
Dissemination of Dynamic Data on the Internet

Krithi Ramamritham

Pavan Deolasee

Amol Katkar

Ankur Panchbudhe

Prashant Shenoy

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Mumbai, India 400076

and

Department of Computer Science

University of Massachusetts

Amherst MA 01003

Email: krithi@cse.iitb.ernet.in

Abstract. Dynamic data is data which varies rapidly and unpredictably. This

kind of data is generally used in on-line decision making and hence needs to

be delivered to its users comforming to certain time or value based application-

specific requirements. The main issue in the dissemination of dynamic web data

such as stock prices, sports scores or weather data is the maintenance of tempo-

ral coherency within the user specified bounds. Since most of the web servers

adhere to the HTTP protocol, clients need to frequently pull the data depending

on the changes in the data and user’s coherency requirements. In contrast, servers

that possess push capability maintain state information pertaining to user’s re-

quirements and push only those changes that are of interest to a user. These two

canonical techniques have complementary properties. In pure pull approach, the

level of temporal coherency maintained is low while in pure push approach it is

very high, but this is at the cost of high state space at the server which results

in a less resilient and less scalable system. Communication overheads in pull-

based schemes are high as compared to push-based schemes, since the number

of messages exchanged in the pull approach are higher than in push based ap-

proach. Based on these observations, this paper explores different approaches to

combining the two approaches so as to harness the benefits of both approaches.

1 Dynamic Data Dissemination

Dynamic data can be defined by the way the date changes. First of all it

changes rapidly, changes can even be of the order of one change every

few seconds; it also changes unpredictably, making it very hard to use

simple prediction techniques or time-series analysis. Few examples of

dynamic data are stock quotes, sports scores and traffic or weather data.

Such of kind of data is generally used in decision making (for example,

stock trading or weather forecasting) and hence the timeliness of delivery

of this data to its users becomes very important.

Recent studies have shown that an increasing fraction of the data on

the world wide web is dynamic. Web proxy caches that are deployed

to improve user response times must track such dynamic data so as to

provide users with temporally coherent information. The coherency re-

quirements on a dynamic data item depends on the nature of the item and

user tolerances. To illustrate, a user may be willing to receive sports and

news information that may be out-of-sync by a few minutes with respec-

t to the server, but may desire stronger coherency requirements on data

items such as stock prices. A proxy can exploit user-specified coherency

requirements by fetching and disseminating only those changes that are

of interest and ignoring intermediate changes. For instance, a user who

is interested in changes of more than a dollar for a particular stock price

need not be notified of smaller intermediate changes. The problem can

be termed as the problem of maintaining desired temporal coherency be-

tween the source and the user, with the proxy substantially improving the

access time, overheads and coherency.

We study mechanisms to obtain timely updates from web sources,

based on the dynamics of the data and the users’ need for temporal accu-

racy, by judiciously combining push and pull technologies and by using

proxies to disseminate data within acceptable tolerance. Specifically, the

proxies (maintained by client organizations) ensure the temporal coher-

ence of data, within the tolerance specified, by tracking the amount of

change in the web sources. Based on the changes observed and the tol-

erance specified by the different clients interested in the data, the proxy

determines the time for pulling from the server next, and pushes newly

acquired data to the clients according to their temporal coherency re-

quirements.

Of course, if the web sources themselves were aware of the clients’

temporal coherency requirements and they were endowed with push ca-

pability, then we can avoid the need for mechanisms such as the ones

proposed here. Unfortunately, this can lead to scalability problems and

may also introduce the need to make changes to existing web servers

(which do not have push capabilities) or to the HTTP protocol.

2 Maintaining Temporal Coherency

Consider a proxy that caches several time-varying data items. To main-

tain coherency of the cached data, each cached item must be periodically

refreshed with the copy at the server. For highly dynamic data it may not

be feasible to maintain strong cache consistency. An attempt to maintain

strong cache consistency will result in either heavy network overload or

server load. We can exploit the fact that the user may not be interested

in every change happening at the source to reduce network utilization as

well as server overload.

