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ABSTRACT

In this paper, we argue that manageability of file servers is just as

important, if not more, as performance. We focus on the design of

a self-managing file server and address the specific problem of au-

tomating bandwidth allocation to application classes in single-disk

and multi-disk servers. The bandwidth allocation techniques that

we propose consists of two key components: a workload monitor-

ing module that efficiently monitors the load in each application

class and a bandwidth manager that uses these workload statistics

to dynamically determine the allocation of each class. We evaluate

the efficacy of our techniques via a simulation study and demon-

strate that our techniques (i) exploit the semantics of each applica-

tion class while determining their allocations, (ii) provide control

over the time-scale of monitoring and allocation, and (iii) provide

stable behavior even during transient overloads. Our comparison

with a static allocation technique shows that dynamic bandwidth

allocation can yield queue lengths that are 59% smaller during

overloads and admit a larger number of soft real-time clients into

the system.

1. Introdu
tion

In this paper we focus on techniques for improving the man-

ageability of multimedia file servers. Modern file servers store in-
creasingly heterogeneous data and service workloads with diverse
performance requirements. Concurrent to these trends, disk ca-
pacities are doubling every 18 months as dictated by Moore’s law
and are accompanied by a corresponding increase in the volume
of data stored on file servers [10]. The growing heterogeneity of
file server workloads and increasing storage capacities have made
the task of managing modern file servers very complex. Studies
have shown that the chances of a misconfigured or sub-optimally
configured server are growing [4]. In a world where information
is increasingly available online, the cost of such misconfigurations
can be high since even a short down-time can result in substan-
tial revenue losses. Thus, system administrators must deal with
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the difficult task of configuring large, complex file servers so as to
achieve high availability and performance. Furthermore, reconfig-
uration and tuning of such servers is required on a continual ba-
sis to deal with long-term changes in the workload or incremental
growth. These trends motivate the need for techniques to improve
the manageability of large file servers. Others in the computing re-
search community share this belief. In fact, it has been argued that
the problems of maintainability, availability and growth of comput-
ing systems have overshadowed that of performance and that the
traditional focus on performance is less important in today’s envi-
ronments [7, 13].

We are developing a self-managing file server to address these
issues. A self-managing file server automates the tasks of config-
uring and tuning the server in order to achieve high availability
and performance. Such a server can automatically react to long-
term and short-term (transient) variations in the workload as well
as failures and changes in the server configuration. Since human
intervention is required only for unusual circumstances, this sim-
plifies the administration of large servers, reduces administration
costs, and most importantly, reduces the chances of human error.
Designing a self-managing file server introduces several research
challenges such as the design of workload monitoring techniques,
self-managing policies for placement and retrieval, techniques for
handling failures and incremental growth.

In this paper, we focus on the specific problem of bandwidth al-

location in a self-managing multimedia file server. By a multime-
dia file server, we mean one that services a heterogeneous mix of
conventional best-effort and soft real-time streaming media work-
loads (as opposed to continuous media servers that solely service
streaming media workloads). By self-managing bandwidth alloca-
tion, we mean techniques to monitor the file server workload and
react to both long-term and short-term changes in the load by dy-
namically allocating bandwidth to various classes. Our work has
led to several research contributions.

We first identify several requirements that should be met by a dy-
namic bandwidth allocation technique. In particular, we argue that
such a technique should (i) provide control over the time-scale of
allocation and over the allocation itself, (ii) provide stable behavior
during transient overloads and (iii) exploit the semantics of each ap-
plication class while determining their allocations. We then present
self-managing bandwidth allocation techniques for single-disk and
multi-disk servers. Our techniques consist of two key components:
(i) a workload monitoring module that can efficiently track the load
in each application class, and (ii) a bandwidth manager that uses
these workload statistics to dynamically determine the allocation
of each class. A novel feature of our techniques is that they provide
several tunable parameters to control the monitoring and the alloca-
tion process. We conduct an extensive simulation study of our tech-
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Figure 1: Three techniques for supporting multiple application

classes at a file server.

niques using both synthetic and real-world trace workloads. Our
experiments show that our techniques can indeed track both short-
term and long-term variations in the load and allocate bandwidth
to application classes accordingly. Our comparison with static al-
location shows that dynamic bandwidth allocation can yield queue
lengths that are 59% smaller during overloads and admit a larger
number of soft real-time clients into the system.

The rest of this paper is structured as follows. In Section 2, we
define the problem of self-managing bandwidth allocation in file
servers. Section 3 presents a self-managing bandwidth allocation
technique for single disk servers. In Section 4, we address this
problem for multi-disk servers. Section 5 discusses our experimen-
tal methodology, while Section 6 presents the results of our exper-
imental evaluation. Section 7 discusses related work, and finally,
Section 8 presents our conclusions.

2. Self-Managing Bandwidth Allo
ation: Problem De�ni-

tion

Consider a file server that services both streaming media and
traditional best-effort requests. Most modern file servers belong
to this category—they service requests for a mix of streaming me-
dia, image and textual data (as anecdotal evidence, consider users
who store MP3 audio files and digital images along with traditional
textual/numeric documents in their home directories). The work-
load serviced by such a file server can be broadly classified into
two categories: best-effort and soft real-time. The best-effort class
comprises of requests for traditional text/numeric and image data.
Applications in this class need low average response times or high
aggregate throughput, but do not require any performance guaran-
tees. In contrast, the soft real-time class comprises of requests for
streaming media data; applications in this class impose deadlines
that must be met but can tolerate an occasional violation of these
deadlines. Since the two classes have different characteristics and
performance requirements, modern file servers must address the
challenge of reconciling this heterogeneity.

