends on the total seek time and rotational latency incurred per byte accessed. Hence, to

maximize the disk throughput, image servers use as large a block size as possible.

1.2 Multi­disk Placement

Due to the large sizes of images and image sequences (i.e., video streams), most image

and video storage servers utilize disk arrays. Disk arrays achieve high performance by

servicing multiple I/O requests concurrently, and by utilizing several disks to service a

single request in parallel. The performance of a disk array, however, is critically dependent

on the distribution of the workload (i.e., the number of blocks to be retrieved from the

array) among the disks. The higher the imbalance in the workload distribution, the lower

is the throughput of the disk array.

To e�ectively utilize a disk array, a storage server interleaves the storage of each image or

image sequence among the disks in the array. The unit of data interleaving, referred to as

a stripe unit, denotes the maximum amount of logically contiguous data that is stored on a

single disk [9]. Successive stripe units of an object are placed on disks using a round-robin

or random allocation algorithm. In either case, the stripe unit size should be chosen such

that it achieves high overall disk throughput while minimizing the load imbalance across

the disks in the array.
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From Images to Multi­resolution Imagery

The placement technique becomes more challenging if the imagery is encoded using a multi-

resolution encoding algorithm. In general, multi-resolution imagery consists of multiple

layers. Whereas all layers need be retrieved to display the imagery at the highest resolution,

only a subset of the layers need to be retrieved for lower resolution displays. To e�ciently

support the retrieval of such images at di�erent resolutions, the placement algorithm needs

to ensure that the server can access only as much data as needed and no more. To ensure

this property, the placement algorithm should store multi-resolution images such that:

(1) each layer is independently accessible, and (2) the seek and rotational latency while

accessing any subset of the layers is minimized. Whereas the former requirement can be

met by storing layers in separate disk blocks, the latter requirement can be met by storing

these disk blocks adjacent on disk. Observe that this placement policy is general, and can

be used to interleave any multi-resolution image or video stream on the array.

From Images to Video Streams

Consider a disk-array based video server. If the video streams are compressed using a

variable bit-rate (VBR) compression algorithm, then the sizes of frames (or images) will

vary. Hence, if the server stores these video streams on disks using �xed size stripe units,

then each stripe unit will contain a variable number of frames. On the other hand, if

each stripe unit contains a �xed number of frames (and hence data for a �xed playback

duration), then the stripe units will have variable sizes. Thus, depending on the striping

policy, retrieving a �xed number of frames will require the server to access a �xed number

of variable-size blocks or a variable number of �xed-size blocks [4, 26, 45].

Due to the periodic nature of video playback, most video servers service clients by proceed-

ing in terms of periodic rounds. During each round, the server retrieves a �xed number

of video frames (or images) for each client. To ensure continuous playback, the number

of frames accessed for each client during a round must be su�cient to meet its playback

requirements. In such an architecture, a server that employs variable-size stripe units (or

�xed-time stripe units) accesses a �xed number of stripe units during each round. This

uniformity of access, when coupled with the sequential and periodic nature of video re-

trieval, enables the server to balance load across the disks in the array. This e�ciency,

albeit, comes at the expense of increased complexity of storage space management. The

placement policy that utilizes �xed-size stripe units, on the other hand, simpli�es storage

space management but yields higher load imbalance across the disks.

1.3 Utilizing Storage Hierarchies

The preceding discussion has focused on �xed disks as the storage medium for image and

video servers. This is primarily because disks provide high throughput and low latency

relative to other storage media such as tape libraries, optical juke boxes, etc. The startup
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latency for devices such as tape libraries is substantial since it requires mechanical loading

of the appropriate tape into a reader station. On the other hand, these devices o�er very

high capacities and a substantially lower storage cost (per megabyte).

