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ABSTRACT
Since CDN simulations are known to be highly memory-intensive,
in this paper, we argue the need for reducing the memory require-
ments of such simulations. We propose a novel memory-efficient
data structure that stores cache state for a small subset of popular
objects accurately and uses approximations for storing the state for
the remaining objects. Since popular objects receive a large frac-
tion of the requests while less frequently accessed objects consume
much of the memory space, this approach yields large memory sav-
ings and reduces errors. We use bloom filters to store approximate
state and show that careful choice of parameters can substantially
reduce the probability of errors due to approximations. We im-
plement our techniques into a user library for constructing proxy
caches in CDN simulators. Our experimental results show up to
an order of magnitude reduction in memory requirements of CDN
simulations, while incurring a 5–10% error.

1. INTRODUCTION
Content distribution networks are increasingly being used to dis-

seminate data in today’s Internet. A content distribution network
(CDN) is a collection of proxies that act as intermediaries between
the origin servers and the end clients. Proxies in a CDN cache fre-
quently accessed data from origin servers and serve requests for
these objects from the proxy closest to the end–user. Proxies can
also prefetch, transform, and process content before delivering it to
the end–user. By providing these services, a CDN has the poten-
tial to reduce the load on origin servers and the network and also
improve client response times. Due to these benefits, the design
of content distribution networks is an active area of research, and
numerous techniques for architecting CDNs are being studied by
researchers. Typically, these researchers have used two different
methods to evaluate new research ideas—prototype implementa-
tion in a laboratory testbed and simulations. While prototyping
and experimentation on laboratory testbeds has several advantages,
these testbeds are typically small and consist of a few machines or
tens of machines. In contrast, actual CDNs may consist of hun-
dreds or thousands of proxies [14], and hence, it is not possible to
study the scalability of new techniques using a small–scale testbed.
Consequently, researchers have resorted to simulations to evaluate
the behavior of new CDN mechanisms and policies in large–scale
settings.

In general, simulation of a large CDN is highly memory– and
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compute–intensive. The memory–intensive nature arises from the
need to simulate a disk cache at each proxy—the larger the num-
ber of objects in the cache and the larger the number of proxies
in the CDN, greater the memory requirements for simulating the
CDN. The compute–intensive nature arises from the need to sim-
ulate a large number of end–user requests and various inter–proxy
and proxy–server interactions. In general, larger the number of
end–user requests that are simulated and larger the size of the CDN,
greater are the computational requirements. The following example
illustrates these simulation requirements for a typical CDN.

Example 1. Consider a content distribution network with
1000 proxies. Assume that each proxy processes a million requests
per day from its end–users and that 500,000 of these requests are
for unique objects (the remaining requests are assumed to access
objects already in the proxy cache). In such a scenario, a day–long
simulation will require the CDN to process a total of 1 billion re-
quests and maintain cache state for 500 million unique objects (0.5
million objects per proxy cache). A simulated cache needs to store
several pieces of information as part of the object–specific state;
the state includes the object ID, the size of the object, its last mod-
ification time, the type of the object, etc. Thus, if we conservatively
assume that 20 bytes are required to maintain the cached state of
each object, then the total memory requirements for 500 million
objects is 10GB. This is beyond the memory capacity of typical
compute–servers (except for very high–end servers that are avail-
able today). Similarly, the computational requirements for process-
ing a billion requests can overwhelm most servers, necessitating
long running simulations.

Thus, the memory and computational requirements of CDN simu-
lations are a key hurdle for many researchers. In one recent work,
due to the hardware constraints imposed by our machines (fast dual
processors with 1GB memory), we were limited to simulating only
a small proxy group within a larger CDN—we found that the mem-
ory bottleneck was reached when we simulated a 25 proxy group,
each processing 1 million user requests [23]. Other researchers face
similar hurdles in their work, and consequently, resort to simulat-
ing smaller CDNs or simulating the system for smaller durations.
Neither approach allows the scalability of the techniques under
consideration to be thoroughly studied. These arguments motivate
the need to reduce the memory and computational requirements of
CDN simulations. In this paper, we focus on techniques for scal-
ing CDN simulations along the memory dimension; techniques for
scaling simulations along the computation dimension are beyond
the scope of this paper and are being pursued in a separate piece of
work.

To address this problem, we propose a novel memory–efficient
data structure that stores cache state for a small subset of popular
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Figure 1: A typical content distribution network

objects accurately and uses approximations for storing the state of
the remaining objects. Our design is based on the following ob-
servation: popular objects receive a large fraction of the requests,
while less frequently accessed objects consume much of the mem-
ory space. Maintaining accurate state for objects accessed by a
large fraction of the requests and approximate state for the objects
consuming much of the space, yields large memory savings with
reasonably small errors. We use bloom filters to store approximate
state and show that careful choice of parameters can substantially
reduce the probability of errors due to approximations. We im-
plement our techniques into a user library for constructing proxy
caches in CDN simulators. Our experimental results show up to
an order of magnitude reduction in memory requirements of CDN
simulations, while incurring a 5–10% error.

The rest of this paper is structured as follows. Section 2 formu-
lates the problem studied in this paper and provides the necessary
background. Techniques for reducing memory requirements and
the approach used in this paper are presented in Sections 3 and 4.
Implementation issues are discussed in Section 5 and experimental
results are presented in Section 6. Section 7 presents related work
and Section 8 presents our conclusions.