A file server can employ one of three different techniques for
managing these two classes (see Figure 1):

� Best-effort service: In the simplest case, the file server does
not employ any specialized techniques for managing the two
classes and provides a simple best-effort service to both tex-
tual and streaming media requests. In such a scenario, the
performance requirements of soft real-time requests can be
met only by over-engineering the capacity of the server and
running the server at a low utilization levels. Since file server
workloads are often bursty [11], performance guarantees of
real-time requests are violated if a transient increase in the

workload causes saturation. Another limitation is that re-
quests from the two classes can interfere with one another—
a burst of real-time requests can starve best-effort requests
and vice versa. Due to these limitations, the overall utility of
this approach to streaming media applications is often unsat-
isfactory.

� Mutually exclusive storage: An alternate approach is to store
files from the two application classes on a mutually exclu-
sive set of disks. Such a static partitioning of storage re-
sources precludes the possibility of interference between the
two classes. Moreover, guarantees of soft real-time requests
can be met by employing simple admission control algo-
rithms. Although conceptually simple, this approach has cer-
tain limitations. In particular, this approach is feasible only
so long as the placement of files on disks can be carefully
controlled (to ensure mutually exclusive storage of files). Un-
less the mapping of files to disks can be transparently han-
dled by the file system, placing restrictions on end-users that
dictate where to store each type of file is cumbersome, since
users are used to the simplicity of creating and grouping ar-
bitrary files in their directories. A more serious problem is
that of performance—studies have shown that the static par-
titioning of storage space and disk bandwidth required by this
approach results in up to a factor of six loss in performance
(due to the lack of statistical multiplexing) [21].

� Reservation-based approach: A third approach is to share
storage space among the two classes but reserve a certain
fraction of the bandwidth on each disk for each class (i.e.,
stores files from both classes on all the disks but reserve disk
bandwidth for each class). By sharing storage resources, the
file server can extract statistical multiplexing gains; by re-
serving bandwidth, it can prevent interference among classes
and meet the performance guarantees of the soft real-time
class. Thus, a reservation-based approach overcomes the
limitations of the previous two approaches. Let R

rt

denote
the fraction of the bandwidth reserved for the soft real-time
class; the remaining fraction R

be

= 1 � R

rt

is used (re-
served) for the best-effort class. The challenge in design-
ing a reservation-based approach lies in determining an ap-
propriate partitioning R

rt

and R

be

such that both classes
see acceptable performance (i.e., meet the deadlines of real-
time requests while providing low average response times for
best-effort requests). Modern file systems such as SGI’s XFS
[14] and IBM’s Tiger Shark [12] support the notion of reser-
vations. XFS, for instance, does so using its guaranteed-rate
I/O feature [14].

Due to the inherent advantages and flexibility of the reservation-
based approach, in the rest of this paper, we assume a file server
that supports bandwidth reservations for each class.

There are several approaches for determine the aggregate band-
width reservation for each class. In the simplest case, the parti-
tioning of bandwidth among the two classes can be done manually.
This can be done using past observations or future estimates of the
load to determine the long-term usage in each class. Whereas this
approach is feasible on the time-scale of days, short-term variations
on the time-scale of tens of minutes or hours cannot be handled by
the approach (since this would involve frequent manual interven-
tion). Further, since the partitioning must be recomputed every so
often to account for long-term variations in the load within each
class, the possibility of human error can not be completely elimi-
nated.



An alternate approach is to automate the monitoring of the work-
load within each class and dynamically partition the bandwidth
among the two classes. We refer to such an approach as self-

managing bandwidth allocation. By actively monitoring the load,
the approach can react to workload changes on the time scale of
minutes or hours. Furthermore, the approach can also handle tran-
sient overloads in the system and ensure stable overload behavior.
A limitation of the approach, however, is that it increases the com-
plexity of the file server.

As a final caveat, we distinguish between three related concepts:
bandwidth allocation, scheduling and admission control. Whereas
a bandwidth allocator manages resources over time-scales ranging
from tens of minutes to several days, a scheduling algorithm op-
erates over a time-scale of tens or hundreds of milliseconds. In
contrast, admission control operates over the time scale of appli-
cation lifetimes and is responsible for allocation of resources to
individual applications. Put another way, a bandwidth allocator de-
termines what fraction to allocate to each application class, the ad-
mission controller determines how to further partition bandwidth
within each class among individual applications, and the scheduler
determines when to service individual requests so as to enforce both
class-specific and application-specific allocations.

In what follows, we first address the simpler problem of self-
managing bandwidth allocation in a single disk file server and then
use these insights to design a self-managing bandwidth allocator
for multi-disk servers.

3. Self-Managing Bandwidth Allo
ation in a Single Disk

Server

In this section we first present the system model assumed in our
research. We then outline the requirements that must be met by a
self-managing bandwidth allocator and finally present a bandwidth
allocation technique that meets these requirements.

3.1 System Model

Consider a single disk file server that services two classes of
applications—best-effort and soft real-time. Let us assume that the
server reserves a certain fraction of the disk bandwidth for each ap-
plication class. Let R

be

and R
tr

denote the reserved fractions, re-
spectively, 0 � R

be

; R

rt

� 1 and R
be

= 1�R

rt

. Given the reser-
vations R

be

and R
rt

, we assume that the file sever employs a disk
scheduling algorithm that can enforce these allocations. A number
of rate-based schedulers that support class-based bandwidth reser-
vation have been proposed [2, 16, 17, 22, 23]. Any such scheduler
is suitable for our purpose (since our bandwidth allocator does not
make any specific assumptions about the scheduling algorithm). It
is possible that the scheduler may itself further partition the band-
width allocated to a class among individual applications. In this
paper, we are only concerned about the aggregate bandwidth needs
of each class; the partitioning of this aggregate among individual
applications is an orthogonal issue (techniques for automatically
allocating bandwidth to individual applications based on past us-
age is an interesting challenge and the subject of future research).

