
Architectural Considerations for Next Generation File Systems

Prashant Shenoy

�

, Pawan Goyaly

y

and Harrick M. Vinz

z

Department of Computer Science yEnsim Corporation zDepartment of Computer Sciences

University of Massachusetts 1215 Terra Bella Ave University of Texas

Amherst, MA 01003 Mountain View, CA 94043 Austin, TX 78712

shenoy@cs.umass.edu goyal@ensim.com vin@cs.utexas.edu

Abstract

We evaluate two architectural alternatives|partitioned and

integrated|for designing next generation �le systems. Whe-

reas a partitioned server employs a separate �le system for

each application class, an integrated �le server multiplexes

its resources among all application classes; we evaluate the

performance of the two architectures with respect to shar-

ing of disk bandwidth among the application classes. We

show that although the problem of sharing disk bandwidth

in integrated �le systems is conceptually similar to that of

sharing network link bandwidth in integrated services net-

works, the arguments that demonstrate the superiority of

integrated services networks over separate networks are not

applicable to �le systems. Furthermore, we show that: (i)

an integrated server outperforms the partitioned server in a

large operating region and has slightly worse performance

in the remaining region, (ii) the capacity of an integrated

server is larger than that of the partitioned server, and (iii)

an integrated server outperforms the partitioned server by

up to a factor of 6 in the presence of bursty workloads.

1 Introduction

1.1 Motivation

Next-generation �le systems, unlike conventional �le sys-

tems, will need to export multiple service classes to meet

the performance requirements of heterogeneous data types

and applications [17, 21]. We consider two architectural al-

ternatives for designing such �le systems (see Figure 1):

� A partitioned architecture that: (1) divides the server

resources among multiple component �le systems, each

�

Prashant Shenoy was supported in part by Intel and the Univer-

sity of Massachusetts.

y

This work was carried out when the author was with AT&T Labs

Research.

z

Harrick Vin was supported in part by AT&T, IBM, Intel, the Na-

tional Science Foundation (CAREER award CCR-9624757, and Re-

search Infrastructure Award CDA-9624082), NASA, Mitsubishi Elec-

tric Research Laboratories (MERL), and the Texas Advanced Tech-

nology Program grant ATP-443.

optimized for a particular application class or data

type, and (2) employs an integration layer that pro-

vides a uniform mechanism to access �les managed by

separate �le systems.

� An integrated architecture that multiplexes all the re-

sources available at a server|the storage space, the

disk bandwidth, and the bu�er cache|among multi-

ple application classes and data types.

Since techniques for designing �le systems that are op-

timized for a single application class are well-understood

[9, 14, 24, 25], partitioned �le systems are easy to design

and implement. The design of integrated �le systems, on

the other hand, is challenging due to the heterogeneous per-

formance requirements of data types and applications. How-

ever, such �le systems can potentially provide better perfor-

mance to applications as compared to a partitioned system

by sharing all �le system resources among the application

classes. This hypothesis has been at the basis of the design

of several integrated �le systems [1, 13, 21]. Most papers

on the design of these �le systems implicitly assume that

such an architecture is, in fact, necessary and give little

justi�cation for their approach. Proponents of the parti-

tioned architecture, on the other hand, argue that the gains

due to integration are insigni�cant to warrant its increased

complexity. Surprisingly, there has been no study that sys-

tematically evaluates the two architectures to quantify these

tradeo�s.

In this paper, we focus on evaluating the tradeo�s be-

tween the two architectural alternatives for designing next-

generation �le systems. Rather than advocating a particular

design alternative, our goal here is to provide a systematic

evaluation|with respect to application performance|of the

two architectural choices. We believe that such an evalua-

tion will provide valuable insights and guidelines to future

�le system designers. Although a �le system manages sev-

eral resources such as disk bandwidth, storage space, and

bu�er cache; in this paper, we restrict our evaluation to the

potential performance gains that can be achieved by sharing

disk bandwidth.

1.2 Problem Formulation

The problem of sharing disk bandwidth in an integrated �le

system is conceptually similar to that of multiplexing link

bandwidth in integrated services networks. An integrated

services network provides e�ciency and economy to network

providers, convenience to users, and better performance to

various applications. To illustrate, consider an environment

 Video
Server

Integration layer

 Text
Server

DisksDisks

Buffers Buffers

Applications

Disks

Buffers

Integrated server

Applications

(a) Partitioned �le server (b) Integrated �le server

Figure 1: Partitioned and integrated �le servers supporting

text and video applications. The partitioned architecture

divides the server resources among multiple component �le

systems, and employs an integration layer that provides a

uniform mechanism to access �les. The integrated archi-

tecture employs a single server that multiplexes all the re-

sources among multiple application classes.

with two separate networks|each with capacity C|serving

di�erent application classes, and an integrated services net-

work with capacity 2C. If the integrated services network

carries packets of the same size as the separate networks,

then the integrated services network can provide to applica-

tions no worse, and often signi�cantly better, performance

than the separate networks by simply employing a round-

robin scheduler for packets belonging to the two application

classes (see [2] for an example of an algorithm when pack-

ets are of unequal size). This is because when both the

application classes have packets to transmit, they each re-

ceive C units of bandwidth|similar to the separate network

scenario; but when one of the application classes does not

utilize its fair share, the idle network bandwidth is used to

provide better performance to the other application class.

The increased e�ciency due to statistical sharing of net-

work bandwidth is the central design principle of integrated

services networks. In fact, it has been argued that the least

e�cient network design is the one that uses separate net-

works, each optimized for a di�erent application class [18].