2. BACKGROUND AND PROBLEM FOR-
MULATION

Consider a content distribution network with N proxies, each of
which act as an intermediary between servers and the end–users
(see Figure 1). We assume that each end–user sends requests for
web content to a proxy in the CDN. Each proxy is assumed to
maintain a cache of frequently accessed content; this cache is typ-
ically stored on disk. Upon receiving a request, the proxy services
the request from the local cache (in the event of a cache hit) or
by fetching the requested object from another proxy or the origin
server (in the event of a cache miss). Objects fetched upon a cache
miss are inserted into the cache (assuming they are cacheable) for
servicing future requests. The specific details of (i) how to ser-
vice a cache miss (i.e., the policy that determines whether to fetch
the object from another proxy or the server) and (ii) the meta–data
information required at the proxy to make such decisions are CDN–
dependent. Similarly, issues such as organization of the CDN into a
hierarchy or proxy groups, the degree of cooperation among prox-
ies to service user requests, the policies used to determine a suitable
proxy to serve a particular end–user are also CDN–specific. Since
the focus of this paper is on the cache maintained at the proxy,
the specific policies and mechanisms employed by the CDN are
orthogonal to our work.

The basic goal of our work is to make CDN simulations tractable
along the memory dimension. Typically, maintaining cache state is
the dominant fraction of the memory requirements in a CDN sim-
ulation. This is because the simulator essentially simulates an on–

disk proxy cache using in–memory data structures. A typical on–
disk proxy cache can be several gigabytes in size and may contain
several million objects; maintaining this state in memory can be
expensive. To overcome this drawback, we focus on the design of
a memory–efficient cache abstraction and library that will serve as
the building block for implementing large–scale CDN simulators.
Observe that, our cache abstraction will need to be sufficiently gen-
eral to allow a variety of cache operations that may arise in various
CDN simulations.

We assume the following abstraction for a proxy cache. Each
proxy cache is assumed to be an ordered repository of data items.
The ordering of data items is determined by the cache replacement
policy. While our prototype cache library uses LRU to order objects
in the cache, in general, any user–defined cache replacement policy
may be used to order objects in the cache. Typical operation on the
cache include inserting a new object, deletion or modification of
existing objects and lookup operations. The simplest lookup oper-
ation is a boolean function that determines whether or not an object
is in the cache; we use an object ID, such as the URL or a hash of
the URL, to uniquely identify objects in the cache. More complex
lookup operations are possible. For instance, the simulator may
require a list of all objects with certain attributes or a list of all ob-
jects whose attributes belong to a range. Examples of such lookup
operations include computing a list of all objects greater than 1MB
in size or all objects that were modified in the last hour, or a list of
the 100 most popular objects in the cache. A cache library should
be sufficiently general to support complex cache manipulations and
complex lookup operations, and must do so efficiently.

For the purpose of this paper, we assume that attributes of a
cached object are either integers or floating point values. Most
common attributes such as the object size, the last modified time,
and access frequency fall into this category. Our current implemen-
tation does not support character string attributes. For instance, this
does not allow the object URL to be stored as part of the object–
specific state (instead, a MD5 hash of the URL, which yields an
integer, may be used to uniquely identify the object).

Assuming the above model for proxy caches, we address the fol-
lowing problem in this paper: How can we reduce the memory
footprint of a simulated proxy cache while supporting a flexible
range of cache operations?

3. TECHNIQUES TO REDUCE MEMORY
REQUIREMENTS OF CDN SIMULATIONS

Several simple techniques can be used to reduce the memory
requirements of CDN simulations. We outline these techniques
briefly with their advantages and disadvantages.

• Compression: A possible technique to reduce the memory
footprint of the simulated caches is to use compression. In
this approach, the state maintained for each cached object is
compressed to reduce memory usage. The unique identifier
for each object (usually the Object ID) is stored in an uncom-
pressed form to enable fast cache lookup operations. The
rest of the object–specific state, such as the object size, the
last modified time, the object popularity, etc., is compressed
(and decompressed only when this state needs to examined
or modified by the simulator). The approach is simple to im-
plement, since libraries for compression algorithms such as
zlib are widely available [1]. There are two potential lim-
itations to this approach. First, the compression algorithm
may not be very effective on small objects—the memory re-
quired to store object specific state is a few tens of bytes, and
thus, small. Compression algorithms are less effective on
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Figure 2: Basic techniques to reduce memory requirements during simulations

small objects since they need to store meta–data information
with each compressed object to enable decompression. This
meta–data information may itself be several bytes in size, re-
ducing the overall compression ratio for small objects. Our
preliminary experiments with zlib have shown that compress-
ing small objects (upto 90 bytes, each representing a cached
element) actually results in an increase in size (since the
meta–data overhead is larger than the reduction due to com-
pression). One possible approach to address the problem is
to compress a group of objects together; however, the entire
group needs to be decompressed to access any single element
in the group. Another approach is to develop a specialized
compression algorithm that is effective on small objects. A
second limitation is, the use of compression and decompres-
sion makes cache operations compute–intensive. Since CDN
simulations are already highly compute–intensive, additional
computational overheads for each request can exacerbate the
problem.