In order to construct a cost-e�ective image and video storage system that provides ade-

quate throughput, it is logical to use a hierarchy of storage devices [10, 18, 23, 30]. There

are several possible strategies for managing this storage hierarchy, with di�erent tech-

niques for placement, replacement, etc. In one scenario, a relatively small set of frequently

requested images and videos are placed on disks, and the large set of less frequently re-

quested data objects are stored in optical juke boxes or tape libraries. In this storage

hierarchy, there are several alternatives for managing the disk system. The most common

architecture is the one in which disks are used as a staging area (cache) for the secondary

storage devices and the entire image and video �les are moved from the secondary stor-

age to the disk. It is then possible to apply traditional cache management techniques to

manage the content of the disk array.

For very large-scale servers, it is also possible to use an array of juke boxes or tape readers

[30]. In such a system, images and video objects may need to be striped across these

tertiary storage devices [7]. Whereas striping can improve I/O throughput by reading

from multiple tape drives in parallel, it can also increase contention for drives (since each

request accesses all drives). Studies have shown that such systems must carefully balance

these tradeo�s by choosing an appropriate degree of striping for a given workload [7, 8].

2 FAULT TOLERANCE

Most image and video servers are based on large disk arrays, and hence the ability to

tolerate disk failures is central to the design of such servers. The design of fault-tolerant

storage systems has been a topic of much research and development over the past decade [3,

22]. In most of these systems, fault-tolerance is achieved either by disk mirroring [2] or

parity encoding [11, 27]. Disk mirroring achieves fault-tolerance by duplicating data on

separate disks (and thereby incurs 100% storage space overhead). Parity encoding, on

the other hand, reduces the overhead considerably by employing error correcting codes.

For instance, in a RAID level 5 disk array consisting of D disks, parity computed over

data stored across (D � 1) disks is stored on another disk (e.g., the left-symmetric parity

assignment shown in Figure 2(a)) [12, 19, 27]. In such architectures, if one of the disks

fails, the data on the failed disk is recovered by taking an exclusive-or operation on the

data and parity blocks stored on the surviving disks. That is, each user access to a block

on the failed disk causes one request to be sent to each of the surviving disks. Thus, if the

system is load balanced prior to disk failure, the surviving disks would observe at least

twice as many requests in the presence of a failure [15].
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Figure 2 Left-symmetric and declustered parity organizations for RAID architecture.
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The declustered parity disk array organization [14, 24, 25] addresses this problem by trading

some of the array's capacity for improved performance in the presence of disk failures.

Speci�cally, it requires that each parity block protect some smaller number of data blocks

(say (G � 1)). By appropriately distributing the parity information across all the D

disks in the array, such a policy ensures that each surviving disk would see an on-the-
y

reconstruction load increase of (G � 1)=(D � 1) instead of (D � 1)=(D � 1) = 100% (see

Figure 2(b)).

Parity-based failure recovery techniques treat data stored on the array as an uninterpreted

sequence of bits and do not exploit any of its characteristics. Furthermore, these techniques

assume that perfect reconstruction of the data stored on the failed disk is required for all

applications. A storage server can lower substantially the failure recovery overhead by

exploiting the semantics of the stored data. For instance, instead of perfectly recovering

image data stored on the failed disk using error-correcting codes, a server can exploit

human perceptual tolerances and the inherent redundancies in images to approximately

reconstruct lost image data. In such a server, each image is partitioned into sub-images

and if the sub-images are stored on di�erent disks, then a single disk failure will result in

the loss of fractions of several images. In the simplest case, if the sub-images are created

in the pixel domain (i.e., prior to compression) such that none of the immediate neighbors

of a pixel in the image belong to the same sub-image, then even in the presence of a single

disk failure, all the neighbors of the lost pixels will be available. In this case, the high

degree of correlation between neighboring pixels will make it possible to reconstruct a

reasonable approximation of the original image. Moreover, no additional information will

have to be retrieved from any of the surviving disks for recovery.