This leads to the following fundamental question: are

the arguments that demonstrate the superiority of an inte-

grated services network over separate networks also appli-

cable when comparing the performance of partitioned and

integrated �le servers? Surprisingly, the answer to this ques-

tion is not straightforward. This is because:

1. There is a subtle di�erence in the characteristics of

network links and disks: network link throughput is

una�ected by the relative order of servicing requests;

but for disks, the relative order of servicing requests

governs the overall disk throughput. Round-robin and

fair scheduling algorithms (e.g., WFQ [6], WF

2

Q [2])

determine the order for servicing requests based solely

on the fairness criterion; they ignore the seek time and

rotational latency incurred while servicing each disk

access request. Consequently, using them to arbitrate

access to disk bandwidth yields poor performance. In

fact, the overhead incurred by such algorithms may

more than o�set the statistical multiplexing gains ob-

tained by the integrated architecture (see Figure 2).

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

R
es

po
ns

e
tim

e
(m

s)

Number of text clients

 16 disks, 50 video clients

Integrated, round robin
Partitioned, SCAN

Figure 2: Limitation of fair scheduling algorithms for inte-

grated �le servers. Use of a round-robin scheduling algo-

rithm to service text and video requests in integrated �le

system causes the disk to incur a large seek and rotational

latency overhead when switching between requests. Hence,

the response time is signi�cantly worse than a partitioned

system that employs separate servers for text and video.

2. Conventional disk scheduling algorithms such as SCAN

and SATF (Shortest Access Time First) [3, 4, 7, 8, 11,

23, 27] determine the order of servicing disk requests

based solely on the relative positions of the blocks to

be accessed on disk, and hence minimize the seek time

and rotational latency overhead incurred while servic-

ing requests. However, they do not provide any isola-

tion across classes: a burst of request arrival for best-

e�ort application may violate the deadlines of requests

from real-time applications, and the arrival of a large

number of real-time requests can cause response times

for best-e�ort applications to degrade (see Figure 3).

To realize the bene�ts of statistical multiplexing when

applications have diverse requirements, it has been argued

that a disk scheduling algorithm should: (1) align the ser-

vice it provides with the application needs, (2) protect ap-

plication classes from one another, (3) be work-conserving

and adapt to changes in work-load, (4) minimize the seek

time and rotational latency overhead incurred during access,

and (5) be computationally e�cient. In the recent past,

several algorithms have been proposed to address these is-

sues [15, 20, 26]. These algorithms are heuristics for meet-

ing these requirements and do not formally guarantee these

properties. Hence, unlike integrated services networks, the

superiority of integrated �le servers from the perspective of

application performance has not been theoretically argued

or formally demonstrated. Therefore, we experimentally

answer the following question: given an appropriate disk

scheduling algorithm, can an integrated �le server achieve

statistical multiplexing gains similar to those in integrated

services networks? To formulate the problem more precisely,

consider the following special case of this general question.

Consider a �le system that supports text and video ap-

plications. Let the �le system be required to support T

text and V video clients simultaneously. For the partitioned

architecture, let D

1

and D

2

, respectively, denote the num-

ber of disks required for the text and the video servers to

meet this requirement. Now, consider an integrated server

that multiplexes (D

1

+ D

2

) disks among both application

classes. In the ideal scenario (i.e., similar to the integrated

services networks), we would expect the integrated server

to provide no worse and often better performance when the

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, 80 text clients

Integrated, SCAN
Partitioned, SCAN

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140 160 180 200

%
 o

f d
ea

dl
in

es
 v

io
la

te
d

Number of text clients

16 disks, 80 video clients

Integrated, SCAN
Partitioned, SCAN-EDF

(a) Text response time (b) Percentage of deadline violations for video

Figure 3: Inability of SCAN to isolate the performance of di�erent application classes.

0 T

V

Number of text clients

N
u

m
b

er
 o

f
v
id

eo
 c

li
en

ts

Integrated server

Partitioned server

(D1+D2)T
−−−−−−−
 D1

(D1+D2)V
−−−−−−−
 D2

Figure 4: Boundaries of operation for a partitioned and an

ideal integrated �le server.

number of text and video clients is less than T and V , re-

spectively. Furthermore, we would expect the integrated

server to support: (1) at least T text and V video clients si-

multaneously; (2)

D

1

+D

2

D

2

�V video clients when there are no

text clients; and (3)

D

1

+D

2

D

1

�T text clients in the absence of

any video clients. Finally, the capacity of the server should

scale linearly between these two extremes. Figure 4 depicts

this ideal behavior. In this scenario, we are interested in

answering two questions:

1. Does the integrated architecture yield better perfor-

mance in the shaded region in Figure 4 as is expected

in an ideal server? Does the capacity of the integrated

server scale linearly between

D

1

+D

2

D

2

� V video and

D

1

+D

2

D

1

� T text clients?

2. What is the expected di�erence in performance of the

partitioned and integrated architectures in the pres-

ence of bursty workloads?

1.3 Research Contributions of This Paper

In this paper, we evaluate the performance of the integrated

and partitioned servers for text and video applications. We

�rst compare the performance of the two architectures when

the load is less than the maximum that can be supported by

the partitioned system (the shaded region in Figure 4). Our

experiments demonstrate that the integrated server outper-

forms the partitioned server by a signi�cant amount in a

majority of this region. Unlike an integrated services net-

work, however, the integrated server yields slightly worse

performance than its counterpart in a small region. Specif-

ically, text requests see a worse response time at low text

and heavy video loads (upper left hand corner of the re-

gion), whereas video request see a larger number of deadline

violations at heavy text and video loads (upper right hand

corner of the region). For video clients, we show that, in

spite of the potential interference from text requests, the in-

tegrated server is able to provide matching performance to

video requests (by meeting a comparable number of request

deadlines).

Next, we determine if the capacity of an integrated server

scales up to

D

1

+D

2

D

2

� V video and

D

1

+D

2

D

1

� T text clients.

We demonstrate that the capacity curve of an integrated

server is indeed similar to that of the ideal scenario; hence an

integrated server can support a larger number of clients from

an application class when the other class does not use its fair

share. However, due to load imbalances in the system and

the idiosyncrasies of the disk scheduling algorithm, there is

a small (about 5%) degradation in the number of text and

video clients supported as compared to the ideal server.