• Distributed Simulations: Another technique to scale CDN
simulations is to distribute the simulation across multiple
machines—each machine simulates a portion of the CDN
and these machines interact with each other to simulate the
entire system. Distributed simulations can undoubtedly ad-
dress the memory and compute bottlenecks of CDN simu-
lations. The limitation though is that inter–process commu-
nications can substantially slow down the simulation. In a
single process simulation, various simulated entities commu-
nicate via shared data structures that are stored in memory.
In contrast, distributed simulations require simulated entities
to communicate via message passing over a network, which
is several orders of magnitude slower than shared memory
communication. The greater the amount of communication
between simulated entities, the greater the slowdown. In
general, distributed simulations are inevitable for simulat-
ing very large CDNs, since these are beyond the capabilities
of single machines. Consequently, our techniques to make
CDN simulations memory–efficient are complementary to
this approach—our techniques will enable each machine to
simulate a larger number of proxies, and thereby reduce the
communication overhead of distributed simulations.

• Store cache state only for popular objects: Studies have shown
that object popularities of web pages tend to be Zipf–ian [4].
This implies that a large fraction of the requests go to a small
fraction of the popular objects. We illustrate this property for

a publicly available Digital web proxy trace in Figure 2(a)—
the object popularity is indeed heavy tailed with the most
popular objects receiving a large fraction of the requests.
Based on this observation, a CDN simulator could main-
tain state for only a certain fraction of the popular objects.
Essentially a large on–disk cache is emulated by a smaller
fixed size cache; such a fixed–size cache size can substan-
tially reduce the memory requirements of CDN simulations.
Observe that, since the cache continues to store the most pop-
ular objects, accesses to these objects behave exactly as they
would have with a larger on–disk cache. The only drawback
is the handling of requests to unpopular objects. By main-
taining state for only popular objects, accesses to less fre-
quently accessed objects get reported as cache misses (whereas
they might have been hits in the on–disk cache that stores
state for a larger number of objects). These false negatives
result in errors in the simulations. Thus, the approach will
yield good results only if this error is small in practice, which
implies storing a large fraction of the objects. We illustrate
this approach for the DEC proxy trace depicted in Figure
2(a). This single–proxy trace contains about 1.2 million re-
quests spanning a 28 hour duration and 449,203 unique ob-
jects are requested over the duration of the trace. Figure 2(b)
plots a time–series of the cache hit rates when the entire on–
disk cache is simulated in memory (i.e., essentially an infi-
nite size cache). The figure also plots the observed hit rates
when state for only the 100,000, 150,000 and 200,000 most
popular objects are maintained in the cache. We observe an
error of 10% for a cache size of 100,000. The error falls to
5% when the cache size is increased to 200,000 objects. The
larger the simulated cache size, the smaller the number of ob-
served false negatives. For this trace and a simulated cache
size of 200,000 objects, a factor of two reduction in mem-
ory requirements (449203/200000) is achieved with a false
negative error rate of 5%.

• Store approximate cache state: An alternate approach for re-
ducing the memory requirements of simulated proxy caches
is to store approximate cache state. The use of approxima-
tions allows a tradeoff between memory space and accuracy
— the greater the approximation, the smaller are the memory
requirements and the larger the possible error. One possible
approximation technique is to quantize object attributes such
as object size and the last modified time by a quantization
factor Q. The quantized value requires fewer bits of storage



and original value of the attribute can be recovered by com-
puting a product of the quantized value and the quantization
factor. The limitation of the approach is that all values of
an attribute in the range i · Q to (i + 1) · Q map to same
quantized value and the simulator loses its ability to distin-
guish between specific values within this range. To illus-
trate, if quantization is used to store the last modified times
of each cached object, then successive modification times of
a frequently changing object may get mapped onto the same
quantized value, causing the simulator to assume that the ob-
ject has not been modified. This may result in serving stale
data to a user request—a scenario that will not occur if the
simulator maintains actual modification times instead of their
quantized values.

Another possible technique to approximate the cache state is
to use approximate data structures. For instance, a simulator
could use a bloom filter to determine if an object is present in
the cache. The bloom filter is a boolean lookup function that
can determine if an object is present in a set with a high prob-
ability [3, 13]. The probabilistic lookup can result in false
positives; the number of false positives depends on the exact
parameters chosen for the bloom filter. Figure 2(c) illustrates
the behavior for the Digital proxy trace. With a bloom fil-
ter of size 213KB (approximately 1, 750, 000 bits) to hold
the 449,203 objects in the trace, a false positive rate of 9.8%
is incurred. With a 170KB (approximately 1, 400, 000 bits)
bloom filter, the error rate increases to 16.39%. False posi-
tives cause the simulator to assume that the object is cached
locally, causing it to overestimate the cache hit rate (and er-
roneously treat these requests as cache hits). An advantage
of bloom filters is that their fixed size results in a large reduc-
tion in memory requirements and the probability of false pos-
itives can be carefully controlled by proper choice of bloom
filter parameters. The limitation though is that they can only
be used as lookup functions (to determine whether an ob-
ject is present in the cache) and can not be directly used to
store other object attributes such as the size and modification
times.

4. OUR APPROACH
The last two techniques mentioned in the previous section merit

additional attention. Storing the state of only popular cached ob-
jects allows the simulator to handle a large fraction of requests cor-
rectly but can yield false negatives for less frequently accessed ob-
jects. Storing cache state approximately, on the other hand, yields
errors for all cached objects due to the approximate nature of the in-
formation stored in the simulated cache. Whereas both techniques
have advantages and disadvantages, using a combination of the two
can overcome most limitations while retaining their advantages.