We assume that a user specifies a temporal coherency requirement

 for each cached item of interest. The value of denotes the maximum

permissible deviation of the cached value from the value at the server and

thus constitutes the user-specified tolerance. Observe that can be spec-

ified in units of time (e.g., the item should never be out-of-sync by more

than 5 minutes) or value (e.g., the stock price should never be out-of-sync

by more than a dollar). As shown in figure 1, the proxy sits between the

user and the server, and handles all communication with the server based

on the user constraint. Given the value of , the proxy can use push- or

pull-based techniques to ensure that that the temporal coherency require-

ment (tr) is satisfied.

SERVER PROXY USER
PushPush/Pull

Fig. 1. Proxy-based Model

The fidelity of the data seen by users depends on the degree to which

their coherency needs are met. We define the fidelity f observed by a user

to be the total length of time that the above inequality holds (normalized

by the total length of the observations). In addition to specifying the co-

herency requirement , users can also specify their fidelity requirement f

for each data item so that an algorithm that is capable of handling users’

fidelity requirements (as well as trs) can adapt to users’ fidelity needs.

Traditionally the problem of maintaining cache consistency has been

addressed either by server- or client-driven approaches. In client-driven

approach, cache manager contacts the source periodically to check validi-

ty of the cached data. We call this period Time-To-Refresh or TTR. Choos-

ing very small TTR values help in keeping cache consistent although at

the cost of bandwidth. On the other hand, very large TTR values may re-

duce network utilization but only at the cost of reduced fidelity. Polling-

each-time and Adaptive TTR are examples of client-driven techniques.

Clearly these techniques are based on the assumption that an optimum

TTR value can be predicted using some statistical information. This may

not be true for highly dynamic data which is changing unpredictably and

independently. The other class of algorithms are server-driven wherein

server takes the responsibility of either invalidating or updating the prox-

y cache. Sending invalidation messages or pushing recent changes are

examples of such techniques.

Also because of dynamics of the data, none of the above techniques

can deliver high fidelity with optimum resource utilization. In the fol-

lowing sections we explain how one can use user specified constraints to

offer high fidelity with efficient use of available resources.

3 The Pull Approach

The Pull approach is the most traditional approach for maintaining the

temporal coherency of caches caching dynamic data. In this model, each

data item is assigned a certain TTR when the data object is brought in

the cache. Since the arrival of the data item and until time equal to TTR

elapses, all the requests for the data object are satisfied from the cache

without looking up the values in the data sources. Thus in this approach,

the proxy is responsible for obtaining the data from the server. The proxy

issues a GET request to the server and the server just delivers the required

data.

3.1 Periodic Pull

Most of the current applications do WebCasting [16] i.e., periodic polling

as shown in figure 3.1. The user registers with the proxy which does “we-

bcasting” with a constraint, the proxy periodically polls the server for this

data periodically and whenever a change of user interest has occurred, it

SERVER
Push

PROXY USER

Client System

Periodic Pulls

Fig. 2. Periodic Polling aka WebCasting

pushes the change to the user. This approach is equivalent to setting the

TTR value of a cached item statically. Thus, the proxies obtain data from

data sources with such a high frequency that the user gets the feel that

the data is being pushed by the server only. However, this can lead to a

very high network overheads in case the polling period is too low or may

cause the user to miss some changes of interest if the polling period is

too high. Clearly, this technique is useful only if rate of change of data

is constant or relatively low (such as news). If the rate of change itself

is varying, then this technique of assigning frequency apriori is not suit-

able (as in the case of stock quotes). But still, currently this is the most

popular data delivery technique as it can be purely web-based (because

of HTTP) and does not need any special resources (like push capability

in servers or modification of HTTP).

3.2 Aperiodic Pull

SERVER PROXY USER
PushPull

S(t) P(t) U(t)

|U(t)-S(t)| <= c

c is user’s coherency requirement(constraint)

Fig. 3. Adaptive Polling

Since dynamic data changes independently and unpredictably, we

cannot use standard prediction and forecasting algorithms for predicting

the next TTR value to be assigned to the data object. A new method for

assigning TTR values is given in [15]. Given a user’s coherency require-

ment, this technique allows a proxy to adaptively vary the TTR value

based on the rate of change of the data item. The TTR decreases dynam-

ically when a data item starts changing rapidly and increases when a hot

data item becomes cold. To achieve this objective, the Adaptive TTR ap-

proach takes into account (a) static bounds so that TTR values are not set

too high or too low, (b) the most rapid changes that have occurred so far

and (c) most recent changes to the polled data.