Finally, we demonstrate that the ability of an integrated

server to support a larger number of clients enable it to

adapt to bursty workloads that can cause transient over-

loads. Speci�cally, we show that, when the server is op-

erating at 50% utilization, in the presence of bursty text

loads, the average response time yielded by the integrated

server is smaller by a factor of 6 as compared to the parti-

tioned server. On an average, the integrated server yields

a 40%{80% improvement in response time over its counter-

part. Moreover, such bursty loads have little or no e�ect on

the performance of video clients.

The rest of the paper is organized as follows. Section 2

describes our experimental methodology for comparing the

partitioned and integrated architectures. Section 3 discusses

our experimental results. Finally, Section 4 summarizes our

results and highlights our key observations.

2 Experimental Methodology

To evaluate the tradeo�s between the two architectural al-

ternatives for designing next-generation �le systems, we con-

duct extensive simulations. In what follows, we describe our

simulation environment, the metrics for our evaluation, and

the workload generator.

2.1 Simulation Environment

We have implemented an event-based simulator to evalu-

ate the relative performance of the partitioned and the inte-

grated architectures. We report the results of our evaluation

of the partitioned and the integrated servers that (1) sup-

port storage and retrieval of two data types|text and video,

and (2) support two service classes|interactive best-e�ort

and real-time.

To support the two application classes, the partitioned

�le system employs a text server and a video server, with D

1

and D

2

disks, respectively. Each �le is striped across all the

disks within a server. The text and video servers, respec-

tively, provide interactive best-e�ort and real-time service to

applications. The text server uses the SCAN disk schedul-

ing algorithm [23] to service requests, while the video server

uses SCAN-EDF [16]. Whereas SCAN services requests in

the increasing order of cylinder numbers so as to reduce the

seek time overheads, SCAN-EDF services requests in the in-

creasing order of deadlines; requests with identical deadlines

are serviced in the SCAN order.

The integrated server multiplexes (D

1

+D

2

) disks among

the two data types and application classes. Disk bandwidth

is multiplexed among the requests from the two application

classes using the Cello disk scheduling algorithm [20]. Cello

allocates disk bandwidth to application classes at two time-

scales. At a coarse time-scale, it determines the number of

requests from each application class to be serviced, and at a

�ne time-scale, it determines the order for servicing the set of

selected requests. Whereas the former enables Cello to pro-

tect application classes from one another and to adapt disk

bandwidth allocation with changing workload, the latter en-

ables it to align the service provided with the application

requirements while minimizing the seek time and rotational

latency overhead. Additionally, Cello exploits characteris-

tics of requests to align the service provided with applica-

tion needs. For the two application classes under considera-

tion, Cello delays real-time requests until their deadlines and

uses the available slack to service interactive best-e�ort re-

quests; this enables it to provide low average response times

to the interactive best-e�ort applications without violating

the deadlines of the real-time applications. Furthermore, it

assigns weights to each application class and allocates band-

width to classes in proportion to their weight; bandwidth

unused by a class is reassigned to other classes with pending

requests [20].

To derive the results presented in this paper, we con�gure

the text and the video servers in the partitioned architecture

with 8 disks each (i.e., D

1

= D

2

= 8), and the integrated

server with 16 disks. We use stripe unit sizes of 8KB and

64KB, respectively, to stripe text and video �les on the disk

arrays. The text server employs a 64MB LRU bu�er cache;

the video server does not use caching. The integrated server

also uses a 64MB LRU bu�er cache for text requests. To

ensure that the integrated server allocates equal bandwidth

to each application class (and thereby mimic D

1

= D

2

= 8

in the partitioned architecture), we assign equal weights to

the two application classes in the Cello scheduler (i.e., w

1

:

w

2

= 1 : 1) [20]. We parameterize the disk simulator with

the characteristics of the Seagate Elite3 disk [19]. The seek

time, rotational latency, and transfer times are computed

using an empirically derived disk model [12]. The disk model

in our simulator was validated using a real disk for the SCAN

disk scheduling algorithm (since algorithms such as Cello

and SCAN-EDF haven't been deployed in real systems, we

were unable to validate the simulator for these algorithms).

Table 1: Characteristics of MPEG-1 traces

MPEG Encoding Length Bit rate

File Pattern (frames) Mb/s

Frasier I(BBP)

3

BB 5960 1.49

Newscast I(BBP)

3

BB 9000 2.33

Flintstones I(BBP)

3

BB 9000 1.67

Olympics I(BBP)

3

BB 9000 1.49

2.2 Performance Metrics

Text applications desire low average response times, whereas

video applications require request deadlines to be met. Con-

sequently, to compare the performance of partitioned and

integrated servers, we choose the average response time of

text retrieval requests as the metric for text applications,

and the percentage of deadline violations as the metric for

video applications. We measure the capacities of the two

architectures in terms of the maximum number of text and

video clients that can be supported such that the average

response times and the percentage of deadline violations are

smaller than thresholds �

t

and �

v

, respectively.

2.3 Workload Generation

To compare the performance of the integrated server to the

partitioned and the ideal integrated servers (Figure 4), we

need to evaluate their performance at di�erent operating

points (i.e., text and video loads). Since most available �le

system traces contain various parts of the operating region

(these regions are not clearly identi�able in the trace), it is

di�cult to use them to study performance at any particular

operating point. Hence, we explore the complete space by

using a synthetic load generator.

Our synthetic workload generator selects an operating

point by �xing the number of text and video clients access-

ing the �le system. Let t (0 � t � T) and v (0 � v � V), re-

spectively, denote the number of text and video clients. Each

text client accesses a randomly selected �le; the inter-arrival

time between successive requests issued by each client is ex-

ponentially distributed, and the amount of data retrieved

by each request is normally distributed. We varied both the

mean inter-arrival time and the mean request size in our

experiments; due to space constraints, we only present sim-

ulation results for a mean request size of 32KB and a mean

inter-arrival time of 1s.