Consequently, the approach employed in this paper is to store
cache state for a certain fraction of popular objects accurately and
to store the state of the remaining (less frequently accessed) objects
approximately. Figure 3 illustrates our approach. Observe that,
since popular objects receive most of the requests and the state for
these objects is maintained accurately, these requests are handled
exactly as they would be in an accurate simulation; where all ob-
jects are stored accurately. Further, since state for the remaining ob-
jects is also maintained, albeit approximately, the potential for false
negatives is eliminated. While errors due to the approximate nature
of the state may still occur, these are limited to the small fraction of
requests that access these (less popular) objects. Finally, since less
popular objects constitute a large fraction of the total objects (and

consequently, consume much of the space), maintaining their state
using approximate data structures helps reduce the overall memory
requirements.
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Figure 3: Data structures used to store cached objects of a
proxy in the simulation

In the rest of this section, we present the details of our approach
and examine various design issues.

4.1 Use of Bloom Filters to Store Approximate
State

Consider a simulated proxy cache that is designed to hold up to
C distinct objects. Let us assume that state for τ popular objects
is maintained accurately and state information for the remaining
C − τ objects is stored approximately. We assume that the τ popu-
lar objects are ordered in the cache by the cache replacement policy
(see Figure 3). Any replacement policy suffices for our purpose; for
simplicity, we assume LRU in our prototype implementation (our
prototype allows a simulator designer to implement other policies
as well). The remaining C − τ objects are not ordered and their
state is maintained approximately using bloom filters.

m bits

0 1 0 1 1 1 10 0 0 0 0

h1(a) h2(a) h3(a) h4(a)

Figure 4: A Bloom filter with 4 hash functions and m–bit vector

A bloom filter is essentially a lookup function implemented us-
ing hash functions, and can be used to insert, delete and lookup el-
ements [3, 5, 13]. As shown in Figure 4, a bloom filter consists of a
m–bit vector and a set of hash functions H = {h1, h2, h3, . . . , hk}
(k = 4 in the figure). Initially, all bits of the vector are set to
zero. To insert an element a, the bits corresponding to positions
h1(a), h2(a), . . . , hk(a) are set to 1. A deletion requires these bit
positions to be reset to zero. A lookup involves examining these bit
positions; an element is said to be present if these bit positions are
all set. Observe that, a false positive can result if the bit positions
for an object are set by other objects that hash to these positions. A
false negative can result if two objects a and b have hash functions
hi(a) and hj(b) that map onto the same bit position and one of
these objects is deleted (causing that bit position to be reset). The
probability of false positives (errors) assuming no deletions in the
bit vector or with deletions permitted on a vector with integer coun-
ters, depends on the size of the vector m and the number of hash
functions used k. If the number of elements stored in the vector are
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Thus, given n = C − τ , proper choice of the size of the bit vector
m and the number of hash functions k can yield a sufficiently small
error probability. For Example: choosing k = 4 and m

n
= 8, re-

sults in pe = 2.4%. Equation 1 can be used as an estimate of the er-
ror probability for our technique using approximate data structures.
The actual error in our approch will be smaller as the approximate
data structures are used only for a small fraction of requests. These
small fraction of requests are for less frequently accessed objects.
Frequently accessed objects are stored accurately and do not con-
tribute to errors.

We use a set of bloom filters to store various attributes of the
C − τ less frequently objects; each attribute requires one or more
bloom filters. The object ID for each cached object is stored in a
single bloom filter (and this filter can be used to determine whether
an object is present in the cache). The use of bloom filters to store
other object attributes such as object size is discussed next.

4.2 Handling Range Attributes
A bloom filter is essentially a boolean lookup function that uses

a unique identifier to determine if the object is present in the set.
Thus, bloom filters can not be directly employed to store other at-
tributes such as object size or modification times for later lookups.

We address this issue by using a combination of quantization
and bloom filters. Consider an attribute that can take values be-
tween (tmin, tmax). We then define a set of ranges for the at-
tribute: (tmin, t1], (t1, t2], (t2, t3], . . . , (tk, t+max) and associate
a bloom filter with each range. To insert an element into the cache,
we map the attribute to one of the these ranges and insert the object
ID into the bloom filter associated with the range. To illustrate, as-
sume that the object size is partitioned into the ranges (0, 10KB],
(10KB, 100KB], (100KB, 500KB] and (500KB,∞]. In such
a scenario, an object with size 50KB gets mapped to the second
range and its object ID is inserted into the corresponding bloom fil-
ter. To lookup the object size at a later time, the simulator needs
to determine which of the four bloom filters contains the object ID.
The process of mapping the object attribute to a range is essen-
tially quantization and results in an approximation—the simulator
can only determine the range containing the attribute. Thus, in the
above example, information about the exact size is lost and the sim-
ulator can only determine that the object has a size that lies between
10KB and 100KB. Observe that false positive can occur if multiple
bloom filters report the presence of an object (for the same reason
false positives occur in a single bloom filter).