3.2 Requirements

Assuming the above system model, consider a bandwidth allo-
cation technique that dynamically determines the fractions R

be

and
R

rt

based on the load in each class. Such a self-managing band-
width allocator should meet four key requirements.

� Time-scale of allocation and monitoring: Depending on the
environment, bandwidth allocation can be performed on the
time-scales ranging from a few minutes to tens of hours.
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Figure 2: A Moving Histogram

Allocating bandwidth on (small) time-scales of minutes al-
lows the server to respond to short term variations in the
load but can result in frequent fluctuations in the allocations.
In contrast, allocating bandwidth on large time-scales (e.g.,
hours or days) allows the server to focus on long-term trends
in the workload while effectively ignoring short term vari-
ations. Depending on the environment, small time-scale or
large time-scale allocation or both may be necessary. A band-
width allocator should allow a server administrator to specify
the time-scale(s) of interest and recompute allocations based
on this specification.

� Control over allocations: In addition to control over the time-
scale of allocations, the bandwidth allocator should allow
control over the allocation itself. Allocating bandwidth solely
based on past usage can be problematic. For instance, if ap-
plications in a certain class are idle, its allocation can shrink
to zero resulting in starvation for future applications. To
avoid such situations, the bandwidth allocator should permit
the server administrator to specify constraints on the alloca-
tions. This could be done, for instance, by specifying a set of
rules that govern the actual allocations.

� Stable overload behavior: A bandwidth allocator should ex-
hibit stable behavior even in the presence of transient over-
loads. Since the capacity of the server is exceeded during
an overload, bandwidth allocation by itself can not remedy
the situation. However, the allocator can (and should) make
intelligent allocation decisions that prevent unstable system
behavior during overloads.

� Exploit the semantics of each class: Requests within the
best-effort class desire low average response times, while
those within the real-time class have associated deadlines
that must be met. Since the two classes have different perfor-
mance requirements, the allocator should exploit the seman-
tics of each class and use different criteria to allocate band-
width to these classes. This can be achieved, for instance, by
using the average load to determine the allocation of the best-
effort class and the tail of the load distribution to determine
the allocation of the real-time class.

Next we present our workload monitoring module and our adap-
tive bandwidth manager that meets these requirements.

3.3 Monitoring the Workload in the Two Classes

The workload monitoring module tracks several parameters (listed
below) that are representative of the load within each class; the
bandwidth manager then uses these parameters to compute the al-
location of each class. For each such parameter, the monitoring
module computes a probability distribution using the concept of
a moving histogram. A moving histogram is simply a histogram
computed over a moving time window. A moving histogram is



Request
Arrivals

Parameters
 monitored

  Instantenous 
queue lengths (q)

Disk utilizations (U)

number of  requests (N)
    request sizes (S)

  Request
wait times

    Request
service  times
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characterized by two parameters: the window size W and the mea-
surement interval I (see Figure 2). The window size W determines
the interval of time over which the histogram is computed. Data
values are recorded into the histogram every I time units. Thus,
the parameter of interest is monitored over the measurement in-
terval I and the mean value of that parameter over that interval is
recorded into the histogram. The least recent value is then dropped
from the histogram, effectively sliding the window by I time units.
Thus, each histogram has bW

I


 data samples. By carefully choos-
ing W and I , it is possible to exercise control over the time-scale
over which the load is monitored.

The monitoring module tracks various aspects of resource usage
from the time a request arrives to the time it is serviced by the disk.
Monitored parameters include request arrival rates, request waiting
times and disk utilizations within each class (see Figure 3):

� Request arrival rates: Over each interval I , the module mon-
itors the number of request arrivals in each class (denoted by
N

be

and N
rt

) and the request sizes (S
be

and S
rt

). The num-
ber of arrivals and the mean request size in that interval are
then recorded into moving histograms.

� Request waiting times: Rather than monitoring the actual
request waiting times, our monitoring module uses queue
lengths as an indicator of the time each request waits in the
system before it is serviced—larger the queue of outstand-
ing requests, greater is the waiting time. This is achieved by
recording the instantaneous queue lengths of the two classes
(denoted by q

be

and q
rt

) at the end of each interval I .

� Disk Utilizations: The module uses the disk utilizations as
a measure of the actual bandwidth consumed by each class.
The utilization of a class is defined to be the fraction of the
time spent by the disk in servicing requests from that class.

It is computed as U
be

=

P

j

�

j

be

I

and U

rt

=

P

j

�

j

rt

I

, where

�

j

be

and �

j

rt

denote the time spent by the disk in servicing
an individual best-effort and soft real-time request, respec-
tively. The utilizations within each class are then recorded
into moving histograms at the end of each interval I .

3.4 Adapting the Allo
ation of Ea
h Class

The bandwidth manager uses the histograms computed by the
monitoring module to periodically recompute the bandwidth al-
location (reservation) of each class. The manager provides con-
trol over the time-scale of allocation using a parameter P that de-

fines the period of these recomputations. Recall that the monitor-
ing module uses a window size W for each moving histogram. In
general, the recomputation period P can be smaller or larger than
W . If allocations are recomputed more frequently than W (i.e.,
P < W ) then some measurements used in the previous computa-
tions are reused to compute the new allocations (since those mea-
surements would still be contained in the window W of the his-
togram). In contrast, if P > W , then some load measurements
are never taken into account for computing the allocations. Conse-
quently, using P = W is a good rule of thumb to ensure a respon-
sive file server. In the rest of this paper, we assume P = W .