In what follows, we use D
0

, D
1

, : : :, D
l

to denote the values of a data

item D at the server in chronological order. Thus, D
l

is the most recent

value data item D.

The adaptive TTR is computed as:

TTR

adaptive

= Max(TTR

min

; Min(TTR

max

;

a� TTR

hr

+ (1� a)� TTR

dyn

))

where

– [TTR

min

; TTR

max

℄ denote the range within which TTR values are

bound.

– TTR

hr

denotes the most conservative, i.e., smallest, TTR value used

so far. If the next TTR is set to TTR

hr

, temporal coherency will be

maintained even if the maximum rate of change observed so far re-

curs. However, this TTR is pessimistic since it is based on worst case

rate of change at the source. If this worst case rapid change occur for

only a small duration of time, then this approach is likely to waste a

lot of bandwidth especially if the user can handle some loss of fideli-

ty.

– TTR

dyn

is a learning based TTR estimate founded on the assumption

that the dynamics of the last few (two, in the case of the formula

below) recent changes are likely to be reflective of changes in the

near future.

TTR

dyn

= (w � TTR

estimate

) + ((1� w)� TTR

latest

)

where

� TTR

estimate

is an estimate of the TTR value, based on the most

recent change to the data.

TTR

estimate

=

TTR

latest

jD

latest

�D

penultimate

j

�

If the recent rate of change persists, TTR
estimate

will ensure that

changes which are greater than or equal to are not missed.

� weight w (0:5 � w < 1, initially 0.5) is a measure of the relative

change between the recent and the old changes, and is adjusted

by the system so that we have the recency effect, i.e., more recent

changes affect the new TTR more than the older changes.

– 0 � a � 1 is a parameter of the algorithm and can be adjusted dy-

namically depending on the fidelity desired, with a higher fidelity

demanding a higher value of a.

The adaptive TTR approach has been experimentally shown to have the

best t properties among several TTR assignment approaches [15].

4 The Push Approach

In this method, the server is responsible for delivering the relevant data

to the user. The server does not behave in request-response mode, where

the server delivers some data only when there is an explicit request for

it. But instead, server pushes the data into channel without any explicit

request. As before, the server can push the data either periodically or

aperiodically.

4.1 Periodic Push

USERPROXY
Push

Client System

(cache)

SERVER

C
H
A
N
N
E
L

Periodic
Push

Pull

Fig. 4. Periodic Push (Channel acts like a data medium)

In this method (figure 3.1), the server is not aware of the exact co-

herency needs of the a particular client, but only of the general demand

for data items. So, based on the general demand distribution of data item-

s the server creates a schedule for dissemination data items. A data item

with higher demand will be disseminated with higher frequency and vice-

versa. All data items get divided into frequency bands, where data items

belonging to one frequency band have similar demands. Once the push

schedule is created using these frequency bands, it is not changed. The

server then repeats this schedule periodically. The Broadcast Disks [1]

approach 4.1 is one such approach where the frequency bands are termed

as broadcast disks. This approach also provides for client feedback. An

interesting property of this approach is that it treats the channel like a

medium and tries to decide on the “format” in which the channel should

hold the data. In a way the channel itself is acting like a proxy.

B

Server

E

A
B C

D

E

A
C

D

Client-1 Client-2 Client-n

Fig. 5. Broadcast Disks

It is clear that since the server is not aware of the specific needs of the

users, the push schedule may not be adequate for users who desire high

fidelity and specific results. So, the approach may lead to low fidelity

and/or wastage of bandwidth. But, the approach is useful for data which

is generic and changes not very rapidly (e.g. news, digests, entertainmen-

t).

4.2 Aperiodic Push

SERVER PROXY USER
Push

S(t) P(t) U(t)

|U(t)-S(t)| <= c

c is user’s coherency requirement(constraint), server knows the constraint

Event Driven

Push

Fig. 6. Aperiodic Push

In the aperiodic push-based approach, the proxy registers with a serv-

er, identifying the data of interest and the associated tr, i.e., the value .