Several design issues arise when storing range attributes in such
a data structure. First, the simulator designer needs to determine
the minimum and the maximum value of each attribute. In case of
trace–driven simulations, these values could be determined by sam-
pling a portion of the trace. Second, the number of ranges and the
size of the range needs to be determined for each attribute. A larger
number of ranges permits higher accuracy but also imposes greater
lookup overhead and potential increase in the number of false pos-
itives 1. Further, the range size can be determined such that each
range has a fixed size or each range has a fixed number of objects.
Whereas fixed size ranges are easy to implement, they may result

1We associate a fixed memory size for each attribute. Dividing the
attribute into more number of ranges will reduce the size of the
bloom filter for each range and potentially increase the number of
false positives.

in a non–uniform distribution of objects into ranges (recall that the
larger the number of objects in a bloom filter, the greater the proba-
bility of false positives). Determining range sizes such that objects
are uniformly distributed across ranges is harder and requires a dis-
tribution of the object attribute values. The advantage though is that
the technique can result in fewer false positives. We experimentally
examine the tradeoff of these two choices in Section 6. For trace–
driven simulators, our prototype cache library also provides a set
of simple tools to analyze the traces and determine various param-
eters of each attribute (e.g., (tmin, tmax), the distribution of the
values in this range). An example of a simple tool is to generate a
scatter—plot of the values of an attribute and then form ranges for
the values such that each range approximately has the same num-
ber of objects. Another policy would be to determine from the plot
tmin and tmax values to generate equal sized ranges irrespective of
the number of objects in each range.

4.3 Memory usage savings
To analyze the potential memory benefits of our approach, let us

assume that each cached data item has j attributes and let Si denote
the memory requirements (in bytes) of the ith attribute. Then, the
memory required to store the state of a data item is S =

∑j

i=1
Si.

Assuming we need to store a total of C items at a proxy, the total
memory requirements to simulate each proxy cache accurately is
Macc = C × S. In our approach, the state for τ popular objects
is stored accurately and the state of remaining objects is stored in
a set of bloom filters. Let B denote the memory requirements to
store each attribute in one or more bloom filters. Then, the memory
requirements of our approach is Mapprox = (τ × C) + (B × j).
Hence, the memory savings per proxy cache is

Msaved = (C × S) − [(τ × S) + (B × j)] (2)

From the above equation, we can see that if τ is small relative to the
total number of cached elements C and if B is not very large we can
get good memory savings. Hence, the number of popular objects τ
with accurate state information and the size of each bloom filter B
should be chosen carefully to realize these savings in practice.

4.4 Handling Reverse Lookups
One limitation of using bloom filters is that reverse lookups are

not supported. That is, given an object ID, it is possible to de-
termine if the object is present in the cache and determine its at-
tributes. However, it is not possible to generate a list of objects that
satisfy a certain criteria (e.g., a list of all cached objects that are
larger than 4KB in size). Answering such queries involves a re-
verse lookup, since it requires a list of all object IDs matching the
criteria to be computed. This limitation arises because the bloom
filter stores a hash of the object ID; the object ID is itself not stored,
and consequently, can not be reconstructed. Note that this draw-
back is limited only to the objects stored in the bloom filter; reverse
lookups can still be supported for the τ popular objects, since the
object ID is stored in the cache for these objects.

The approach outlined in the previous section needs to be modi-
fied to support cache operations with reverse lookups on all cached
objects. The modification is simple but it requires additional mem-
ory. Like before, we assume that state for τ popular objects is
stored accurately. To support reverse lookups on the remaining ob-
jects, we store their objects IDs in a binary search tree (instead of
storing the hash of the object ID in a bloom filter) 2. All other at-
tributes are stored in bloom filters like before. Maintaining a list
of object IDs allows reverse lookup operations, while maintaining
2Another approach to save on the in–memory approach is to store
the object IDs on disk and use stored identifiers only when required.



them in a binary search tree enables fast lookups. The overall mem-
ory savings of this enhanced approach depends on the total num-
ber of attributes j that is maintained for each cached object—since
memory savings can still be realized for the remaining attributes,
the larger the value of j, the greater these savings.

5. A CACHE LIBRARY FOR CDN SIMULA-
TIONS

Based on the approach outlined in Section 4, we have imple-
mented a library that can be used to simulate proxy caches in CDN
simulations. The library provides an important building block for
implementing memory–efficient CDN simulators.

The library can be configured to instantiate caches where all in-
formation is stored accurately as well as caches where only infor-
mation for popular objects is maintained accurately (and state for
remaining objects is stored using bloom filters). The library re-
quires the simulator designer to specify various attributes that need
to be stored with each object; an arbitrary number of attributes can
be associated with each cached object. Currently only integer and
floating point attributes are supported by the library. The library
allows various bloom filter parameters to be configured at initial-
ization time. These include the memory associated with each filter,
the number and type of hash functions that are used, the number
and size of ranges for range attributes. For trace–driven simulation,
the library provides simple tools to examine trace workloads and
determine some of the above parameters automatically.

Each proxy cache instantiated using the library supports a flexi-
ble set of cache operations. Be default, the LRU cache replacement
policy is used to manage the cache; user–defined replacement poli-
cies are also supported. Typical operations on the cache include in-
sertions, modifications and deletions of data items. Simple boolean
lookups as well as lookups on arbitrary attributes are supported.
The latter operations are supported using iterators—the iterator re-
turns a list of all objects, one at a time, that match certain criteria.