Although conceptually elegant, such pre-compression image partitioning techniques sig-

ni�cantly reduce the correlation between the pixels assigned to the same sub-image, and

hence adversely a�ect image compression e�ciency [29, 40]. The resultant increase in the

bit-rate requirement may impose higher load on each disk in the array even during the

fault-free state, thereby reducing the number of video streams that can be simultaneously
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retrieved from the server. In what follows, we �rst present a loss-resilient JPEG ( LRJ)

compression algorithm that addresses the limitations of the pre-compression image par-

titioning technique, and then integrate it with placement techniques for disk arrays to

derive a self-recovering disk array architecture for images and video streams.

2.1 Loss­Resilient JPEG (LRJ) Algorithm

Since human perception is less sensitive to high frequency components of the spectral

energy in an image, most compression algorithms transform images into the frequency do-

main so as to separate low and high frequency components. For instance, the JPEG com-

pression standard fragments image data into a sequence of 8x8 pixel blocks and transform

them into the frequency domain using discrete cosine transform (DCT). DCT uncorrelates

each pixel block into an 8x8 array of coe�cients such that most of the spectral energy is

packed in the fewest number of low frequency coe�cients. Whereas the lowest frequency

coe�cient (referred to as the DC coe�cient) captures the average brightness of the spatial

block, the remaining set of 63 coe�cients (referred to as the AC coe�cients) capture the

details within the 8x8 pixel block. The DC coe�cients of successive blocks are di�erence

encoded independent of the AC coe�cients. Within each block, the AC coe�cients are

quantized to remove high frequency components, scanned in a zig-zag manner to obtain an

approximate ordering from lowest to highest frequency, and �nally run length and entropy

encoded. Figure 3 depicts the main steps involved in the JPEG compression algorithm

[28].

The loss-resilient JPEG (LRJ) algorithm, that we present in this section, is an enhance-

ment of the JPEG compression algorithm, and is motivated by the following two observa-

tions:
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Since the DC coe�cients capture the average brightness of each 8x8 pixel block and

since the average brightness of pixels gradually changes across most images, the DC

coe�cients of neighboring 8x8 pixel blocks are correlated. Consequently, the value of

DC coe�cient of a block can be reasonably approximated by extrapolating from the

DC coe�cients of the neighboring blocks.

To formally capture this observation, consider an image containing nrow � ncol

of 8x8 pixel blocks. Let us de�ne the 8-neighborhood of a block at location (x; y)

(denoted by B(x; y)) as the set:

N

8

(B(x; y)) = fB(i; j) j jx� ij � 1 orjy � jj � 1g

Then, the DC coe�cient of the B(x; y) can be approximated as:

DC

B(x;y)

=

1

8

�

X

B

(i;j)

2N

8

(B(x;y))

DC

B(i;j)

where DC

B(i;j)

denotes the DC coe�cient of block B(i; j).

Due to the very nature of DCT, the set of AC coe�cients yielded for each 8x8 block

are uncorrelated. Moreover, since DCT packs the most amount of spectral energy into

a few low frequency coe�cients, quantizing the the set of AC coe�cients (by using a

user-de�ned normalization array) yields many zeroes, especially at higher frequencies.

Consequently, recovering a block by simply substituting a zero for each of the lost AC

coe�cient is generally su�cient to obtain a reasonable approximation of the original

image (at least as long as the number of lost coe�cients are small and are scattered

throughout the block).

Thus, even when parts of a compressed image have been lost, a reasonable recovery is pos-

sible if: (1) the image in the frequency domain is partitioned into a set of sub-images such

that none of the DC coe�cients in the 8-neighborhood of a block belong to the same sub-

image, and (2) the AC coe�cients of a block are scattered amongst multiple sub-images.

Note that this is distinct from the pre-compression image partitioning technique since the

sub-images are created in the frequency domain, as opposed to in the pixel domain. In

fact, as we shall demonstrate later, it is this feature of the LRJ compression algorithm

that enables reasonable failure recovery without incurring any signi�cant degradation in

compression e�ciency. To clearly de�ne the LRJ compression algorithm, we will �rst

determine the degree of image partitioning (i.e., the number of sub-images that must be

created so as to satisfy the above requirement), and then de�ne a method for scattering

the AC coe�cients.