Whenever the value of the data changes, the server uses the tr value

to determine if the new value should be pushed to the proxy; only those

changes that are of interest to the user (based on the tr) are actually

pushed (figure 4.2). Formally, if D
k

was the last value that was pushed to

the proxy, then the current valueD
l

is pushed if and only if jD
l

�D

k

j � ,

0 � k � l. To achieve this objective, the server needs to maintain state

information consisting of a list of proxies interested in each data item,

the tr of each proxy and the last update sent to each proxy.

The key advantage of the this approach is that it can meet stringen-

t coherency requirements—since the server is aware of every change, it

can precisely determine which changes to push and when. A limitation of

push-based servers is that the amount of state that needs to be maintained

can be large, especially for popular data items. A server can optimize the

state space overhead by combining requests from all proxies with identi-

cal trs into a single request; all proxies are notified if the change to the

data item D exceeds a specified tr. Even with such optimizations, the

state space overhead can be excessive, which in turn limits the scalability

of the server. A further limitation of the approach is that it is not resilient

to failures. The state information is lost if the server fails and requires the

proxy to detect the failure and re-register its tr for the data item.

5 Push vs. Pull

Push and Pull approaches have complementary properties with respect to

fidelity, network utilization, scalability and resiliency. We have summa-

rized the properties in table 1.

5.1 Communication Overheads

In push-based approach, the number of messages transferred over the

network is equal to the number of times the data changes so that the

user specified temporal coherency is maintained. A pull-based approach

requires two messages—a HTTP request, followed by a response—per

poll. Moreover, in the pull approach, a proxy polls the server based on

its estimate of how frequently the data is changing. If the data actually

changes at a slower rate, then the proxy might poll more frequently than

necessary. Hence a pull-based approach is liable to impose a larger load

on the network. However, a push-based approach may push to clients

who are no longer interested in a piece of information, thereby incurring

unnecessary message overheads. The communication overhead also de-

pends upon dynamics of the data. For rapidly changing data, in order to

maintain high fidelity cache manager must poll the source very frequent-

ly. As the rate with which data is changing also varies with time, many

of these requests may prove useless incurring unnecessary network load.

Similarly if the data is changing very slowly then again many polls may

prove useless.

Table 1. Properties of Push and Pull

Algorithm Resiliency Temporal Coherency Overheads (Scalability)
Communication Computation State Space

Push Low High Low High High

Pull High Low (for small constraints) High Low Low

High (for large constraints)

5.2 Computational Overheads

Computational overheads for a pull-based server result from the need to

deal with individual pull requests. After getting a pull request from the

proxy, the server has to just look up the latest data value and respond.

On the other hand, when the server has to push changes to the proxy,

for each change that occurs, the server has to check if the coherency

requirement for any of the proxies has been violated. This computation

is directly proportional to the rate of arrival of new data values and the

number of unique temporal coherency requirements associated with that

data value. Then the computational overhead per data item is of the order

of rate of arrival of new values times the number of unique coherence

requirements associated with that value. Although this is a time varying

quantity in the sense that the rate of arrival of data values as well as

number of connections change with time, it is easy to see that push is

computationally more demanding than pull.

For each pull request, server has to open a new connection with the

client and close it after the request is served. Opening/closing of connec-

tions clearly imposes a resource overload. The above observation may

not hold if large number of clients are interested in similar data items.

In such cases, monitoring just one item can satisfy many client require-

ments i.e., the cost of monitoring that data item is amortized over a large

number of clients. This cost is less than serving individual requests from

each of the proxies. It makes sense to have push connections in such situ-

ations. In short, high computational load may arise either because of too

much polling of the server or too much monitoring load.

5.3 Space Overheads

A pull-based server is stateless. In contrast, any push-based server must

maintain the value for each client, the latest pushed value, along with

the state associated with an open connection. Since this state is main-

tained throughout the duration of client connectivity, the number of clients

which the server can handle may be limited when the state space over-

head becomes large (resulting in scalability problems).

5.4 Resiliency

By virtue of being stateless, a pull-based server is resilient to failures.

In contrast, a push server maintains crucial state information about the

needs of its clients; this state is lost when the server fails. Consequent-

ly, the client’s coherency requirements will not be met until the proxy

detects the failure and re-registers the coherency requirements with the

server.

