

Ride Substitution Using Electric Bike Sharing: Feasibility, Cost, and Carbon Analysis

John Wamburu, Stephen Lee, Mohammad Hajiesmaili, David Irwin, & Prashant Shenoy

Background and problem

- Ride sharing originally came with the promise of reduced traffic and carbon emissions by reducing reliance on privately owned cars
- However, it has resulted in increased traffic
 - E.g., 50% of all traffic in NYC is made up of ride sharing [1]
- Ride sharing is also 47% more carbon intensive than personal car trips
 - This is mainly due to dead miles [2,3]

^{3.} https://www.ucsusa.org/resources/ride-hailing-climate-risks

^{1. &}lt;u>https://www.citylab.com/transportation/2019/08/uber-lyft-traffic-congestion-ride-hailing-cities-drivers-vmt/595393/</u>

^{2. &}lt;u>https://www.reuters.com/article/us-uber-emissions/ride-hailing-increases-emissions-contributes-to-climate-pollution-study-idUSKBN20J27K</u>

Electric bikes: a greener alternative

- Electric bikes provide pedal assist to the rider using an inbuilt motor and battery
 - This makes biking nearly effortless & ideal for longer rides or uphill rides
- Since most taxi trips are short, they can easily be taken using electric bikes which offer a greener alternative
- This could reduce carbon emission

Research question

What are the costs and carbon benefits of encouraging more bike sharing as a substitute for shorter ride sharing trips? What is the feasibility of such an approach?

Overview of datasets

• To address these questions, we use the following open datasets

CitiBike		Taxi		For Hire Vehicles	
# of bikes	18K	# of vehicles	22K	# of vehicles	78K
# of trips	19M	# of trips	101M	# of trips	253M
# of stations	941	Туре	Yellow, Green	Туре	Uber, Lyft, Via, Juno
Duration	Jul 2018 – Jun 2019	Duration	Jul 2018 – Jun 2019	Duration	Jul 2018 – Jun 2019

Are ride share trips feasibly substitutable by bikes trips?

• Feasibility by **distance**: The median taxi trip is quite short (2.7km), which can easily be taken using a bike

UMassAmherst

- Feasibility by pickup and drop-off: Up to 70% of taxi trips are within 200m of a bike station
- Convenience: Short bike trips (2km) are *faster* than car trips. Median bike trip takes 6 minutes vs 10 minutes for car rides

20

Median = 6.0 min

90th percentile = 12.5 min

60

80

SD = 7.1 min

40

Trip duration (minutes)

100

80

60

40

20

0

0

Percentage of trips (%)

5

Which taxi trips are eligible for substitution?

- Lower demand for bike trips on rainy and snowy days
- Low demand for night trips
- Lower peak demand for bike trips on holidays, but higher demand during day hours
- Higher peak demand for rainy and snowy days
- Higher demand for night trips than bike trips
- Lower peak demand on holiday days
- Higher demand for night trips on holiday days

Ride substitution with regular and electric bikes

- Linear optimization framework
- Minimize number of required bikes while ensuring
 - Trip demand is fully met
 - Short rides are taken using regular bikes
 - Long trips are taken using electric bikes
 - Medium distance trips are taking using either, whichever is available first

Formulation

 $S = \{1, \ldots, n\}$ — Set of stations in a BSS $x_i(t)$ — Electric bikes at station *i* and time *t* $y_i(t) \longrightarrow$ Regular bikes at station *i* and time t $I_i^{M,e}(t) \longrightarrow$ Set of incoming medium trips using electric bikes $I_i^{M,r}(t)$ — Set of incoming medium trips using regular bikes $O_i^{M,e}(t)$ — Set of outgoing medium trips using electric bikes $O_i^{M,r}(t)$ — Set of outgoing medium trips using regular bikes

Formulation (continued)

 $\sum x_i(1) + y_i(1)$

Demand constraints

$$\begin{split} I_i(t) &= I_i^{\mathsf{L}}(t) + I_i^{\mathsf{S}}(t) + I_i^{\mathsf{M}}(t), \quad \forall i, \forall t. \\ O_i(t) &= O_i^{\mathsf{L}}(t) + O_i^{\mathsf{S}}(t) + O_i^{\mathsf{M}}(t), \quad \forall i, \forall t. \\ I_i(t) + x_i(t) + y_i(t) &\geq O_i(t), \quad \forall i, \forall t. \\ I_i^{\mathsf{L}}(t) + I_i^{\mathsf{M}, \mathsf{e}}(t) + x_i(t) &\geq O_i^{\mathsf{L}}(t) + O_i^{\mathsf{M}, \mathsf{e}}(t), \quad \forall i, \forall t, \\ I_i^{\mathsf{S}}(t) + I_i^{\mathsf{M}, \mathsf{r}}(t) + y_i(t), &\geq O_i^{\mathsf{S}}(t) + O_i^{\mathsf{M}, \mathsf{r}}(t), \quad \forall i, \forall t. \\ I_i^{\mathsf{M}}(t) &= I_i^{\mathsf{M}, \mathsf{e}}(t) + I_i^{\mathsf{M}, \mathsf{r}}(t), \quad \forall i, \forall t, \\ O_i^{\mathsf{M}}(t) &= O_i^{\mathsf{M}, \mathsf{e}}(t) + O_i^{\mathsf{M}, \mathsf{r}}(t), \quad \forall i, \forall t. \end{split}$$

Flow conservation

$$\begin{aligned} x_i(t+1) + y_i(t+1) &= x_i(t) + y_i(t) + I_i(t) - O_i(t), & \forall i, \forall t. \\ x_i(t+1) &= I_i^{\mathsf{L}}(t) + I_i^{\mathsf{M},\mathsf{e}}(t) + x_i(t) - O_i^{\mathsf{L}}(t) - O_i^{\mathsf{M},\mathsf{e}}(t), & \forall i, \forall t, \\ y_i(t+1) &= I_i^{\mathsf{S}}(t) + I_i^{\mathsf{M},\mathsf{r}}(t) + y_i(t) - O_i^{\mathsf{S}}(t) - O_i^{\mathsf{M},\mathsf{e}}(t), & \forall i, \forall t \end{aligned}$$

UMassAmherst

Optimal number of bikes required for substitution

 A hybrid system requires ~30% more bikes but provides more convenience

UMassAmherst

 Doubling the number of trips leads to a 52% increase in bikes, a sublinear increase with increased substitution

 Up to 6.6% of total carbon emission (2100MT) can be eliminated with 10% trip substitution

10

Expanding an existing bike share system

- Red markers existing bike stations
- Green markers unclustered taxi trips
- Current bike share coverage is centered in one location

UMassAmherst

- Multiple colors Discovered trip clusters
- Black markers sparse taxi trips
- Clusters form demand for new bike stations

Expanding an existing bike share system

	Current	Expanded	% Change
Stations	941	1761	87%
Bikes	9199	12310	33.8%
CO ₂ (MT)	183,648	168,835	-8%

- Expansion incurs a higher investment cost. This is reasonable, since the geographical area covered is nearly the same
- Nearly double the number of stations are required in the expanded system
- Total annual CO₂ emission can be reduced by up to 8% from such expansion

Summary & Conclusions

- Car rides are easily substitutable with bikes
 - 50% of car rides are < 3.6km long
 - 69% of car rides are within 200m of a bike station
- Number of bikes increases sub-linearly with increase in substituted rides
- There exists opportunity to expand existing bike share systems to take advantage of trip clusters outside of the coverage region
- If implemented, ride substitution can lead to significant carbon reduction

Thank You!