Determining the Degree of Image Partitioning

It has been shown that a necessary and su�cient condition to ensure that none of the

blocks contained in a sub-image are in the 8-neighborhood of each other, the image must
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be partitioned into 4 sub-images [44]. Notice that when an image is partitioned into 4

sub-images, each sub-image contains 25% of the image data in the frequency domain.

Consequently, if the information contained in a sub-image is not available, the image will

have to be reconstructed from the remaining 75% of the data. Since the quality of the

reconstructed image is directly dependent on the amount of original image data available

for reconstruction, increasing the degree of image partitioning improves the quality of the

reconstructed images. However, as we shall point out later, increasing the degree of image

partitioning decreases the correlation between the DC coe�cients of the blocks assigned

to the same sub-image, and thereby deteriorates the compression e�ciency. Hence, the

degree of image partitioning must be chosen so as to simultaneously optimize the quality

of reconstructed image and the compression e�ciency.

Scrambling AC Coefficients

To enable better recovery, the AC coe�cients of a block should be scattered amongst

multiple sub-images. To achieve this objective, the LRJ compression algorithm employs a

scrambling technique which when given a set of N blocks of AC coe�cients, creates a new

set of N blocks such that the AC coe�cients from each of the input blocks are equally

distributed amongst all of the output blocks.

To precisely describe the scrambling technique, let us denote the set of N blocks of the

original image as O

i

, i 2 [0; N � 1], and the new set of N blocks created as

c

O

i

. Assuming

that the AC coe�cients are numbered from left-to-right in a row-major order and that

AC

k

O

i

denotes the k

th

AC coe�cient (k 2 [1; 63]) of blockO

i

, then the scrambling operation

assigns AC

k

O

i

to be the k

th

coe�cient of block

c

O

j

where j = (i + k) mod N . Thus, each

resulting block contains exactly

64

N

coe�cients of each of the original blocks. Speci�cally,

one of the blocks contain the DC coe�cient and

�

64

N

� 1

�

AC coe�cients, and all the

remaining (N � 1) blocks contain

�

64

N

�

AC coe�cients. Figure 4 illustrates the operation

of scrambling AC coe�cients of four 4x4 blocks.

Combining Image Partitioning and Scrambling Techniques

Given that each image in a video stream is being partitioned into N(N � 4) sub-images,

the LRJ compression algorithm involves two steps: (1) select a set of N blocks from the

original image, and scramble the the set of AC coe�cients within the blocks to create

a new set of N blocks; and (2) assign the resulting blocks to sub-images (one block per

sub-image) such that none of the DC coe�cients contained in a sub-image belong to blocks

that are in the 8-neighborhood of each other. Since N � 4, the latter objective can be

achieved by assigning the scrambled blocks to sub-images in a round-robin manner, and

by ensuring that the assignment of the �rst block from each row is o�set by 2 sub-images

from the corresponding block in the previous row.
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Notice that since each invokation of the scrambling technique requires N blocks from the

same row of the image, the number of blocks within each row of the original image must

be an integral multiple of N . In the event that this condition is not met for the original

image, each row of blocks may required to be padded with additional \zero" blocks (i.e.,

blocks with the DC as well as all of the AC coe�cients set to zero). Since a sequence of

zeroes can be e�ciently run-length and hu�man encoded, the addition of such zero blocks

does not yield any noticeable increase in the size of the compressed image.