In push-based techniques, we can classify failures as server side,

client side or communication failure. Each of these has different impli-

cations on the behavior of the system.

– In case of server failures, state at the server is lost. Most of the push

algorithms require state to be maintained at the server and hence their

correctness may get compromised in such cases. Cache coherency is

not guaranteed until the state is reconstructed at the server. It may

not be possible for a server to initiate error recovery because it has no

way to know which clients were being served when the crash occured.

Client should somehow know about server failure so that it can start

error recovery.

– Clients may also fail. A server has to allocate resources to each clien-

t. As resources are valuable, in case of unreachable clients these re-

sources must be reclaimed. Push-based techniques rely on some kind

of feedback from the clients to handle clients failures. Obviously this

may generate additional control messages adding to total communi-

cation overhead.

– Communication failures occur either due to socket failures at any

one of the ends, network congestion or network partition. Push-based

techniques must employ special mechanisms to deal with such errors.

5.5 Scalability

Pull servers are generally stateless and hence scalable. A Server has to

respond to the incoming request, but need not maintain any state informa-

tion or keep connection open with the client after the request is satisfied.

Since open connections consume sockets and buffer space, it is necessary

to close the unwanted connections. With an upper bound on the number

of sockets and the state space available, this property is very desirable

and often helps in making servers scalable.

Web servers deployed all over the world are pull-based and stateless.

A user sends a request and waits for the response. The primary consid-

eration has been to make the web servers scalable. It is true for normal

applications, but for the data which is changing rapidly and that too with

different rates, this may not be very true. There is certain overhead asso-

ciated with opening and closing of connections. So the sockets once used

may remain unavailable for some time period. When data at a source is

changing very fast, the proxy will generate a large number of request-

s to keep its cache in sync with the source. Thus there will be a large

overhead in opening and closing the connections. Also the computation-

al load at the server becomes high because it has to respond to far more

requests. The socket queues start filling up, increasing the response time

and eventually a server may start dropping requests.

Push servers have complementary characteristics. The server has to

keep sockets open and allocate enough buffers to handle each client. With

large number of clients, state space and network resources can soon be-

come bottlenecks and server may start dropping requests. In short, the

scalability issue may arise because of the excessive server computation

and network traffic or state space maintained at the server and resources

allocated (such as sockets) and there is a clear tradeoff between these two

constraints.

6 Need to Combine Push and Pull

From the above section it is clear that:

– A pull-based approach does not offer high fidelity when the data

changes rapidly or when the coherency requirements are stringent

(i.e., small values of). Moreover, the pull-based approach imposes a

large communication overhead (in terms of the number of messages

exchanged) when the number of clients is large. But it may suffice for

requests which have large values of .

– A push-based algorithm can offer high fidelity for rapidly changing

data and/or stringent coherency requirements. However, it incurs a

significant computational and state-space overhead resulting from a

large number of open push connections and their serving process-

es/threads. Moreover, the approach is less resilient to failures due to

its stateful nature.

These properties indicate that a push-based approach is suitable when

a client expects its coherency requirements to be satisfied with high fi-

delity, or when the communication overheads are a bottleneck. A pull-

based approach is better suited to less frequently changing data or for

less stringent coherency requirements, and when resilience to failures is

important. The complementary properties of the two approaches indicate

the need for having an approach which combines the advantages of both

while not suffering from any of their disadvantages.

7 Combination of Push and Pull

As is clear from the previous discussion, neither push nor pull alone is

sufficient for efficient dissemination of dynamic data. These two tech-

niques have complimentary properties with respect to fidelity offered,

network utilization, server scalability and resiliency. Few attempts have

been made in the past to combine these two canonical techniques. Adap-

tive leases [8] and Volume leases[13] are two examples. The former is

used for maintaining strong cache consistency in the World Wide Web

while the later is used for caches holding a large number of data items.

None of these is meant for highly dynamic data. Nor do they take user re-

quirements into account. In this section we describe the Adaptive Leases

approach. We also describe two algorithms that we have developed for

better scalability and coherency for dynamic data.

7.1 Leases

Leases are like contracts given to a lease holder over some property [4].