Each video client randomly selects a video �le and then

initiates retrieval from a random point in that �le. Due to

the periodicity and sequentiality of access, the video server

services requests from the clients by proceeding in terms of

periodic rounds, accessing f frames for each client during

each round [22]. For the simulations, we use f = 30 and

the round duration of 1 second. For variable bit rate (VBR)

encoded video streams, the size of f frames may vary from

one round to another. The workload generator models this

behavior by determining the amount of video data accessed

during each round using VBR encoded MPEG-1 traces (see

Table 1).

We compare the performance of the two architectures

under bursty workloads in two steps. In the �rst step, we

utilize bursty text load, and assume �xed video load. To

generate bursty text workload, we use a portion of the NFS

traces gathered from an Auspex �le server at Berkeley [5];

the characteristics of these traces are shown in Table 2. To

Table 2: Characteristics of the Auspex NFS trace

Number of read/write operations 218724

Average bit rate (original) 218.64 KB/s

Average bit rate (with 64MB cache) 83.91 KB/s

Average inter-arrival (original) 9.14 ms

Average inter-arrival (with 64MB cache) 22.53 ms

Average request size 2048.22 bytes

Peak to average bit rate (1s intervals) 12.51

derive the text workload, we �lter out requests that would be

absorbed by a 64MB LRU bu�er cache at the �le server, and

assume that the remaining requests result in disk accesses.

Figure 5 illustrates the characteristics of the resulting text

workload.

In the second step, we assume that both video and text

workloads are bursty. Since very few, if any, video servers

have been deployed, traces that demonstrate the bursty na-

ture of video access are not available. Hence, we hypothe-

size that the burstiness of video clients is similar to the text

clients and then use textual traces to deduce the variability

in video load. By using the distributions of text and video

loads derived from traces (rather than using the trace it-

self), we can compute the expected performance of the two

architectures. Thus, if p(t; v) denotes the probability of the

server being at operating point (t; v) (computed from traces)

and d(t; v) denotes the di�erence in the response times of the

partitioned and the integrated architectures at a load (t; v),

then the expected di�erence in the performance of the two

architectures is

P

t

P

v

d(t; v) � p(t; v).

3 Experimental Evaluation

The objective of this section is to answer two questions:

� Does the integrated architecture yield better perfor-

mance in the shaded region in Figure 4? How does the

capacity of an integrated server compare to that of an

ideal integrated server depicted in Figure 4?

� What is the di�erence in performance of the integrated

and partitioned architectures in the presence of bursty

workloads?

We address the �rst question in Sections 3.1 and 3.2, and

the second question in Section 3.3.

3.1 Comparison of Partitioned and Integrated Systems

To compare the performance of the partitioned and the in-

tegrated systems in the shaded region in Figure 4, let us

�rst de�ne the region by determining the values of T and

V , which, respectively, denote the maximum number of text

and video clients supported by the partitioned server. To

determine T , we increased the text workload until the av-

erage response time of a request yielded by the text server

in the partitioned architecture exceeded a threshold �

t

. For

�

t

= 100ms, we obtained T = 200. To determine V , we

increased the video workload until the percentage of request

deadlines violations yielded by the video server in the par-

titioned architecture exceeded a threshold �

v

. For �

v

= 1%,

we obtained V = 102.

Given the values of T and V , we varied the text and

video loads in the ranges [0; T] and [0; V], respectively, in

increments of 10; and for each combination (t; v), we mea-

sured the average response time of text requests and the

percentage of deadlines violations for video requests in both

partitioned an integrated servers. The results of these 231

experiments are summarized in Figures 6 and 7. The X and

Y axes plot normalized values of text and video workloads;

a normalized load of 1 corresponds to T text clients and V

video clients. The non-shaded regions in Figure 6 indicate

workloads at which the integrated server either yields com-

parable performance or outperforms the partitioned server;

the shaded region identify regions where the partitioned sys-

tem outperforms the integrated server. In what follows, we

discuss in detail the results of our experiments; �rst for text

clients and then for video clients.

3.1.1 Performance of Text Clients

Figure 8 plots the variation in average response time of

text clients for di�erent video loads and a �xed text load.

Since text and video requests access mutually exclusive set

of disks, the response time of text requests in the parti-

tioned server is independent of the video load. On the other

hand, even though the integrated server uses the Cello disk

scheduling algorithm to isolate text requests from video re-

quests, the isolation is not total. Hence, the response time

of text requests increases slowly with increase in video load.

This increase can be attributed to two factors. First, in-

creasing the video load increases the probability of a text

request arriving when a video request is being serviced by

the disk. Since requests in service cannot be preempted,

the text request must wait until that request has been ser-

viced. Second, increasing the video load also reduces the

slack available to service text requests. Cello schedules a

text requests prior to a video request only if su�cient slack

is available; hence, reduction in slack yields an increase in

the queuing delays and the response times observed by text

requests.

Figure 9 compares the response time of text clients in

the two architectures for di�erent text loads and a �xed

video load. As expected, increasing the text load causes the

response time of text requests to increase in both servers,

albeit the increase is larger in the partitioned server. To

understand this behavior, consider the two factors that con-

tribute to the response time of a request|service time and

queuing delay. The service time of a request|de�ned as the

summation of the seek time, rotational latency and trans-

fer time incurred in servicing a request|in the average case

depends on the physical characteristics of the disk and the

amount of data being retrieved from disk. Hence, the service

time of a request is largely independent of the load. In con-

trast, the queuing delay incurred by a request is completely

governed by the load. Since text �les are striped across a

larger number of disks in the integrated architecture, the

number of disks servicing text requests is larger than that

in the partitioned system. This results in a smaller number

of text requests per disk, and hence, shorter queues at each

disk. Consequently, the integrated server yields better re-

sponse times over a range of video loads. In fact, at heavy

text loads, the queuing delay dominates the response time,

causing the integrated server to outperform its counterpart

regardless of the video load (see Figure 9).