Due to space constraints, we omit the the interface provided by
our cache library to support the above functionality and refer the
reader to the extended version of this paper [20] for these details.

6. EXPERIMENTAL EVALUATION
In this section, we study the effectiveness of our approach using

two simulators that we construct using our cache library. The first
simulator simulates a cache where the state of all objects is main-
tained accurately. The second approximate simulator only main-
tains state for a small subset of objects accurately and stores the
state of remaining objects in bloom filters. Using these simulators,
we evaluate the impact of approximations on the accuracy of the
results as well as quantify the memory savings and scalability of
our approach.

To ensure a fair comparison, both simulators are identical in ev-
ery respect other than the cache implementation. Each simulator
simulates a number of proxies that service web requests. Given our
focus on caching overheads, for simplicity, we assume that proxies
don’t cooperate with one another while servicing requests (thus, all
cache misses are serviced by fetching the object from the server).
We assume infinite size caches for the accurate simulator and as-
sume that each cache is managed using the LRU cache replacement
policy (due to the infinite cache size, no cache replacement occur.
The impact of the LRU policy is to impose an ordering of objects in
the cache—an aspect that determines which objects are stored us-
ing bloom filters and which are not). The replacement policy is also
responsible for moving objects from bloom filters(the approximate
cache) to the accurate cache data structure and vice versa.

Name and year Duration Number of Number of
of trace requests unique requests

DEC(1996) 1 day 4 hrs 1,141,412 449,203
NLANR(2002) 3 days 3,588,996 1,246,417
BOEING(1999) 1 day 4,421,526 1,498,327

UCBerkeley(1996) 4 days 16 hrs 2,472,954 1,382,813

Table 1: Workload characteristics for simulations

We use a set of real-world traces to generate the workloads in
our study. The characteristics of these traces are listed in Table 1.
Each trace has over a million requests and spans at least a day. We
assume that each proxy in the CDN processes this trace indepen-
dently of other proxies.

Assuming the above setup, we now describe our experimental
results.

6.1 Effect of bloom filter parameters
As explained in Section 4, we use bloom filters to store approx-

imate state. Several parameters must be chosen to properly config-
ure bloom filters: (i) the number of bits for each bloom filter, (ii) the
number of hash functions used by a bloom filter, (iii) the number of
ranges a field is divided into and (iv) the number of objects stored in
the accurate cache. We study the effect of these parameters on the
cache hit-ratio seen in the approximate simulation and compare it
with the accurate simulation. The experiments presented are using
the UCBerkeley trace, for results using other traces refer to [20].

We assume that each cached object has 10 attributes. We assume
that each bloom filter uses 4 hash functions and 4 ranges for each
field. In our first experiment, we systematically vary the size of
the bloom filter and compare the cache hit rate to that in the accu-
rate simulation. Figure 5(a) shows the hit rate observed at various
instants in the simulation for the two scenarios. The hit rate for
the bloom filters with 1, 000, 000 bits is 47.72%, while that for
filters with 4, 000, 000 bits is 47.16%. The accurate simulation
shows a hit rate of 44.08%, yielding errors of 8.25% and 6.98%,
respectively. Figure 5(b) shows the final cache hit rates when each
simulation terminates. The figure depicts the observed hit rates for
different bloom filter sizes and compares it to the hit rate from the
accurate simulation. Although larger bloom filters yield lower er-
rors, the reduction in error rate is very small, indicating that beyond
a certain threshold, increasing the bloom filter size yields diminish-
ing returns. The figure also suggests that the choice of the τ—the
number of objects for which state is maintained accurately—has a
greater impact on accuracy that the size of the bloom filter.

To further understand this effect, we fix the size of the bloom fil-
ters and vary τ—the number of objects stored in the accurate cache.
As seen in Figure 5(c), initially, the error in the hit rate decreases
sharply with increasing τ values. Beyond a certain threshold, an
increase in τ yields only marginal reduction in the error.

Figure 6 shows the impact of varying the number of hash func-
tions used in the bloom filters. As shown, the number of false posi-
tives decreases with increase in the number of hash functions, con-
sistent with Equation 1. Increasing number of hash functions also
increases the probability of false negatives. We see that beyond a
certain threshold, the approximate simulator under-estimates the hit
rate slightly, indicating the presence of false negatives. The num-
ber of hash functions should be chosen properly to balance these
tradeoffs.

6.2 Effect of number of ranges
As described in Section 4, we propose to split the values a field
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can hold into multiple ranges. Each range is associated with a
bloom filter and objects with values in a range are stored in the
corresponding bloom filter. When attribute value for an object is to
be retrieved, a lookup in each range has to be performed to check if
the object exists in the particular range. The use of ranges instead
of using accurate values can result in two side-effects: (i) multiple
bloom filters can return true for a queried object resulting in an un-
decidable range for an attribute and (ii) a modified attribute may
map to the same range and be incorrectly treated as unchanged. To

study these two side-effects we used the last–modified–time field of
objects from the UCBerkeley trace. Figure 7(a) shows the results
of measuring the cases when last–modified–times were wrongly re-
ported as unchanged when they actually did change. From the fig-
ure, we see that as the number of ranges for an attribute increases,
the approximation error decreases, yielding fewer undetected val-
ues. Figure 7(b) shows the results for the number of cases when
multiple ranges reported the queried object being present. The
number of undecidable cases increases with increase in number of
ranges. This is because larger the number of ranges, smaller is size
of each individual bloom filter and greater the chances of false posi-
tives. The number of ranges can simultaneously affect the accuracy
of the stored value and the number of false positives. Thus, this
parameter must be chosen carefully to balance the tradeoff.