Whenever some client requests server for a certain document, server re-

turns that document along with a lease. In other words, a server takes the

responsibility of informing the client about any changes during the lease

period. Once a lease expires, a client must contact the server and renew

the lease. Client can use the cached copy while it has a valid lease over

the data item. During valid lease period, client remains in push mode and

is switched back to pull mode after the lease expires. Thus the client is

alternatively served in push and pull modes.

Clearly, pure leases are not very useful for dynamic data. It is very

important to choose a good lease period. For a very high value, client

remains in push mode for most of the time and scalability problem may

arise. On the other hand, for small values the lease renewal cost may

be prove very high. Adaptive Leases try to dynamically adjust the lease

duration. The decision is based on many parameters like popularity of the

data item, server state space available and network bandwidth available.

7.2 Dynamically Combining Push and Pull: PaP

In the PaP [7] approach, the proxy operates in pull mode using some T-

TR algorithm, while the server is in push mode and knows the constraint.

Using this constraint and proxy access patterns the server tries to predict

when a client is going to poll next. If it determines that within this pre-

dicted time the client is likely to miss a chhange of interest, it pushes that

change to the client. For predicting the client connection times, the server

may run the TTR algorithm in parallel with client or use some simpler

approximation of it. Given network delays, a server waits for the client to

pull within a small window around the predicted time. So, once the first

few changes are intimitaed to the client (by pull or push), the rest of the

successive changes will be known to the client easily.

In the ideal case, the fidelity offered will be 100%, but due to syn-

chronization problems and other factors, it will be slightly less. But, it

will always be much greater than pull. Because of the pull component

the resiliency of the system will be high. And due to the push componen-

t, communication overheads will also be low. PaP also provides for fine

tuning of its behavior. It has a few parameters which swing it towards

more push or more pull, and thus its performance in terms of fidelity and

resiliency can be controlled.

7.3 Dynamically Choosing Push or Pull: PoP

Another possibility is to divide incoming clients at the server into either

push or pull clients and dynamically switch them to one or the other mod-

e [7]. If resources are plentiful, every client is given a push connection

irrespective of its fidelity requirements. This ensures that the best fidelity

is offered. As more and more clients start requesting the service, resource

contention may arise at the server leading to scalability problems. Few

clients are then shifted to pull mode. Thus valuable resources are freed

and system scales properly. Contrary to this, when resources again be-

come available few high priority clients are switched back to push mode

thus ensuring high fidelity.

The most important issue is how to assign priorities to different clients.

Few of the possible parameters are the access frequency of each client,

temporal coherency requirement, fidelity requirement and network band-

width available. Clearly no single criterion suffices but collectively they

have the potential to offer high average fidelity still keeping the system

scalable.

8 Related Work

[2] is one of the earliest papers relating to the topic of maintaining co-

herency between a data source and cached copies of the data. This pa-

per discusses techniques whereby data sources can propagate, i.e, push,

updates to clients based on their coherency requirements. This paper al-

so discusses techniques whereby cached objects can be associated with

expiration times so that clients themselves can invalidate their cached

copies.

More recently, various coherency schemes have been proposed and

investigated for caches on the World Wide Web where the sources are

typically pull-based and stateless. Thus, the source is unaware of users’

coherency requirements and users pull the required data from the sources.

A Weak consistency mechanism, Client polling, is discussed in [3],

where clients periodically poll the server to check if the cached objects

have been modified. In the Alex protocol presented here, the client adopts

an adaptive Time-To-Live(TTL) expiration time which is expressed as a

percentage of the object’s age. Simulation studies reported in [9] indicate

that a weak-consistency approach like the Alex protocol ([3]) would be

the best for web caching. The main metric used here is network traffic.

While the Alex protocol uses only the time for which the source da-

ta remained unchanged, given our desire to keep temporal consistency

within specified limits, we need to also worry about the magnitude of the

change.

A strong consistency mechanism, Server invalidation, is discussed in

[11], where the server sends invalidation messages to all clients when

an object is modified. This paper compares the performance of three

cache consistency approaches, and concludes that the invalidation ap-

proach performs the best.