The bandwidth manager uses a rule-based system to provide con-
trol over the allocation to each class. Such a rule-based system sup-
ports a set of user-defined rules that govern these allocations. Our
bandwidth manager currently supports rules that specify upper and
lower bounds for each class. That is, a server administrator can
specify bounds (denoted by [R

min

be

; R

max

be

℄ and [R

min

rt

; R

max

rt

℄) on
the bandwidth allocated to each class. Bounds on allocations are
useful to prevent scenarios where a class receives either too little or
too much bandwidth (without such bounds, the allocation of the a
class could shrink to zero if the class is idle, causing starvation for
newly arriving requests). We plan to support a more sophisticated
set of rules as part of future work (e.g., the best-effort class should
get no more than 25% of the bandwidth when the server utilization
exceeds 80%).

Given the recomputation period P and bounds on the alloca-
tion of each class, the bandwidth manager estimates the bandwidth
needs of each class using two metrics: (i) disk utilizations and (ii)
request arrival rates.

3.4.1 Estimating Bandwidth Requirement based on Disk

Utilizations

The bandwidth manager uses the moving histograms of the disk
utilizations to estimate the bandwidth needs of each class. Since
the two classes have different performance characteristics, a differ-
ent metric is used to compute these estimates. In case of the best-
effort class, the bandwidth manager uses the median of the utiliza-
tion distribution, denoted by Median(U

be

), as an estimate of the
bandwidth requirement (this is because requests in this class desire
low average response times).1 In contrast, a high percentile of the
utilization, denoted by Per
(U

rt

), is used to estimate the require-
ments of the real-time class (since the tail of the distribution better
reflects the needs of real-time requests). The exact percentile used
to estimate the bandwidth requirements can be chosen statically or
dynamically. In the latter case, the percentile could be a function
of the variance in the load—the greater the variance, the higher the
percentile used to estimate the bandwidth requirements. To illus-
trate, the percentile can be chosen as base per
entile + log(C

v

)

where C
v

is the coefficient of variation and is computed as C
v

=

�(U

rt

)=E(U

rt

); E and � are the mean and the standard deviation
of the distribution.

After computing these utilizations, the bandwidth manager uses
an exponential smoothing function to weigh the current estimate
with past estimates. That is,

Median

�

(U

be

) = � �Median(U

be

) +

(1� �) �Median

�

(U

be

) (1)

and

Per


�

(U

rt

) = � � Per
(U

rt

) + (1� �) � Per


�

(U

rt

) (2)

1We considered using the mean utilization for our estimate, but
found the median to be a more accurate estimate due to the heavy
tailed nature of the distribution.



where � is an exponential smoothing parameter, 0 � � � 1. A
large value of � biases the estimates towards the immediate past
measurements, whereas a small� reduces the contribution of recent
measurements.

3.4.2 Estimating Bandwidth Requirement based on the

Arrival Rate

Whereas the actual disk utilization is a good indicator of the
needs of each class when the disk in not saturated (no overload),
a different metric is needed during periods of transient overloads.
This is because the total disk utilization is always 100% during
an overload and no longer reflects the relative needs of each class.
Consequently, the bandwidth manager uses request arrival rates to
estimate the bandwidth needs of each class during transient over-
loads. In general, a class with larger arrival rates should be allo-
cated a larger proportion of the disk bandwidth. Observe that since
the capacity of the disk is exceeded during an overload, no alloca-
tion can actually satisfy the total bandwidth needs of two classes.
In such a scenario, the goal of the bandwidth manager should be
to ensure stable overload behavior and ensure that the allocations
reflect the relative needs of the two classes.

To estimate the bandwidth needs based on arrival rates, the band-
width manager first computes the number of requests arriving in
each class and the request size and uses a simple disk model to
estimate the bandwidth needs. As in the case of disk utilization,
exponentially smoothed values of the median and a high percentile
of these distributions are used for the best-effort and real-time class,
respectively. Thus, the bandwidth needs of the best-effort class are
computed as

B

be

= Median

�

(N

be

) � (t

seek

+ t

rot

+

Median

�

(S

be

)

t

xfr

) (3)

and those of the soft real-time class are computed as

B

rt

= Per


�

(N

rt

) � (t

seek

+ t

rot

+

Per


�

(S

rt

)

t

xfr

) (4)

where t
seek

, t
rot

and t
xfr

denote the average seek overload, aver-
age rotational latency and the data transfer rate of the disk, respec-
tively. Note that the first term in the above expression represents
the number of disk requests, while the second term represents the
time to service each disk request.

3.4.3 Computing the Reservations of Ea
h Class

The bandwidth manager begins by initializing the allocation of
each class to a user-specified value (Rinit

be

and R

init

rt

). After each
interval of P time units, the bandwidth manager estimates the band-
width needs of each class (Section 3.4.1 and 3.4.2) and then com-
putes the new allocations using the following algorithm.

� Case 1: Neither class utilizes its entire allocation. This sce-
nario occurs when Median

�

(U

be

) < R

be

and Per

�

(U

rt

)

< R

rt

. Since neither class is utilizing its entire allocation, no
action is necessary. Hence, the allocations of the two classes
remains unchanged.

� Case 2: The best-effort class utilizes its entire allocation.

This scenario occurs when Median

�

(U

be

) � R

be

and
Per


�

(U

rt

) < R

rt

. Since the best-effort class utilizes or
exceeds its allocated share2 and the real-time class is under-

2Depending on the scheduling algorithm, an application class
might use more bandwidth than its reserved share. This happens
when the other class is under-utilized and the scheduler reallocates
unused bandwidth to needy applications in the first class.

utilized, the bandwidth manager should increase the alloca-
tion of the best-effort class (and correspondingly decrease the
allocation of the real-time class). This is achieved by setting

R

new

be

= Median

�

(U

be

) (5)

The allocation of the real-time class is then set to R

new

rt

=

1�R

new

be

.

