
Chapter 11

CACHING AND DISTRIBUTION ISSUES
FOR STREAMING
CONTENT DISTRIBUTION NETWORKS

Michael Zink
Department of Computer Science
University of Massachusetts
Amherst, MA, USA

zink@cs.umass.eclu

Prashant Shenoy
Department of Computer Science
University of Massachusetts
Amherst, MA, USA
shenoy@cs.umass.edu

Abstract This chapter presents an overview of the state of the art in caching and distribution
techniques for streaming media content. A content distribution network (CDN)—
an overlay network of proxy servers—is typically employed for this purpopse.
We present techniques for caching entire files as well as caching partial content
at each proxy in a streaming CDN. We then present techniques for designing a
cooperative cluster of streaming proxies as well as techniques for streaming using
peer-to-peer networks.

Keywords: Content distribution networks, streaming, caching

1. Introduction

1,1 Motivation
Content Distribution Networks (CDN) have become popular recently as a

means to store web content closer to clients in a controlled manner. A content
distribution network consists of an overlay network of proxy servers that are

246 WEB CONTENT DELIVERY

geographically distributed and cache popular content close to clients; user re
quests for content are serviced by forwarding the request to the nearest proxy.
Unlike pure on-demand caching approaches that only store content requested by
clients in the proxy's cache, in a CDN, owners of web servers can also actively
distribute (i.e. replicate) content to proxies. Today, CDN services are offered
by numerous commercial companies (e.g., Akamai) to both content providers
and end users. Content providers subscribe to CDN services to provide their
clients with faster access to their content.

While the first generation of CDNs were designed primarily for web content,
modern CDNs can also store and serve streaming media content such as audio
and video. However, streaming media objects have different characteristics
when compared objects such as text and images—these objects are several
orders of magnitude larger in size and have larger bandwidth requirements.
Consequently, unlike web content, naive replication of popular objects on all
proxy servers in a CDN may not be efficient, and new techniques for distributing
and caching streaming media objects need to be devised.

A content distribution network for streaming media will need to exploit the
following characteristics of video content [Acharya and Smith, 1998, Acharya
et al., 2000, Chesire et al., 2001]:

• Unlike web content which may be modified after its creation, video con
tent follows the write-once-read-many principle. Thus, streaming CDNs
are simpler in that they do not need to consider cache consistency issues.

• Popularity of video files follow the Zipf distribution, and each file is
typically accessed sequentially. Caching and distribution techniques em
ployed by the CDN need to be tailored for these characteristics.

• Due to the significantly higher storage space and bandwidth requirements
as well as the timeliness constraints imposed on video accesses, distribu
tion and caching techniques for streaming content need to designed with
these constraints in mind.

• Internet broadcast or multicast may be employed by an origin server
to deliver live content to a large number of users [Sitaram and Dan,
2000, Hu, 2001, Hua and Sheu, 1997, Paris et al., 1999, Eager et al.,
2001]. Broadcast or multicast techniques may also be used to deliver
very popular files to a large user population. Proxy servers within a CDN
will need to support such broadcast and multicast techniques as well.

Despite some of these differences, streaming CDNs retain some of the key
advantages of traditional web CDNs. First, since proxy servers replicate content
from origin servers, content can still be delivered to end-users if the origin server
or some of the proxy servers suffer a transient failure. Second, by placing

Caching and Distribution Issues for Streaming Content Distribution Networks 247

proxies close to the end-users and caching popular content at this proxies, a
CDN can reduce the startup latency for accessing streaming content. Such
caching also reduces the load on the origin servers and redistributes it across
multiple proxies. Third, approximately 80% of the user requests access about
20% of the total available videos [Bianchi and Melen, 1997, Griwodz et al.,
1997, Nussbaumer et al., 1995], indicating that, like in the web case, caching
video content can be a very effective means for scalable delivery.

1.2 Outline
The remainder of this chapter is structured as follows. Section 2 describes

the high level architecture of a streaming content distribution network. An
overview on caching of complete objects is given in Section 3. Caching of
partial streaming media objects is discussed in Section 4. Section 5 considers
clusters of caches that are used to distribute the workload across several physical
caches. Section 6 gives an overview of distribution networks based on peer-to-
peer technology. Finally, Section 7 concludes this chapter.

2. Architecture of a Content Distribution Network
A typical streaming content distribution network is assumed to contain three

components: origin servers, proxy caches and end-clients (see Figure 11.1).
We briefly discuss the role of each component.