3.1.2 Performance of Video Clients

Figure 10 plots the percentage of deadlines violated for video

requests for di�erent values of text load with varying number

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 250 500 750 1000 1250 1500 1750 2000

B
yt

es
/s

Time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

Normalized load

(a) (b)

Figure 5: Characteristics of the NFS traces: (a) average bit rate of NFS traces over one second intervals; this demonstrates

the bursty nature of the trace. (b) the normalized load distribution function.

0 0.5 0.750.25 1.0

0

0.25

0.5

0.75

1.0

Normalized text load

N
o
rm

a
li

ze
d

 v
id

eo
 l

o
a
d

16 disks, text server=video server= 8 disks

Better performance

 Worse
performance

0 0.5 0.750.25 1.0

0

0.25

0.5

0.75

1.0

Normalized text load

N
o
rm

a
li

ze
d

 v
id

eo
 l

o
a
d

16 disks, text server=video server= 8 disks

 Worse
performance

 Comparable or
better performance

(a) Response time (b) Percentage of deadlines violated

Figure 6: Performance under di�erent workload mixes. The integrated server yields worse performance in the shaded areas.

Z axis=(response time in partitioned - response time in integrated)

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8
1

-10
0

10
20
30
40
50
60
70
80
90

Normalized text load

Normalized video load

Z axis=(%deadlines violated in partitioned - integrated)

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8
1

-1

-0.5

0

0.5

1

Normalized text load

Normalized video load

(a) Response time (b) Percentage of deadlines violated

Figure 7: Performance under di�erent workloads. The �gure quanti�es the di�erence in response times and percentage

of deadlines violated in integrated and partitioned servers. The �gure shows that the integrated server outperforms the

partitioned server by a signi�cant amount in many regions, while it under-performs its counterpart in other regions by only

a small amount.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, w1:w2 = 1:1

Integrated, 50 text clients
Partitioned, 50 text clients

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, w1:w2 = 1:1

Integrated, 100 text clients
Partitioned, 100 text clients

(a) (b)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, w1:w2 = 1:1

Integrated, 150 text clients
Partitioned, 150 text clients

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

32KB request, 16 disks, w1:w2 = 1:1

Integrated, 200 text clients
Partitioned, 200 text clients

(c) (d)

Figure 8: Response time of interactive text requests in partitioned and integrated servers. Figures (a) through (d) plot the

variation in response times for di�erent video workloads and a text load of 50, 100, 150 and 200 clients, respectively.

0

20

40

60

80

100

0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Number of text clients

 w1:w2 = 1:1

Integrated, 20 video clients
Integrated, 50 video clients
Integrated, 70 video clients
Integrated, 90 video clients

Partitioned

Figure 9: Response time of interactive text requests in parti-

tioned and integrated servers. The �gure plots the variation

in response times for di�erent text workloads.

of video clients. As shown in the �gure, at light and moder-

ate video loads, both servers meet deadlines of all real-time

requests regardless of the text load. At heavy video load and

light text load, the percentage of deadline violations is com-

parable in both the servers. However, at heavy video and

text load, the integrated server has slightly higher deadline

violations than the partitioned server. This is due to two

reasons:

1. Switching between application classes causes the Cello

disk scheduling algorithm employed by the integrated

server to incur a higher seek and rotational latency

overhead than the SCAN-EDF algorithm employed by

the partitioned server.

2. It has been shown in [22] that, for a �xed number of

video clients, increasing the number of disks in the

server increases the load imbalance across the disks,

leading to a higher percentage of deadline violations.

Since the integrated server uses twice the number of

disks to service video clients, it has a higher load im-

balance resulting in a higher percentage of deadline

violations. At light text loads, however, the e�ect of

increased load imbalance is o�set by the available un-

used bandwidth.

We conclude from our experiments thus far that in the

shaded region (namely, 0 � t � T and 0 � v � V), the in-

tegrated server yields higher performance improvement for

text clients than video clients (see Figures 6 through 10).

This is because, an integrated server utilizes any unused disk

bandwidth allocated to video clients to reduce the average

response time for text requests. For video requests, on the

0

0.5

1

1.5

2

0 20 40 60 80 100

%
 o

f d
ea

dl
in

es
 v

io
la

te
d

Number of video clients

 w1:w2 = 1:1

Integrated, 50 text
Integrated, 100 text
Integrated, 150 text
Integrated, 200 text

Partitioned, SCAN-EDF

Figure 10: Percentage of deadlines violated for video re-

quests in partitioned and integrated servers.

other hand, since the value of V is chosen such that the per-

centage of deadlines violations in the partitioned server does

not exceed t

v

= 1%, there is little room for achieving sig-

ni�cant reduction in the percentage of deadline violations.

Hence, for the entire operating region, the di�erence in the

percentage of deadline violations in the integrated and par-

titioned architecture is marginal. In the next section, we

will demonstrate that both classes bene�t from increased

capacity yielded by the integrated architecture.

3.2 Capacity of an Integrated Server

An integrated server can support t text and v video clients

simultaneously if the response time of text clients at that

load is less than threshold �

t

= 100ms and the percentage

of deadlines violated of video clients is less than threshold

�

v

= 1%. We �rst determined the number of text clients

that could be supported at various video loads. To do so,

we varied the text load until the threshold �

t

was reached.

Figure 11(a) plots the variation in response time for text

clients for di�erent video loads. Next, we determined the

number of video clients that could be supported at various

text loads. To do so, we increased the video load until the

percentage of deadlines violated exceeded threshold �

v

. Fig-

ure 11(b) plots the percentage of request deadlines violated

for di�erent text load. Figure 12 combines the results of

these experiments and plots the number of video and text

clients that can be supported simultaneously by an inte-

grated server.

Recall that, for �

t

= 100ms and �

v

= 1%, the partitioned

server can support T = 200 text and V = 102 video clients.