� Case 3: The real-time class utilizes its entire allocation. In
this scenario, Median

�

(U

be

) < R

be

and Per


�

(U

rt

) �

R

rt

. Since load in the real-time class equals or exceeds its
allocation, the allocation of this class should be increased
appropriately. Consequently, the bandwidth manager sets the
new allocation of the class to

R

new

rt

= Per


�

(U

rt

) (6)

The allocation of the best-effort class is set to Rnew

be

= 1 �

R

new

rt

.

� Case 4: Overload. An overload is said to occur when both
classes use up their entire allocations (resulting in saturation)
or the queue of pending requests exceeds a threshold. That
is, (i) Median

�

(U

be

) � R

be

and Per


�

(U

rt

) � R

rt

; or
(ii) q

be

� Q or q
rt

� Q, where Q is a large threshold. Since
disk utilizations are not representative of the relative require-
ments of the two classes during an overload, the bandwidth
manager uses the request arrival rate to compute the alloca-
tion of each class. Given the bandwidth estimates, B

be

and
B

rt

, based on arrival rates, the new allocations are computed
as

R

new

be

=

B

be

B

be

+B

rt

(7)

and

R

new

rt

=

B

rt

B

be

+B

rt

(8)

As explained earlier, the use of the relative bandwidth needs
of the two classes to compute allocations results in more sta-
ble overload behavior.

The above allocations are then constrained (if necessary) using user-
specified bounds [Rmin

be

; R

max

be

℄ and [R

min

rt

; R

max

rt

℄.
Our adaptive algorithm has the following salient features: (1) it

provides control over the time-scale of monitoring and allocation
via two tunable parameters: P (= W ) and � (in general, larger re-
computation periods and smaller �s bias the allocator to long-term
variations in the load), (2) it allows control over the allocation via a
set of rules to constrain the allocation, (3) it employs techniques to
provide stable overload behavior, and (4) it exploits the semantics
of each class by using different metrics (median and percentiles of
the distribution) to estimate bandwidth needs. Thus, the bandwidth
allocator meets all of the requirements outlined in Section 3.2.

In what follows, we show how to enhance this technique to allo-
cate bandwidth in muti-disk servers.

4. Self-Managing Bandwidth Allo
ation in a Multi-disk

Server

Due to the sheer volume of data stored on servers, modern file
servers employ multiple disks or disk arrays as their underlying
storage medium. A multi-disk server can employ one of two place-
ment techniques to store files—each file can be mapped to a single
disk or the server can employ striping to interleave the storage of
a file across multiple disks. In the former case, the load on each



disk is independent of the load on remaining disks, whereas in the
latter case the load on disks are related to one another. It is triv-
ial to extend our self-managing bandwidth allocation technique to
multi-disk servers where each file maps onto a single disk—since
the disk loads are independent, the allocator can monitor a disk and
allocate bandwidth independently of other disks. A different tech-
nique is needed when files are striped across multiple disks or when
it is desirable to treat multiple independent disks as a single logical
storage device for purposes of bandwidth allocation.

One possible approach is to monitor the load on each disk and
first compute the allocation on individual disks using the algorithm
described in Section 3.4.3. The actual allocation of each class is
then set to the mean allocation over all disks in the array. Whereas
such an approach results in satisfactory performance for the best-
effort class, it can adversely affect the performance of the real-time
class. This is because the load on various disks can be different
and the use of the average load to determine the allocation of the
real-time class can affect requests accessing heavily loaded disks.
An alternate approach is to set the allocation of each class to that
on the most heavily loaded disk in the system. However, a prob-
lem with the approach is that the load on the most heavily loaded
disk can significantly differ from that on the average loaded disk
and using the load on the former to govern the allocation on the
latter can cause a mismatch between the allocation and the actual
load (thereby defeating the purpose of bandwidth allocation). Thus,
neither approach is satisfactory for allocating bandwidth on a disk
array.

In what follows, we present a hybrid approach that takes into
account the load on the heavily loaded disks as well as the average
load to compute the allocations of the two classes. We use the same
notation as that in the single disk case with an additional superscript
to denote a particular disk (thus Ri

be

denotes the allocation of the
best-effort class on disk i). Based on the load parameters tracked
by the monitoring module, we first compute the allocations on in-
dividual disks as follows:
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The average allocation of the best-effort class across all disks is
then R

avg

be

= avg(R

1
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; R
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; : : : ; R

D

be

) and the maximum alloca-

tion of the class on any disk is Rmax
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= max(R
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; : : : ; R

D

be

),
where D denotes the number of disks in the array. The average and
the maximum allocations of the real-time class across all disks can
be computed similarly. The bandwidth manager then computes the
allocation of each class as a linear combination of the average and
the maximum load. That is,

R
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= 
 � R

max

be

+ (1� 
) � R

avg

be

(11)

where the parameter 
, 0 � 
 � 1, determines the contribution of
the average and the maximum load to the final allocation. Similarly,
the allocation of the real-time class is

R
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rt

+ (1� 
) �R
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rt

(12)

Finally, since the fractions R
be

and R
rt

may not sum to 1 (due
to the skew between the average and maximum loads and the pa-
rameter 
), the final allocation is normalized as follows:
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As in the single-disk case, the new allocations are constrained (if
necessary) using the user-specified upper and lower bounds. These
allocations are then used on each individual disk for the next P
time units.

Observe that Equations 11 and 12 are key to multi-disk band-
width allocation—the choice of an appropriate 
 helps balance the
contribution of heavily loaded disks and average loaded disks to the
final allocation for each class.