6.3 Memory savings and Scalability
In this section, we present experiments demonstrating the advan-

tage of using our approach due to potential memory savings.
First, we demonstrate the reduced memory usage of the approx-

imate simulator. For this purpose we use the NLANR proxy trace.
The experiment simulates a singe proxy and measures the amount
of memory used by the simulator to implement the cache. Figure 8
shows results for the NLANR trace with the approximate simulator
storing 100, 000 objects in the accurate cache and bloom filters of
size 1, 000, 000 bits for 10 attributes. As seen in Figure 8(b) the
amount of memory used by the accurate simulator increases almost
linearly with increase in the number of requests processed. The
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Figure 8: Scalability of our approach in terms of memory consumed to simulate a single proxy

approximate simulation on the other hand does not allocate mem-
ory incrementally with increase in number of requests processed.
The amount of memory required in an approximate solution, is the
memory to store all bloom filters and the memory required to store
the 100, 000 objects in the accurate cache. As a result, we find that
in the approximate solution the memory used increments for a short
duration (till 100, 000 objects in accurate cache are not allocated)
and then remains constant. In this case the memory used by the
accurate simulator is 109.34MB and that by the approximate sim-
ulator is 10.49MB, an 10.42–fold savings in memory usage (see
Figure 8(b)). In the figure, we also report memory usage when all
the object IDs are accurately stored for subsequent reverse lookups.
If lookups are supported, the memory used by the approximate sim-
ulator is 32.41MB, an 3.37–fold savings.

The reported hit–ratios are 52.57% and 50.54% for the accurate
and approximate simulation respectively, resulting in a prediction
error of 3.86% (see Figure 8(a)). Referring to Equation 2 in sec-
tion 4.3, we can predict the potential memory savings due to the
approximate approach. For example, for this experiment we have
size of accurate cache structure S = 80 bytes, number of unique
objects n = 1, 246, 417, size of accurate cache k = 100, 000,
number of attributes j = 10 and bloom filter size for each field
B = 1, 000, 000 bits. Thus,

Maccurate = (80 × 1, 246, 417)

= 95.09MB

Mapproximate = [(80 × 100, 000) + (125, 000 × 10)]

= 8.83MB

As a result, with the chosen parameters we can expect approxi-
mately 10.76–fold savings in memory using our approach, which
is fairly close to one measured in the experiment (see Figure 8(a)).
If we account for an in–memory binary tree data structure to sup-
port reverse lookups we need additional memory. Assuming each
node uses 8–bit for object ID and two 4 bit pointers for a total of 16
bits per node. The estimated memory usage is 27.73MB and yields
a 3.43–fold savings in memory, which again is fairly close to one
measured in the experiment.

In Figure 9(a) we measure the number of requests each proxy
processed with increase in the number of concurrent proxies in
a simulation. The simulation used the NLANR trace as input to
each proxy and an upper limit on the memory usage for the simu-
lated cache was fixed at 800MB. The approximate approach stored

100, 000 objects accurately, simulated 8 attributes per object with
bloom filters of size 1, 000, 000 bits for each field and another
1, 000, 000–bit bloom filter for the object identifiers. With a sin-
gle proxy, both the accurate and approximate simulation are able
to process all the 3, 588, 996 requests in the trace. In an accu-
rate simulation with 10 proxies, each proxy is able to process on
an average of 2, 362, 009 requests and cannot process the entire
trace. The approximate simulation, due to lower memory require-
ments for each proxy, can simulate all requests in the trace upto 70
concurrent proxies in a simulation. Whereas in the accurate sim-
ulation, with as many as 10 concurrent proxies all requests cannot
be processed by each proxy and the number decreases further with
increase in number of proxies. In the approximate simulation, with
more than 70 proxies, the average number of requests processed be
each proxy decreases sharply. This is due to the fact that, the ap-
proximate approach does not consume memory incrementally but
allocates all the bloom filters at the start of the simulation and allo-
cates memory incrementally only for the accurate state. As a result,
we find that with more than 70 concurrent proxies in a simulation,
the memory required by the bloom filters of all these proxies and
the accurately stored objects is more than 800MB and hence the
simulator cannot process all requests at each proxy. This is an inter-
esting result, as we find that even though the approximate approach
uses less memory over the entire run of the simulation, our bloom
filter approach can hit a memory bound as the number of proxies
increase. The result verifies that, due to reduced memory require-
ment of the approximate approach the simulator can scale to more
proxies. In this case we see a minimum of 7–fold increase in the
number of proxies that can simulate the entire trace of requests.