Since the integrated server, in our experiments, utilizes twice

as many disks as the text and the video servers in the parti-

tioned architecture, ideally, the integrated server should be

able to support up to 400 text clients when there is no video

load, and 204 video clients when there are no text clients.

Furthermore, the performance of the ideal integrated server

will scale linearly between these two extremes. Figure 12

compares the capacity of a partitioned, an ideal integrated,

and an integrated servers. The �gure shows that:

� The capacity curve of the integrated server is indeed

similar to that of the the ideal integrated server; hence

an integrated server can support approximately twice

the number of clients from an application class when

the other class does not use its fair share. However,

there is a small degradation (about 5%) in capacity as

compared to the ideal scenario.

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 v

id
eo

 c
lie

nt
s

Number of text clients

16 disks, w1:w2=1:1

Integrated, ideal
Integrated, actual

Partitioned

Figure 12: Capacity comparison of the partitioned, the ideal

integrated, and the ideal integrated server architectures

� The partitioned server can support 200 text and 102

video clients simultaneously, whereas the integrated

server can support 192 text and 97 video clients si-

multaneously. Thus, there is about 4.3% percentage

degradation in the capacity of the integrated system

as compared to the partitioned system.

The decrease in capacity of the integrated servers vis-

a-vis partitioned and ideal integrated servers is due to the

following reasons:

� E�ect of video clients on text requests: The presence of

video clients reduces the slack available to service text

clients as well as increases the probability of a disk be-

ing busy when a text request arrives. Both factors re-

quire a text request to wait before being serviced. The

resulting increase in response time causes the thresh-

old �

t

to be reached at a smaller load, resulting in a

reduction in capacity.

� Increased load imbalance: Since the integrated server

uses (D

1

+D

2

) disks to service text and video clients,

it has a higher load imbalance as compared to a par-

titioned server that uses D

1

and D

2

disks each to ser-

vice text and video requests, respectively [22]. An in-

creased load imbalance results in an increase in queu-

ing delay and response time for text requests, which in

turn reduces capacity. It also causes the most heavily

loaded disk to reach saturation at a lighter video load.

Since number of video clients supported by a server

reaches its capacity when the most heavily loaded disk

in the array reaches saturation (increasing the video

load beyond this point results in an increasing number

of request deadline violations), this results in a reduced

video capacity [22].

� Idiosyncrasies of the scheduling algorithm: Since the

Cello disk scheduling algorithm employed by the in-

tegrated server must switch between various classes,

it incurs higher seek and rotational latency overheads

than a partitioned system. This results is a reduction

in throughput, and hence, capacity.

3.3 Performance for Bursty Workloads

In the experiments described in the previous two subsec-

tions, we used synthetic workloads for text clients that were

non-bursty in nature. However, real-life workloads exhibit

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400

R
es

po
ns

e
tim

e
(m

s)

Number of text clients

16 disks, w1:w2=1:1

Integrated, 0 video clients
Integrated, 40 video clients
Integrated, 90 video clients

Partitioned

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180

%
 d

ea
dl

in
es

 v
io

la
te

d

Number of video clients

16 disks, w1:w2=1:1

Integrated, 20 text clients
Integrated, 100 text clients
Integrated, 150 text clients
Integrated, 200 text clients

Partitioned

(a) (b)

Figure 11: Capacity of the integrated server: (a) text capacity, and (b) video capacity

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e
tim

e
(m

s)

Text workload (KB/s)

16 disks, w1:w2 = 1:1

Integrated, 10 video clients
Integrated, 50 video clients
Integrated, 70 video clients
Integrated, 90 video clients

Partitioned

Figure 13: Performance using bursty text workloads.

substantial burstiness at multiple time scales [10] and vary

dynamically over time. Consequently, even when average

load is substantially smaller than capacity, such workloads

can contain periods of intense bursts causing transient over-

loads in the system. In this section, we compare the per-

formance of the two architectures in the presence of such

bursty workloads. We �rst examine the impact of bursti-

ness along a single dimension (i.e., bursty text and �xed

video loads) and then evaluate the performance when both

text and video loads vary over time.

3.3.1 Impact of Bursty Text Loads

To evaluate the performance of the two architecture in the

presence of bursty text loads, we use the NFS trace described

in Section 2.3. To generate di�erent workloads using the

same trace, we scale the timestamp associated with each

request by a factor S. Such scaling of timestamps changes

the inter-arrival times between requests; S > 1 increases the

average inter-arrival time, while S < 1 decreases it.

To determine the performance of text clients, we �x the

video load and measure the response time assuming bursty

text loads. Note that, the text loads used for our experi-

ments were such that the average load was always smaller

than capacity (i.e., was within the shaded region). Since the

NFS trace has a peak to average ratio of 12.5 (see Table 2),

the peak load causes the server to temporarily saturate dur-

ing periods of intense bursts. Figure 13(a) compares the

response times of the two servers. The �gure shows that

transient overloads cause the average response time yielded

by the partitioned system to be much higher than the inte-

grated server. This is because, as shown in Section 3.2, shar-

ing disk bandwidth enables the integrated server to handle

up to twice the number of clients from a particular applica-

tion class if other class is not using up its share of the disk

bandwidth. Consequently, the integrated server can adapt

to changing load conditions and handle transient overloads

that saturate the partitioned system. This results in average

response times that are substantially smaller than that in

the partitioned system. For instance, at a load of 3000KB/s,

which corresponds to a utilization level of 50%, the response

time is smaller by a factor of 6.

Next, we study whether a bursty text load causing tran-

sient overloads a�ects the performance of video clients in

the integrated server. To do so, we computed the percent-

age of deadlines violated for video requests for various com-

binations of text and video loads. Our experiments showed

that both servers are able to meet all request deadlines at

low to moderate levels of utilization. A small number of

requests deadlines were violated at very high levels of uti-

lization in both servers (for instance, at 90 video clients and

a text load of 2500KB/s, less than 50 requests deadlines out

of 14000 requests were violated in both servers (i.e., 0.3%

violation)). This demonstrates that Cello disk scheduling al-

gorithm employed by the integrated server is able to isolate

video requests from bursty text loads, and thereby provide

performance that is comparable to the partitioned server.