5. Experimental Methodology

We evaluate the efficacy of our self-managing bandwidth allo-
cator using a simulation study. In what follows, we describe the
simulation environment and the workload characteristics used in
our experiments and then describe our experimental results.

5.1 Simulation Environment

We used an event-based disk simulator to evaluate our bandwidth
allocation technique. Our simulator can simulate both single-disk
and multi-disk servers. In either case, we assume that the server
supports two application classes—best-effort and soft real-time.
Requests from these classes are assumed to be serviced using the
Cello disk scheduling algorithm [22]. The Cello disk scheduler
supports reservations for each class and uses class-specific policies
to service requests in the two classes; the SCAN policy is used to
service best-effort requests, while SCAN-EDF is used to service
real-time requests with deadlines. Note that, any other disk sched-
uler that supports class-specific reservations can be used in con-
junction with our bandwidth allocator without significantly affect-
ing our results. The file server is assumed to use one or more Sea-
gate Elite-3 disks to store files from the two application classes.3

The block size used for storing text files is assumed to be 4KB,
while that for the video files is 64KB. In case of disk-arrays (i.e.,
a multi-disk server), all files are assumed to be striped across disks
in the array.

The workload monitoring module employed by the simulator
tracks various load parameters as described in Section 3.3. The
moving histograms computed by the module are the used by the
bandwidth manager to compute the allocation for each class (as
described in Sections 3.4 and 4). The allocation of each class is
assumed to be initialized to Rinit

be

= R

init

rt

= 0:5 at the beginning
of each simulation experiment.

5.2 Workload Chara
teristi
s

We use two types of workloads in our experiments: trace-driven
and synthetic. Our trace workloads have been gathered from a real
file-server and enable us to determine the efficacy of our methods
for real-world scenarios. However, since a trace workload only
represents a small subset of the operating region of a file server, we
use synthetic workloads to systematically explore the state space.
Next we describe the characteristics of the workloads used in our
experiments.

5.2.1 Best-e�ort Text Clients

We used portions of a NFS trace gathered from an Auspex file
server at Berkeley to generate the trace-driven text workload [9].
The characteristics of these workloads are shown in Table 1. We
assumed a 64MB LRU buffer cache at the server and filtered out
requests resulting in cache hits from the original trace; the remain-
ing requests are assumed to result in disk accesses. Figure 4 illus-
trates the characteristics of the resulting workload. As shown in the

3The Seagate Elite disk has an average seek overhead of 11 ms, an
average rotational latency of 5.55 ms and a data transfer rate of 4.6
MB/s.



Table 1: Characteristics of the Auspex NFS trace

Number of read/write operations 218724
Average bit rate (original) 218.64 KB/s
Average bit rate (with 64MB cache) 83.91 KB/s
Average inter-arrival (original) 9.14 ms
Average inter-arrival (with 64MB cache) 22.53 ms
Average request size 2048.22 bytes
Peak to average bit rate (1s intervals) 12.51
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Figure 4: Bursty nature of the NFS trace workload.

figure, the text workload is very bursty; the peak to average bit rate
of the trace was measured to be 12.5.

To systematically explore the state space, we also use a synthet-
ically generated text workload. Each text client in the synthetic
workload is assumed to be sequential or random. The simulator
allows control over the fractions f and 1 � f of sequential and
random text clients in the workload. Clients are assumed to arrive
and depart at random time instants. Inter-arrival times of clients are
assumed to be exponentially distributed. Upon arrival, each client
is assumed to access a random file and file sizes (and hence, client
life times) are assumed to be heavy-tailed with a Pareto distribution.
These assumptions, namely exponential interarrivals and Pareto file
sizes, are consistent with studies of real-world text clients [5, 11].

5.2.2 Soft Real-time Video Clients

Each video client in our simulator emulates a video player and
reads a randomly selected video file at a constant frame rate (e.g.,
30 frames/s). Depending on the compression algorithm, the se-
lected video file may have a constant or a variable bit rate. Table
2 lists the characteristics of video files used in our simulations. As
shown in the table, we use a mix of high bit-rate MPEG-1 files
and low bit-rate MPEG-4 files. Since much of the existing on-
line streaming media content is low bit-rate (e.g., WindowsMedia,
RealMedia), this allows us to experiment with existing workloads
as well future higher bit-rate workloads. All video clients are as-
sumed to be serviced in the server-push (streaming) mode. The
server services these clients in periodic rounds by retrieving a fixed
number of frames in each round. Disk requests for all active video
clients are issued at the beginning of each round and have the end of
that round as their deadlines. The round duration was set to 1000ms
in our simulations.

We used observations from a recent study of an actual streaming
media workload [8] to simulate the arrival process for video clients
(since the traces used in that study are not publicly available, we

Table 2: Characteristics of Video traces
File Type Length Bit rate

(frames)
Frasier MPEG-1 5960 1.49 Mb/s

Newscast MPEG-1 9000 2.33 Mb/s
Silence of the Lambs MPEG-4 89998 107 Kb/s

couldn’t use the trace itself). Video clients are assumed to arrive
and depart at random instants. Inter-arrival times are exponential,
the object popularity is Zipf, and the client life-times are heavy-
tailed. We assumed no correlation between object sizes and object
popularity, consistent with observations made in recent studies [5].

6. Experimental Evaluation

In what follows, we present the results of our experimental eval-
uation using the trace and synthetic workloads described in the pre-
vious section.