Once all the blocks within the image have been processed, each of the N sub-images can

be independently encoded. Speci�cally, the DC coe�cients within each sub-image are

encoded with a loseless DPCM scheme using the DC coe�cient from the previous block

as a 1-D predictor. Similarly, the 2-D array of 63 AC coe�cients within each block is

formatted as a 1-D vector using a zigzag reordering, and then run-length and hu�man

encoded. Note that the hu�man tables utilized for this purpose can either be optimized

over each individual sub-image or over the entire image. Whereas the former approach

will require a hu�man table to be stored with each sub-image, the latter requires a single

hu�man table to be stored for an entire image. However, in such a scenario, to guarantee

the availability of the hu�man table even when one or more of the sub-images are not

available, it must be replicated across multiple sub-images.

At the time of decompression, once each sub-image has been run-length and hu�man de-

coded, the LRJ algorithm employs an unscrambler to recover blocks of the original image

from the corresponding blocks of the sub-images. In the event that the information con-

tained in a sub-image is not available, the unscrambling module also performs a predictive

reconstruction of the lost DC coe�cients from the DC coe�cients of the neighboring 8x8

blocks. Lost AC coe�cients, on the other hand, are replaced by zeroes. Since the scram-

bler module employed by the encoder ensures that each block within a sub-image contains
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coe�cients from several blocks of the original image, the artifacts yielded by such a re-

covery mechanism are dispersed over the entire reconstructed image, thereby signi�cantly

improving the visual quality of the image.

Observe that since successive blocks within a sub-image do not belong to the 8-neighborhood

of each other, the correlation between their DC coe�cients is smaller than the neighboring

DC coe�cients in the original image. The reduced correlation diminishes the e�ciency of

DPCM encoding of DC coe�cients, and hence increases the total size of the compressed

image (as compared to the corresponding JPEG image). The e�ect of scattering AC

coe�cients of a block across several sub-images, on the other hand, does not have any

signi�cant impact on the compressed image size. This is because, due to the very nature

of DCT, AC coe�cients are uncorrelated. Moreover, a large fraction of the quantized AC

coe�cients are zeroes. Since the scattering algorithm does not alter the relative position

of an AC coe�cient within the zig-zag ordering, the e�ect of scattering on the e�ciency

of run-length and hu�man encoding is minimal. Thus, the increase in compressed image

size yielded by the LRJ algorithm can be mostly attributed to the need for replicating

hu�man tables and the uncorrelation of successive DC coe�cients.

Finally, the failure recovery techniques described in this section can be extended image

sequences as well. Since compression algorithms for image sequences (e.g., MPEG) exploit

both spatial and temporal redundancies, doing so will require techniques that recover lost

spatial information (DCT blocks) as well as temporal information such motion vectors

[35].

2.2 Self­Recovering Array of Disks (SRAD)

The LRJ compression algorithm, when applied to a sequence of images constituting a video

stream yields N sequences of sub-images. We refer to each such sequence as sub-stream.

To ensure e�ective recovery, the server must organize each of the sub-streams on the array

such that the disks over which the sub-streams are striped do not overlap (i.e., even in the

presence of a single disk failure, at least (N � 1) sub-streams are available). We refer to

a disk array architecture that employs such placement methodologies as a Self-Recovering

Array of Disks (SRAD). A careful analysis of this process of recovering from disk failure

illustrates the following salient characteristics of the SRAD architecture:

Since each image in the video stream is reconstructed by extrapolating information

retrieved from the surviving disks, the failure recovery process does not impose any

additional load on the disk array.

Since the recovery of lost image data is integrated with the decompression algorithm,

the reconstruction process is carried out at client sites. This is an important de-

parture from the conventional RAID technology | distributing the functionality of
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failure recovery to client sites will signi�cantly enhance the scalability of multi-disk

multimedia servers.

Since the recovery process only exploits the inherent redundancy in imagery, client

sites will be able to reconstruct a video stream even in the presence of multiple disk

failures. The quality of the reconstructed image, albeit, will degrade with increase in

the number of simultaneously failed disks (i.e., SRAD supports graceful degradation

in the image quality with increase in the number of failed disks).