Origin Servers Origin servers store the original versions of each streaming
media file. These servers are generally controlled by content providers.
The content providers are assumed to have complete control over the
content stored at origin servers—they can add new files to the server and
delete old files. Further, they can also place restrictions on whether a file
may be cached within the CDN. For reasons of simplicity, in this chapter,

Internet
I—1| Desktop

client

Figure ILL Architecture of a Content Distribution Network

248 WEB CONTENT DELIVERY

we assume that no restrictions are placed on files and that any file may
be cached within the CDN if it is advantageous to do so. In general, a
typical CDN will serve content from multiple origin servers.

Proxy Caches A typical CDN will consist of a large number of proxy caches
that are geographically distributed. Each proxy has a disk cache that
is used to store streaming content from the origin severs. Proxies are
assumed to be deployed close to the end-clients of the origin servers. A
request for a streaming media object is typically forwarded to the nearest
proxy. If the requested object or portions of it are already cached at the
local disk, then the proxy can stream these portions to the end-client. The
mission portions are handled by forwarding a request for these portions
to another proxy or the origin server. Typically, the disk cache at each
proxy is finite, and it is not possible to store all content from all origin
servers at each proxy. Hence, each proxy is assumed to employ a caching
policy that decides what objects or subsets of objects should be cached
locally.

Clients End-users are assumed to request content via a client. Clients are as
sumed to be heterogeneous and may range from set-top boxes to standard
PCs and from PDAs to mobile phones. Clients can have heterogeneous
network bandwidth, processing power and display capabilities, and the
origin server needs to tailor the requested content to meet the needs of
its clients. Each client is assumed to make requests to its nearest proxy;
such a proxy may be statically configured at the client, or dynamically
determined by the CDN based on the client's location.

In the simplest case, a video (audio) file at the origin server consists of a
sequence of frames (samples). Since such a file can impose significant storage
space and bandwidth requirement, it is possible to partition each file in time
or space. In the former case, each file is split into segments, where each seg
ment contains a contiguous chunk of video and audio (see Figure 11.2(a)). For

segment 3

segment 2
segment i

(a) Partitioning a video
into segments

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂
layer 3

layer 2

layer 1 (base)

time

(b) Partitioning a video
into layers

Figure 11.2. Unscalable vs. scalable content

Caching and Distribution Issues for Streaming Content Distribution Networks 249

instance, a one hour movie may contain three segments, containing the first
five minutes, the next ten minutes and the final forty-five minutes of the movie,
respectively. Each segment is smaller in size, when compared to the complete
object, and can be handled independently by the CDN. An alternate approach is
to partition the video file in the bandwidth (spatial) dimension. In this approach,
each file is partitioned into a base layer and multiple enhancement layers (see
Figure 11.2(b)). The base layer contains a coarse resolution version of each
frame or sample, and each enhancement layer contains additional information
to successively refine the resolution of data contained in the previous layers.
Thus, layered encoding provides a multi-resolution representation of streaming
content—to reconstruct the information included in layer n, all of the informa
tion of the lower layers (0, ..., n-1) are needed. While the notion of temporal
partitioning into segments is independent of the compression format used to
encode content, specific support is needed in the compression format to sup
port layered encoding. Many modern compression algorithms such as MPEG-2
[MPEG-1,1993],H.263+[H263,1995], MPEG-4[Pereira and Ebrahimi, 2002]
support layered encoding. In a later section, we will discuss how a CDN can
exploit both temporal and bandwidth partitioning to support more effective
distribution of streaming content.

With the above background, we discuss caching and distribution issues in
streaming CDNs.

3. Complete Object Caching
In the simplest case, proxies within the CDN can cache entire audio or

video files in their local disk cache. These files can be fetched from the origin
servers on-demand as requests for these objects are received from clients, or by
prefetching them a priori. In either case, since entire objects are cached at a
proxy, due to their large sizes, only a limited number of files can be cached on
disk. However, even this simple approach of caching entire objects can provide
significant benefits, since caching very popular files locally can significantly
reduce the burden on the origin servers.

Popularities of streaming media files tends to change over time as new files
become popular and previously popular files see a reduced demand. Conse
quently, each proxy within the CDN needs to implement a caching policy that
determines what files should be evicted and what new files to fetch into its cache.
Typically, a cache replacement policy is employed to make such decisions. A
common replacement policy that is widely used in web proxy caches is the least
recently used (LRU) policy, where the least recently used object is evicted from
the cache to make room for a new object. However, the LRU policy is not suit
able for streaming media caches, due to the skewed popularities of these files.
Studies have shown that the least frequently used (LFU) is more appropriate

250 WEB CONTENT DELIVERY

in such situations. The policy maintains the frequency of access (a measure of
popularity) for each file and evicts the object with the least access frequency
(i.e., the least popular) object from the cache. Thus, more popular objects are
given preference over less popular objects in the cache.