6.1 Ability to Adapt to Changing Workloads

In this experiment, we show how our bandwidth allocation tech-
nique can adapt to changing workloads. We assume a single disk
server and construct a workload scenario that exercises all four
cases of the allocation algorithm listed in Section 3.4.3. To do so,
we assume synthetic text and video clients that arrive and depart at
random instants. Text clients are assumed to be sequential and ac-
cess 10KB of the file every 250ms. Each video client is assumed to
access a MPEG-1 file. The window size W and the recomputation
period P were set to 100 seconds, the measurement interval I was
1s and the smoothing parameter � was 0.75. The percentile used
for estimating the needs of the real-time class was set to 90.

Figure 5(a) depicts the variation in the number of text and video
clients over the duration of the experiment (note that the figure only
denotes the number of clients in each class, not their aggregate
bandwidth requirements). We start with a small number of text
and video clients at t = 0. At t = 500, there is a sudden burst of
new video client arrivals (triggering case 3 in Section 3.4.3). The
video burst subsides at t = 1500 and a burst of text clients occurs
at t = 2000 (case 2). At t = 4000, there is a simultaneous burst of
text and video requests, resulting in transient overload at the server
(case 4).

Figure 5(b) shows the allocations of the two classes for this work-
load, while Figures 5(c) and (d) plot the utilization of each class
with the corresponding allocations. As shown in Figure 5(b), the al-
location of the real-time class increases at t = 500 due to the video
burst, while that of the best-effort class increases at t = 2000 due to
the text burst. At t = 4000, the server experiences an overload and
the bandwidth manager uses the request arrival rates to determine
the allocations. Moreover, Figure 5(c) shows that allocation of the
real-time class is always a high percentile of the load (evident from
the relative values of the allocation and the utilization), whereas
Figure 5(d) shows that the allocation of the best-effort class is me-
dian value of the utilization. Finally, observe that in the periods
1500 � t � 2000 and 3000 � t � 3500, neither class utilizes its
allocated share, causing the allocations to remain unchanged (case
1).

6.2 Bandwidth Allo
ation in a Single-disk Server

In this experiment, we demonstrate the efficacy of our approach
for a single disk server. Whereas we performed experiments with
both trace and synthetic workloads, due to space constraints we
present our results only for trace workloads.
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Figure 5: Adaptive allocation of disk bandwidth

0

0.2

0.4

0.6

0.8

1

2000 4000 6000 8000 10000

A
llo

c
a

ti
o

n

Time (secs.)

Real time
Best effort

0

0.2

0.4

0.6

0.8

1

2000 4000 6000 8000 10000

U
ti
liz

a
ti
o

n

Time (secs.)

Class allocation
Class utilization

(a) Bandwidth allocations (b) Utilization of the best-effort class

Figure 6: Bandwidth allocation in a single-disk server.



Our experiment uses NFS traces (with a scale factor of 3) to gen-
erate a bursty text workload4 , while keeping the video load fixed
over the duration of each simulation run. We repeated the experi-
ment for background video loads ranging from 1 to 10 simultane-
ous MPEG clients. This enabled us to study the impact of a bursty
text load with varying background video loads. Each run simulates
2.8 hours of the workload on the file server. Note also that while
the number of video clients is fixed for each simulation run, each
client may impose a varying load due to the variable bit rate nature
of video files.

Figures 6(a) and (b) plot the allocation of the two classes and
the utilization of the best-effort class for one such combination
(namely, NFS workload with 7 background video clients). As shown
in the Figure 6(b), the allocation of the best-effort class closely
matches the disk utilization of that class, thereby demonstrating
the effectiveness of the bandwidth allocator.

6.3 Bandwidth Allo
ation in a Multi-disk Server

In this experiment, we demonstrate the efficacy of our approach
for a multi-disk server. Like in the single disk case, we conducted
experiments with both trace and synthetic workloads. Due to space
constrains, we only present our results for synthetic workloads.

We assumed a multi-disk server with eight disks. Both text and
video files are assumed to be striped across all disks in the array.
The parameter 
 that determines the contribution of the maximum
load and the average load across disks was chosen to be 0.75. Like
in the single disk case, we chose W = P = 100s and I = 1s.

The inter-arrival times of text clients were exponentially dis-
tributed with a mean of 10s and the lifetimes of these clients were
heavy-tailed with a mean of 4 minutes. Half of the text clients
were sequential and the other half random. Inter-arrival times of
video clients were also exponential with a mean of 1 minute, with
a heavy-tailed lifetime of 4 minutes. The popularity of video files
was Zipf with a parameter of 0.47 [8]. These parameters were cho-
sen such that the text load was mostly stable, while the video load
steadily increased over the duration of the experiment, eventually
resulting in an overload.

Figure 7 (a) shows the allocation of the two classes as computed
by our multi-disk bandwidth allocator. Figures 7(b) and (c) plot
the maximum utilization of the soft real-time class on any disk and
the mean utilization across all disks, respectively (along with the
corresponding allocations). As expected, we see that the allocation
of the soft real-time class increases steadily with the load. Eventu-
ally, some of the disks in the array experience an overload and our
allocator uses request arrival rates to compute the allocations. Note
also that since we chose 
 = 0:75, the allocation on the average
disk is slightly larger than the utilization on that disk.

6.4 Impa
t of Tunable Parameters

In this section, we show how tunable parameters such as the re-
computation period P (= W ) and the smoothing parameter � can
be used to control the time-scale of bandwidth allocations.

The video load for this experiment was kept fixed over the du-
ration of the simulation. The text load is initially steady for the
first 2200 seconds and a burst occurs between 2200 � t � 2800

(the burst is characterized by a sharp increase in the number of text
clients followed by a sharp decrease). Figure 8(a) plots this varia-
tions in the text load.