3.3.2 Impact of Varying Text and Video Loads

Due to the unavailability of video workload traces, in Sec-

tion 3.3.1 we used a synthetic workload generator that kept

number of video clients �xed and used VBR MPEG traces

to generate a varying load from each client. In practice, the

video load (i.e., the number of clients accessing the server)

also varies over time. Hence a natural question is: what

is the expected performance of the two architectures in the

presence of varying text and video loads? To answer this

question, we hypothesize that the burstiness in the load dis-

tribution of video clients is similar to that of text clients

and use the load distribution for text clients (derived from

traces) to determine that for video clients.

1

Using these dis-

tributions, we can compute the probability p(t; v) of t text

and v video clients simultaneously accessing the server. Let

1

Although time-scales at which text and video clients arrive are

di�erent (video loads change more slowly as compared to text loads),

we are only interested in the peak to average variation of the load

distribution here.

d(t; v) denote the di�erence in response times yielded by the

two servers at the operating point (t; v). The expected im-

provement in response time of the integrated server is then

E(I) =

X

t

X

v

d(t; v) � p(t; v) (1)

Thus, computing E(I) requires us to �rst compute d(t; v)

and p(t; v).

To determine d(t; v), let r

part

(t) and r

int

(t; v), respec-

tively, denote the response times for text requests yielded

by the partitioned and integrated servers when the load con-

sists of t text and v video clients. Then d(t; v) is computed

as

d(t; v) = r

part

(t)� r

int

(t; v) (2)

Note that d(t; v) > 0 indicates that the integrated server

yields better response times than the partitioned server and

vice versa. Figure 7(a) plots d(t; v) for di�erent text and

video loads.

The probability p(t; v) of operating at a speci�c oper-

ating point is best determined from traces of real work-

loads. Due to the unavailability of traces from �le systems

that simultaneously support video and text applications, we

make the following assumptions to derive p(t; v) from tex-

tual workload traces.

� First, we assume that burstiness in load distributions

of text and video clients are similar and hence, the

normalized load distributions for video and text are

identical. That is, p(t) for a normalized text load of

[0; 1] is identical to p(v) for a normalized video load of

[0; 1].

� Second, we model transient overloads by assuming that

the probability that the text and video load exceeds ca-

pacity is �

1

and �

2

, respectively. For text loads, we set

�

1

to a small value. Since video loads are constrained

by admission control, we assume that our bursty video

load never exceeds capacity (i.e., �

2

= 0). Then, the

[0; 1] ranges of the normalized load distributions p(t)

and p(v) can be remapped to [0; T

0

] and [0; V

0

], where

T

0

and V

0

denote the peak text and video loads such

that P (T < t � T

0

) = �

1

and P (V < v � V

0

) = �

2

.

� Third, we assume that the text and video loads ac-

cessing a server are independent of each other. Hence,

p(t; v) = p(t) � p(v).

Thus, given p(t) obtained from textual traces (see Figure 5(b)),

we can compute p(t; v).

Figure 14 plots the expected improvement in response

time E(I) and the percentage improvement in response time

obtained for di�erent overload probabilities �

1

. The �gure

shows that the expected gain is always positive, and for

the distributions considered, the percentage improvement

ranges from 40%{80%. Moreover, the gain increases with

increasing average load since the di�erence in response times

d(t; v) is larger at higher loads (see Figure 7).

4 Concluding Remarks

Integration|supporting multiple application classes with het-

erogeneous requirements|is an emerging trend in networks,

�le systems, and operating systems. In this paper, we evalu-

ated two architectural alternatives|partitioned and integrated|

for designing next generation �le systems. We evaluated

the performance gains achieved by the integrated architec-

ture as a result of sharing disk bandwidth between appli-

cation classes. We demonstrated that though the problem

of sharing disk bandwidth is conceptually similar to that of

sharing network link bandwidth in integrated services net-

works, the arguments that demonstrate the superiority of

integrated services networks are not applicable to �le sys-

tems. To experimentally evaluate the e�cacy of sharing

disk bandwidth, we considered two application classes, text

and video, and for these application classes, showed that

an integrated server: (i) yields better performance than its

counterpart over a large operating region but has slightly

worse performance in a small region, (ii) has a larger capac-

ity since it can support a larger number of clients from a

class when the other class does not use its fair share, and

(iii) is self-adapting since larger capacity and sharing of disk

bandwidth enable it to better handle bursty loads that cause

transient overloads.

We would like to note that, in addition to the perfor-

mance considerations, the selection between the partitioned

and the integrated architectures is governed by several other

factors. For instance, partitioned �le systems are easy to

design and implement, since techniques for designing �le

systems optimized for a single application class are well un-

derstood. Furthermore, the presence of legacy �le systems

or specialized applications that need custom hardware and

software may dictate the use of partitioned or even separate

servers. In contrast, system administration costs may favor

the use of integrated servers over partitioned or multiple

disparate servers. Although the need for supporting multi-

ple application classes within an integrated server increases

�le system complexity and development costs, such �le sys-

tems generally facilitate easy integration of new application

classes; allowing the development cost to be amortized over

time as new application classes are added. Adding a new ap-

plication class in the partitioned system, on the other hand,

requires the development of a new component �le system.

Thus, in summary, the choice between the partitioned and

integrated architectures is dependent on the needs of a par-

ticular environment, which govern the balance between these

tradeo�s.

References

[1] P. Barham. A Fresh Approach to File System Quality

of Service. In Proceedings of NOSSDAV'97, St. Louis,

Missouri, pages 119{128, May 1997.