A survey of various techniques used by web caches for maintaining

coherence, including the popular ”expiration mechanism”, is found in

[6]. It also discusses several extensions to this mechanism, but,as dis-

cussed in [15], these do not meet our needs.

Another approach is for the cache server to piggyback a list of cached

objects [12] whenever it communicates with a server. The list of objects

piggybacked are those for which the expiration time is unknown or the

heuristically-determined TTL has expired.

9 Concluding Remarks

Since the frequency of changes of time-varying web data can itself vary

over time (as hot objects become cold and vice versa), in this paper,

we argued that it is a priori difficult to determine whether a push- or

pull-based approach should be employed for a particular data item. Al-

so, complicating the choice is the complementary properties relating to

their resiliency as well as state-space and communication overheads. To

address this limitation, we proposed two techniques that combine push-

and pull-based approaches and adaptively determine which approach is

best suited at a particular instant. We are currently evaluating the perfor-

mance, functionality, and overhead profiles of these new algorithms so as

to determine the range of their applicability for dissemianting dynamic

Web data.

References

1. S. Acharya, M. J. Franklin and S. B. Zdonik: Balancing Push and Pull for Data Broadcast,

Proceedings of the ACM SIGMOD Conference, May 1997.

2. R. Alonso, D. Barbara, and H. Garcia-Molina: Data Caching Issuesin an Information Retrieval

System. ACM Trans. Database Systems, September 1990.

3. A. Cate: Alex - A Global Filesystem. Proceedings of the 1992 USENIX File System Workshop,

Ann Arbor,MI May 1992.

4. C. Gray and D. Cheriton: Leases: An Efficient Fault-Tolerant Mechanism for Distributed

File Cache Consistency, Proceedings of the Twelfth ACM Symposium on Operating System

Principles, pages 202-210,1989.

5. P. Cao and S. Irani: Cost-Aware WWW Proxy Caching Algorithms., Proceedings of the

USENIX Symposium on Internet Technologies and Systems, December 1997.

6. A. Dingle and T. Partl: Web Cache Coherence. Proc. Fifth Intnl. WWW Conference, May

1996.

7. P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham and P. Shenoy: Adaptive Push-Pull

of Dynamic Web Data: Better Resiliency, Scalability and Coherency. Technical Report TR00-

36, Department of Computer Science, University of Massachusetts at Amherst, July 2000.

8. V. Duvvuri, P. Shenoy and R. Tewari: Adaptive Leases: A Strong Consistency Mechanism for

the World Wide Web. InfoCom, March 2000.

9. J. Gwertzman and M. Seltzer: The Case for Geographical Push Caching., Proceedings of the

5th Annual Workshop on Hot Operating Systems, pages 51-55, May 1995.

10. A. Iyengar and J. Challenger: Improving Web Server Performance by Caching Dynamic Da-

ta., Proceedings of the USENIX Symposium on Internet Technologies and Systems (USEITS),

December 1997.

11. C. Liu and P. Cao: Maintaining Strong Cache Consistency in the World-Wide-Web., Pro-

ceedings of the Seventeenth International Conference on Distributed Computing Systems,

pages 12-21, May 1997.

12. B. Krishnamurthy and C. Wills: Study of Piggyback Cache Validation for Proxy Caches

in the World Wide Web. Proc. USENIX Symposium on Internet Technologies and Systems,

December 1997.

13. B. Krishnamurthy and C. Wills: Piggyback Server Invalidation for Proxy Cache Coherency.

Proceedings of World Wide Web Conference, April 1998.

14. A. G. Mathur, R. W. Hall, F. Jahanian, A. Prakash and C. Rasmussen: The Publish/Subscribe

Paradigm for Scalable Group Collaboration Systems., Technical Report CSE-TR-270-95,

Dept. of Computer Science and Engg., University of Michigan, 1995.

15. Raghav Srinivasan, Chao Liang and Krithi Ramamritham: Maintaining Temporal Coheren-

cy of Virtual Data Warehouses, The 19th IEEE Real-Time Systems Symposium (RTSS98),

Madrid, Spain, December 2-4 1998.

16. M. J. Franklin and S. B. Zdonik: ”Data In Your Face”: Push Technology in Perspective.

SIGMOD Conference, Seattle, Washington, May-June 1998.