Since the cause of the data loss is irrelevant to the recovery algorithm, the unscram-

bling algorithms in LRJ can be adapted to mask packet losses due to network con-

gestion as well.

1

Observe also that although the quality of the recovered image in the presence of a single

disk failure is acceptable for most applications, to prevent any accumulation of errors across

multiple disk failures, the server must also maintain parity information to perfectly recover

the contents of the failed disk onto a spare disk. In such a scenario, on-line reconstruction

onto a spare disk can proceed simply by issuing low-priority read requests to access media

blocks from each of the surviving disks [15]. By assigning low priority to each read request

issued by the on-line reconstruction process, the server can ensure that the performance

guarantees provided to all the clients are met even in the presence of disk failures.

3 RETRIEVAL TECHNIQUES

Traditionally, storage servers have employed two fundamentally di�erent architectures for

the storage and retrieval of images and image sequences. Storage servers that employ

the client-pull architecture retrieve data from disks only in response to an explicit client

request. Servers that employ the server-push or streaming architecture, on the other hand,

periodically retrieve and transmit data to clients without explicit client requests. Figure

5 illustrates these two architectures. From the perspective of retrieving images and image

sequences, both architectures have their advantages and disadvantages.

Due to its request-response nature, the client-pull architecture is inherently suitable for

one-time requests for an image or a portion of an image (e.g., the low-resolution com-

ponent of a multi-resolution image). Adapting the client-pull architecture for retrieving

image sequences, however, is di�cult. This is because maintaining continuity of playback

for an image sequence requires that retrieval requests be issued su�ciently in advance of

the playback instant. To do so, applications must estimate the response time of the server

and issue requests appropriately. Since the response time varies dynamically depending

on the server and the network load, client-pull based applications that access image se-

quences are non-trivial to develop [37]. Alternatively, rather than estimating the response

1

Several techniques have been proposed which scramble media streams prior to network transmission

to enable approximate reconstruction in case of packet losses [6, 29].
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Figure 5 Client-pull and server-push architectures for retrieving data.

time prior to each request, a client can issue requests based on the worst case response

time; however, such a strategy can signi�cantly increase bu�er space requirements at the

client. The server-push architecture does not su�er from these disadvantages, and hence,

is better suited for retrieving image sequences. In such an architecture, the server ex-

ploits the sequential nature of data playback by servicing clients in periodic rounds. In

each round, the server determines the amount of data that needs to be retrieved for each

client and issues read requests for these clients. Data retrieved in a round is bu�ered and

transmitted to clients in the next round. Due to the round-based nature of data retrieval,

clients need not send periodic requests for data retrieval, and hence, this architecture is

suitable for e�ciently retrieving image sequences. The server-push architecture, however,

is inappropriate for aperiodic or one-time requests for image data.

Whereas conventional applications are best-e�ort in nature, certain image applications

need performance guarantees from the storage server. For instance, to maintain continu-

ity of playback for image sequences, a storage server must guarantee that it will retrieve

and transmit images at a certain rate. Retrieval of images for applications such as virtual

reality impose bounds on the server response time. To provide performance guarantees

to such applications, a storage server must employ resource reservation techniques (also

referred to as admission control algorithms). Typically, such techniques: (i) determine

the resource requirements for each new client, (ii) admit the client only if the resource

available at the server are su�cient to meet its resource requirements. Admission control

algorithms can provide either deterministic or statistical guarantees, depending on whether

they reserve resources based on the worst case load or a probability distribution of the load