The next experiment demonstrates the scalability of our approach
based on the number of requests processed by each proxy. For this
purpose, we used the BOEING trace and varied the number of re-
quests to be processed by each proxy from 500, 000 to 4, 000, 000.
Additionally, the memory used by all the proxies to simulate the
cache was fixed to 500MB. The experiment was performed on a
DELL PowerEdge server with a Pentium III processor running at
966MHz and 1GB RAM. Figure 9(b) reports our results. As we
increase the number of requests to be processed by each proxy, the
number of proxies that can be concurrently simulated decreases.
The number of unique objects stored as part of the cache state in-
creases with increase in the number of requests processed. As a
result with more number of requests processed, the available mem-
ory is consumer at a faster rate. For the accurate simulation, with
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500, 000 requests, 27 proxies can be concurrently simulated and
with 4, 000, 000 requests, 4 proxies. Whereas, for the same cases
in the approximate simulation, 200 proxies and 32 proxies respec-
tively can be concurrently simulated. The average ratio of the
number of proxies that can be simulated using the approximate ap-
proach to that using the accurate approach is 7.72. The experiment
also reports the normalized runtime per proxy required to complete
the simulation. As the bloom filter uses more than one hash func-
tion to perform cache operations, it potentially takes more time
to execute. On an average the approximate approach takes 1.75
times the runtime for accurate simulation. The time of execution
for the approximate approach depends on the number of hash func-
tions used to service each request. In our example, we used 5 hash
functions on a single field and with an increase in number of hash
functions the time to complete the simulation also increases. Such
a condition does not arise in the accurate simulation as a single
lookup provides information of all attributes. By storing popular
objects accurately, our approach tries to mitigate the problem. The
percentage error of the approximate solution with the chosen pa-
rameters is also reported to be always less than 5%. Given a fixed
set of requests to be processed, our approach can always simulate
more number of proxies concurrently and in our experiment an av-
erage of 7 times more at very good accuracy. Note that the bloom
filter parameters can be varied to affect accuracy, runtime of the
simulation and the number of concurrent proxies that can simu-
lated.

7. RELATED WORK
The design of policies and mechanisms for content distribution

networks is an active area of research. Recent and current research
efforts have investigated web caching algorithms [6, 19, 29], cache
consistency mechanisms [7, 12, 17, 32, 33, 34, 35], cooperative
proxies [8, 10, 23, 26, 27, 30], and the characterization of web traf-
fic [2, 9, 11]. Our work seeks to provide scalable simulation tech-
niques to investigate the behavior of such mechanisms and policies
in large scale settings.

The notion of bloom filters was first proposed in [3] to reduce
amount of memory required to store hash–coded information; the
approach traded space for quality. More recently, bloom filters have
been used to compactly store meta-data information in cooperating
proxy caches. The approaches, “Summary Cache” [13] and “Cache
Digests” [25], both use bloom filters to compactly store cache state
at proxies and exchange this state for remote cache lookups. Com-
pressed bloom filters have been studied in [22], and improve per-

formance of bloom filters by using compression techniques that re-
duce its size during message passing. A comprehensive survey of
applications that use bloom filters is presented in [5]. Some of the
applications presented in the survey are: searching in a bloom fil-
ter representation of a dictionary, use of bloom filters to exchange
local state (files, urls etc.) in distributed caching and p2p networks,
approximate reconciliation and intersection of sets of data, geo-
graphic routing, resource routing, IP traceback and several others.
Inspired by these techniques, we propose to use bloom filters to
store cached state approximately and thereby reduce the memory
requirements of CDN simulations.

Techniques for scalable simulations have been investigated in
the simulation research community. Techniques for distributed and
parallel discrete event simulations have been studied in [24, 28].
In the context of networks, traditional packet-level discrete-event
simulations do not scale to larger networks, and several simula-
tion techniques based on approximations have been studied. The
approaches can be broadly classified into two categories: (i) tech-
niques that abstract the level of traffic [15, 18, 21] (i.e: treating a
set of packets as a single unit or abstracting a flow of packets using
a fluid model) and (ii) techniques that reduce the number of packet
arrival events either by simulating the system at fixed time intervals
or by using arrival distributions [16, 31]. While these techniques
are not directly applicable to reduce the memory requirements of
CDN simulations, they may help reduce the computational require-
ments (e.g., by treating request arrivals at a proxy as a flow or by
using arrival distributions). The design of techniques to reduce the
computational requirements of CDN simulations is the subject of
ongoing work.

8. CONCLUSIONS AND FUTURE WORK
Since CDN simulations are known to be highly memory-intensive,

in this paper, we argued the need for reducing the memory require-
ments of such simulations. We proposed a novel memory-efficient
data structure that stores cache state for a small subset of popular
objects accurately and uses approximations for storing the state for
the remaining objects. Our design was based on the following ob-
servation: popular objects receive a large fraction of the requests,
while less frequently accessed objects consume much of the mem-
ory space. Maintaining accurate state for objects accessed by a
large fraction of the requests and approximate state for the objects
consuming much of the space yields large memory savings and re-
duces errors. We used bloom filters to store approximate state and
showed that careful choice of parameters can substantially reduce



the probability of errors due to approximations. We implemented
our techniques into a user library for constructing proxy caches in
CDN simulators. Our experimental results showed up to an order of
magnitude reduction in memory requirements of CDN simulations,
while incurring a 5-10% error.

Future work: For our approach, the probability of false–positives
in bloom filter depends on the number of hash functions used, the
size of the bloom filter, and the number of ranges used for fields of
objects. We can formulate an optimization problem to minimize the
false positives and also the required time for completion, by choos-
ing optimal values of the above parameters. As part of on going
work, we are exploring issues related to solving such an optimiza-
tion problem to predict values of parameters for desired quality of
simulator results. We are also interested in studying techniques to
reduce the computation requirements of CDN simulations.
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