[2] J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair

Queuing Algorithms. In Proceedings of SIGCOMM'96,

pages 143{156, August 1996.

[3] E G. Co�man and M. Hofri. On the Expected Perfor-

mance of Scanning Disks. SIAM Journal of Computing,

10(1):60{70, February 1982.

[4] E G. Co�man, L A. Klimko, and B. Ryan. Analysis of

Scanning Policies for Reducing Disk Seek Times. SIAM

Journal of Computing, 1(3):269{279, September 1972.

[5] M. Dahlin, C. Mather, R. Wang, T. Anderson, and

D. Patterson. A Quantitative Analysis of Cache Poli-

cies for Scalable Network File Systems. In Proceedings

of ACM SIGMETRICS'94, May 1994.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and

Simulation of a Fair Queueing Algorithm. In Proceed-

ings of ACM SIGCOMM, pages 1{12, September 1989.

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12

E
(I

)
(m

s)

Probability of transient overload

Expected improvement in response time

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12

%
 im

pr
ov

em
en

t

Probability of transient overload

Percentage improvement in response time

(a) (b)

Figure 14: Improvement in response time in the integrated server. Figures (a) and (b) show the expected improvement and

the percentage improvement in response time for di�erent probabilities of transient overload.

[7] P J. Denning. E�ects of Scheduling on File Memory

Operations. In Proceedings of AFIPS SJCC, pages 9{

21, 1967.

[8] R. Geist and S. Daniel. A Continuum of Disk Schedul-

ing Algorithms. ACM Transactions on Computer Sys-

tems, 5(1):77{92, February 1987.

[9] L. Golubchik, J. C. S. Lui, and R. R. Muntz. Reduc-

ing I/O Demand in Video-On-Demand Storage Servers.

In Proceedings of SIGMETRICS '95, Ottawa, Canada,

May 1995.

[10] S. D. Gribble, G. Manku, D. Roselli, E. Brewer, T. Gib-

son, and E. Miller. Self-Similarity in File Systems. In

Proceedings of ACM SIGMETRICS '98, Madison, WI,

June 1998.

[11] M. Hofri. Disk Scheduling: FCFS vs. SSTF Revisited.

Communications of the ACM, 23(11):645{653, Novem-

ber 1980.

[12] E.K. Lee and R.H. Katz. An Analytic Performance

Model for Disk Arrays. In Proceedings of the 1993 ACM

SIGMETRICS, pages 98{109, May 1993.

[13] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and

A. Silberschatz. The Fellini Multimedia Storage Server.

Multimedia Information Storage and Management , Ed-

itor S. M. Chung, Kluwer Academic Publishers, 1996.

[14] M. K. McKusick, W. N. Joy, S. J. Le�er, and R. S.

Fabry. A Fast File System for UNIX. ACM Trans-

actions on Computer Systems, 2(3):181{197, August

1984.

[15] G. Nerjes, P. Muth, M. Paterakis, Y. Romboyan-

nakis, P. Trianta�llou, and G. Weikum. Scheduling

Strategies for Mixed Workloads in Multimedia Infor-

mation Servers. In Proceedings of the 8th Interna-

tional Workshop on Research Issues in Data Engineer-

ing (RIDE'98), Orlando, Florida, February 1998.

[16] A.L. Narasimha Reddy and J. Wyllie. Disk Scheduling

in Multimedia I/O System. In Proceedings of ACM

Multimedia'93, Anaheim, CA, pages 225{234, August

1993.

[17] Timothy Roscoe. The Structure of a Multi-Service Op-

erating System. PhD thesis, University of Cambridge

Computer Laboratory, April 1995. Available as Tech-

nical Report No. 376.

[18] S. Shenker. Fundamental Design Issues for the Future

Internet. IEEE Journal of Selected Areas in Communi-

cations, 13:1176{1188, September 1995.

[19] P. Shenoy, P. Goyal, and H M. Vin. Architectural Con-

siderations for Next Generation File Systems. Technical

Report TR98-48, Dept. of Computer Science, Univ. of

Massachusetts at Amherst, 1998.

[20] P Shenoy and H M. Vin. Cello: A Disk Scheduling

Framework for Next Generation Operating Systems. In

Proceedings of ACM SIGMETRICS Conference, Madi-

son, WI, pages 44{55, June 1998.

[21] P J. Shenoy, P. Goyal, S S. Rao, and H M. Vin. Sym-

phony: An Integrated Multimedia File System. In

Proceedings of the SPIE/ACM Conference on Multime-

dia Computing and Networking (MMCN'98), San Jose,

CA, pages 124{138, January 1998.

[22] P J. Shenoy and H M. Vin. E�cient Striping Tech-

niques for Multimedia File Servers. In Proceedings of

the Seventh International Workshop on Network and

Operating System Support for Digital Audio and Video

(NOSSDAV'97), St. Loius, MO, pages 25{36, May

1997.

[23] T. Teorey and T. B. Pinkerton. A Comparative Analy-

sis of Disk Scheduling Policies. Communications of the

ACM, 15(3):177{184, March 1972.

[24] F A. Tobagi, J Pang, R Baird, and M Gang. Streaming

RAID { A Disk Array Management System For Video

Files. In Proceedings of ACM Multimedia '93, Anaheim,

CA, pages 393{400, 1993.

[25] A. K. Tsiolis and M. Vernon. Group Guaranteed Chan-

nel Capacity in Multimedia Storage Servers. In Proc.

ACM Sigmetrics '97, Seattle, pages 285{297, June 1997.

[26] R. Wijayaratne and A. L. N. Reddy. Providing

QoS Guarantees for Disk I/O. Technical Report

TAMU-ECE97-02, Department of Electrical Engineer-

ing, Texas A&M University, 1997.

[27] B L. Worthington, G R. Ganger, and Y N. Patt.

Scheduling Algorithms for Modern Disk Drives. In

Proceedings of ACM SIGMETRICS'94, pages 241{251,

May 1994.