We varied � from 0.25 to 1 and computed the allocations of the
best-effort class. In general, a large value of � causes the band-
width manager to maintain less history and biases the allocations

4The scale factor scales the interarrival times of requests and allows
control over the burstiness of the workload.

towards more recent measurements. This allows the server to re-
act to small variations in the load. In contrast, small values of
� smoothes out recent variations in the load, making the server
less sensitive to recent load changes. Figure 8(b) demonstrates this
behavior for different values of �. As shown in the figure, when
� = 1 the bandwidth manager quickly increases the allocation of
the best-effort class to match the increase in utilization due to the
burst. The increase in allocation is slower for smaller values of �.
For instance, when � = 0:25 the allocation increases slowly to
60% and doesn’t increase further since the burst subsides quickly.

Next, we varied P and studied its effect on the allocation. Fig-
ure 8(c) depicts the allocation of the best-effort class for different
values of P . A larger recomputation period allows the bandwidth
manager to focus on long-term trends and ignore short-term vari-
ations, while a smaller recomputation period enables the server to
respond to short-term variations. Figure 8(c) demonstrates this be-
havior. When P = 100, the allocation of the best-effort class
quickly increases to match the increase in the load. In contrast,
when P = 500 the time-scale of interest becomes larger than the
duration of the burst and consequently the bandwidth manager ig-
nores the burst altogether and keeps the allocation unchanged.

Together, these experiments demonstrate how these tunable pa-
rameters can be used to control the granularity of bandwidth allo-
cation and the sensitiveness to load fluctuations.

6.5 Comparison with Stati
 Allo
ation

Finally we demonstrate the advantages of our dynamic allocation
technique over static bandwidth allocation. We initialize the alloca-
tion of the two classes to 50% of the total disk bandwidth. Whereas
the allocation remains fixed for static partitioning, it varies with
the load for dynamic allocation. We examine a scenario where the
server experiences a transient overload due to a burst in the real-
time class and measure the queue length of the real-time requests.
Since the allocation remains fixed in former scenario, the server is
unable to respond to an overload, causing the queue of real-time
requests to grow quickly. In contrast, our bandwidth allocation
technique uses request arrival rates to determine the allocation of
each class and allocates a larger bandwidth to the real-time class.
This enables the server to exhibit a more stable behavior during an
overload, resulting in a more graceful increase in the queue length
(the average queue length is also 59% smaller). We repeat the ex-
periment with a steady video load and a burst in the best-effort
class. Again, the server is unable to respond to the burst in case of
static allocation,whereas our dynamic allocator allocates a larger
bandwidth to the best-effort class, resulting in significantly better
response times. Figures 9(a) and (b) demonstrate this behavior.

Dynamic bandwidth allocation can also be advantageous when
the server employs admission control for the real-time class. If the
server were to employ static bandwidth allocation, then the admis-
sion controller would only admit as many clients as the allocation
of the real-time class permits; additional real-time clients would
be rejected from the system even when the best-effort class is not
using its entire allocation (i.e., the system has spare capacity). In
contrast, dynamic bandwidth allocation allows the server to grad-
ually increase the allocation of the real-time class based on its us-
age, thereby allowing the admission controller to admit additional
clients. This results in more judicious use of system resources. We
compared static allocation to our dynamic allocation technique in
the presence of admission control in the real-time class. Our exper-
iment consisted of a fixed text load and a video arrival every 500s.
The initial allocation of the two classes was 50%. As shown in Fig-
ure 9(c), dynamic bandwidth allocation permits additional clients
to be admitted into the system so long as there is unused bandwidth
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Figure 7: Bandwidth allocation in a multi-disk server.
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Figure 8: Effect of various tunable parameters on the granularity of bandwidth allocations.

in the best-effort class. Together these experiments demonstrate the
benefits of a dynamic bandwidth allocation over static allocation.

7. Related Work

A number of recent and ongoing research efforts have focused on
the design of self-managing systems [15, 19]. The IStore project,
for instance, is investigating the design of work-load monitoring
and adaptive resource management techniques for data-intensive
network services [6]. Unlike their focus on data-intensive net-
work applications, the focus of our work is on mixed (best-effort
and streaming media) workloads. The VINO project has investi-
gated the design of self-managing techniques for various OS tasks
such as paging, interrupt latency and disk waits [20]. The design
of feedback-driven proportionate allocation of disk bandwidth has
also been studied [18]. This work comes closest to our current ef-
fort; the key difference is our focus on multi-disk servers, whereas
they address the problem for single disk servers using control the-
oretic techniques. Research on storage systems at HP Labs has
also investigated various issues in self managing systems such as
self-configuration (Minerva [1]), capacity planning [3] and goal-
based storage management [1]. Finally, a number of predictable
disk scheduling algorithms have been proposed [2, 16, 17, 22, 23].
As indicated earlier, these efforts are complementary to our effort,
since our bandwidth allocator can coexist with any such scheduler.

8. Con
luding Remarks

In this paper, we argued that manageability of file servers is just
as important, if not more, as performance. We focused on the prob-

lem of self-managing bandwidth allocation to improve the man-
ageability of modern file servers. We presented two techniques for
dynamic bandwidth allocation—one for single disk servers and the
other for servers employing multiple disks or disk arrays. Both
techniques consist of two components: a workload monitoring mod-
ule that efficiently monitors the load in each application class and
a bandwidth manager that uses these workload statistics to dynam-
ically determine the allocation of each class. We evaluated the ef-
ficacy of our techniques via a simulation study using synthetic and
trace workloads. Our results showed that these techniques (i) pro-
vide control over the time-scale of allocation via tunable param-
eters, (ii) have stable behavior during overload, and (iii) provide
significant advantages over static bandwidth allocation. As part of
future work, we plan to develop a more sophisticated rule-based
system to provide better user control over the allocations. We also
plan to examine other aspects of self-managing file systems such as
placement and failure handling.
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