[43, 42]. Regardless of the nature of guarantees provided by admission control algorithms,

designing such algorithms for the server-push architecture is simple| the sequential and

periodic nature of data retrieval enables the server to accurately predict the data rate

requirements of each client and reserve resources appropriately. Designing admission con-

trol algorithms for client-pull architectures, on the other hand, is challenging (since the

aperiodic nature of client requests makes it di�cult to determine and characterize the

resource requirements of a client).
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A fundamental advantage of the client-pull architecture is that it is inherently suitable for

supporting adaptive applications with dynamically changing resource availability. This

is because with changes in resource availability, the client can alter its request rate to

keep pace with the server. For instance, if the load on CPU increases or the response

time estimates indicate that the network is congested, an adaptive application can reduce

its bandwidth requirements by requesting only a subset of data, or by requesting the

delivery of a lower resolution version of the same object. The server-push architecture,

on the other hand, does not assume any feedback from the clients. In fact, admission of

a client for service constitutes a \contract" between the server and the client: the server

guarantees that it will access and transmit su�cient information during each round so as

to meet the data rate requirements of the client; and the client guarantees that it will

keep pace with the server by consuming all the data transmitted by a server during a

round within a round duration. Any change in resource availability or client requirements

necessitates a renegotiation of this contract, making the design of the server as well as

adaptive applications more complex.

Finally, regardless of the architecture, all storage servers employ disk scheduling algo-

rithms to improve I/O performance through intelligent scheduling of disk requests. Disk

scheduling algorithms can be broadly divided into two classes: those optimized to ser-

vice best-e�ort requests (e.g., SCAN, Shortest Access Time First (SATF) [38, 17, 33]),

and those optimized to service real-time requests (e.g., Earliest Deadline SCAN, Feasible

Deadline SCAN [1, 5, 31, 46]). Whereas the former class of algorithms attempts to improve

the performance of best-e�ort requests by reducing disk seek and rotational latency over-

heads, the latter class attempts to meet deadlines of real-time requests while reducing disk

overheads. In homogeneous environments, depending on the application requirements, a

storage server can employ an scheduling algorithm from one of these two classes. Neither

class of algorithms is appropriate for heterogeneous computing environments consisting

of a mix of best-e�ort and real-time applications. For such environments, sophisticated

disk schedulers that (i) support multiple application classes simultaneously, (ii) allocate

disk bandwidth among classes in a predictable manner, and (iii) align the service provided

within each class with application needs [34] are more appropriate.

4 ARCHITECTURAL ISSUES

Sections 1, 2 and 3 examined placement, failure recovery, and retrieval techniques that

are suitable for image and video servers. In this section, we examine how all of these

techniques can be incorporated into a general-purpose �le system and the implications of

doing so on the �le system architecture.

There are two methodologies for designing �le systems that support simultaneously sup-

port heterogeneous data types and applications: (i) a partitioned architecture that consists

of multiple component �le servers, each optimized for a particular data type (and glued
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Figure 6 Partitioned and integrated �le servers supporting text/images and video ap-

plications. The partitioned architecture divides the server resources among multiple com-

ponent �le systems, and employs an integration layer that provides a uniform mechanism

to access �les. The integrated architecture employs a single server that multiplexes all the

resources among multiple application classes.

together by an integration layer that provides a uniform interface to access these �les);

and (ii) an integrated architecture that consists of a single �le server that stores all data

types. Figure 6 illustrates these architectures.

Since techniques for building �le servers optimized for a single data type are well known

[21, 41], partitioned �le systems are easy to design and implement. In such �le systems,

resources (disks, bu�ers) are statically partitioned among component �le servers. This

causes requests accessing di�erent component servers to access mutually exclusive set of

resources, thereby preventing interference between user requests (e.g., servicing best-e�ort

requests does not violate deadlines of real-time requests). The partitioned architecture,

however, has the following limitations:

Static partitioning of resources in such servers is typically governed by the expected

workload on each component server. If the observed workload deviates signi�cantly

from the expected, then repartitioning of resources may be necessary. Repartitioning

of resources such as disks and bu�ers is tedious and may require the system to be

taken o�-line [16]. An alternative to repartitioning is to add new resources (e.g.,

disks) to the server, which causes resources in under-utilized partitions to be wasted.

The storage space requirements of �les stored on a component �le server can be sig-

ni�cantly di�erent from their bandwidth requirements. In such a scenario, allocation

of disks to a component server will be governed by the maximum of the two values.

This can lead to under-utilization of either storage space or disk bandwidth on the

server.
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The main feature of the integrated �le system architecture is dynamic resource allocation:

storage space, disk bandwidth, and bu�er space are allocated to data types on demand;

static partitioning of these resources is not required. This feature has several bene�ts.

First, by co-locating a set of �les with large storage space but small bandwidth require-

ments with another set of �les with small storage space but large bandwidth requirements,

this architecture yields better resource utilization. Second, since resources are allocated

on demand, it can easily accommodate dynamic changes in access patterns. Finally, since

all the resources are shared by all applications, more resources are available to service each

request, which in turn improves the performance.

Such improvements in the resource utilization, however, come at the expense of increased

complexity in the design of the �le system. This is because, wide disparity in the applica-

tions/data requirements dictate that a single storage management technique or policy is

often inadequate to meet the requirements of all applications and data types. For instance,

the best-e�ort service model, although adequate for many applications, is clearly unsuit-

able for applications and data types that impose timeliness constraints. Consequently, a

key principle in designing integrated �le systems is that they should enable the coexistence

of multiple data type-speci�c and application-speci�c policies. For instance, to align the

service its provides to the needs of individual data types, an integrated �le system should

enable the coexistence of data type-speci�c policies for common �le system tasks such as

placement, meta data management, caching, and failure recovery. Similarly, it may need to

support multiple retrieval architectures |such as client-pull and server-push | as well as

multiple service classes | such as interactive best-e�ort, soft real-time, and throughput-

intensive best-e�ort. Enabling the co-existence of such diverse techniques requires the

development of mechanisms that achieve high resource utilization through sharing while

isolating the service exported to the di�erent application classes [36].

Figure 7 depicts a two-layer architecture for implementing such an integrated �le system.

This architecture separates data type- and application-independent mechanisms from spe-

ci�c policies; and implements these mechanisms and policies in separate layers. The lower

layer implements core �le system mechanisms that are required for all applications and

data types. The upper layer then employs these mechanisms to instantiate speci�c po-

lices, each tailored for a particular data type or an application class; multiple policies

can coexist since the mechanism in the lower layer are designed to multiplex resources

among various classes. For instance, in case of placement, the lower layer may consist of a

storage manager that can allocate a disk block of any size, while the upper layer uses the

storage manager to instantiate di�erent placement policies for images, images sequences,

and textual data (each policy can tailor the block size used to store �les based on the

requirements of the data type). Observe that, such a two layer architecture is inherently

extensible|implementing a powerful set of mechanisms in the lower layer enables new

application and data types to be supported by adding appropriate policies to the upper

layer.

Whereas the storage servers employing the partitioned architecture were common in the

early nineties (due to the concurrent and independent development of conventional �le
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Figure 7 A two layer �le system architecture that separates mechanisms from policies.

systems and video-on-demand servers), integrated �le systems have received signi�cant

attention recently. Several research projects such as Symphony [36], Fellini [20] and Neme-

sis [32], as well as commercial e�orts such as IBM's Tiger Shark [13] and SGI's XFS [16]

have resulted in storage servers employing the integrated architecture.

5 CONCLUDING REMARKS

Emerging multimedia applications di�er from conventional distributed applications in the

type of data they store, transmit, and process; and also in the requirements they impose

on the networks and operating systems. In this chapter, we focussed on the problem of

designing storage servers that can meet the requirements of these emerging applications.

We described the techniques for designing a storage server for digital imagery and video

streams and then examined the architectural issues in incorporating these techniques into

a general purpose �le system.

We conclude by noting that a Quality-of-Service (QoS) aware �le system is just one piece

of the end-to-end infrastructure required to support emerging distributed applications;

to provide to the applications the service they require, such �le systems will need to be

integrated with appropriate networks and operating systems.
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