Although LFU is a better choice than LRU for proxies caching streaming
media content, it suffers from two drawbacks. First, a previously popular object
continues to be associated with a high frequency count and is not evicted from
the cache even though it is no longer popular. A simple modification that
overcomes this drawbacks is to decrease the frequency count over time, so that
the frequency count accurately reflects the current popularity of an object.

Second, depending on the encoded bit rate and the length of the clip, different
audio and video files will have different sizes. Since LFU does not take the
size of the file into account, two files with vastly different sizes and identical
popularities see identical treatment. To overcome this drawback, the caching
policy needs to normalize the popularity of an object by its size. The resulting
policy is referred to as bandwidth to space ratio (BSR) based caching [Tewari
et al., 1998]. In this policy, the proxy computes the ratio of the bandwidth
and space requirement for each file. The bandwidth requirement is a measure
of popularity, since it is the total bandwidth required to service all concurrent,
asynchronous requests for a file. The space requirement is simply the storage
space needed to stored the file in the cache. The BSR policy caches objects
with the largest BSR ratio, thereby preferring objects with higher popularities
and smaller sizes.

4. Partial Caching of Video Objects

Since the large size of streaming media objects limits the utility of complete
object caching, several policies that cache portions of streaming media files
have been proposed in the literature. These policies assumes that each stream
ing media file is partitioned in time (into segments) or in space (into layers), and
subsets of these components are cached at proxies in the CDN. Caching partial
objects allows greater flexibility and enables more judicious use of proxy re
sources in the CDN. When a client requests a file, the cached portions of the file
are served from the local disk cache, while the remaining portions are fetched
from another proxy or the origin server. The rest of this section discusses these
techniques in detail.

4,1 Time-based Partial Caching
We discuss two techniques for caching portions of objects that are partitioned

in time, namely prefix caching and caching of arbitrary segments.

Caching and Distribution Issues for Streaming Content Distribution Networks 251

Origin Server

suffix
prefix—L^^i:<M<:<:-g

E ^ -objects

^ ^ - t - s u f f i x

Proxy

prefix-
(cached)

complete

^ ^ ^ suffix (from server)

prefix (from caclie)

Client

Figure 11.3. Prefix caching

Prefix Caching. In prefix caching, each video file is partitioned into two
segments—a prefix and a suffix. The prefix contains the the initial portion of
the video while the suffix contains the remainder of the file. Proxies in the
CDN only cache prefixes and the suffixes are stored at the origin servers (see
Figure 11.3). When a request arrives, the proxy can immediately start streaming
the requested object if its prefix is cached locally, while fetching the remainder
of the file from the server. Doing so can significantly reduce the startup delay
seen by the client. The prefix also servers as a "buffer" at the proxy and enables
the proxy to mask jitter and loss on the server-proxy network path. Prefix
caching is motivated by the observation that an initial portion of a video file
is more likely be viewed than latter portions. This is because many users start
viewing an audio or video file and then decide to no longer view the remainder
of the file. In such a scenario, caching entire files at the proxy may be wasteful;
instead it is more useful to store prefixes of popular files at proxy servers.

A key parameter in prefix caching is the size of the prefix cached at the proxy.
The prefix length must be chosen carefully to balance the storage space at the
proxy and factors such as the file popularity, jitter and loss on the server-proxy
path. The problem of optimal prefix cache size selection has been studied in
the literature [Wang et al., 2002].

Caching of Arbitrary Segments. Prefix caching is the simplest time-based
partial caching strategy, where each video file is partitioned into two segments,
and proxies only cache the initial segment of a video file. The notion of caching
partial file contents can be generalized to derive a variety of caching strategies,
where a video file can be partitioned into multiple segments and different subsets

252 WEB CONTENT DELIVERY

/c frames 2/c frames 4/(frames 8/c frames

• CD I ' I I
segment 1 segment 2 segment 3 segment 4

Figure 11.4. Exponential object segmentation

of segments may be stored at a CDN proxy. Numerous such segment caching
strategies have been proposed in the literature.

One such scheme is to create segments of exponentially increasing sizes (see
Figure 11.4), where each segment is twice the size of the previous segment
[Wu et al., 2001]. The proxy computes the ratio of the access frequency and
the segment number and caches segments with larger frequency to distance
ratios. This strategy is similar to the bandwidth to space ratio (BSR) policy
outlined earlier. The use of unequal segment sizes has two advantages. First,
since viewers are more likely to watch initial portions of videos, the use of
smaller segment sizes for the initial portions enables a proxy to favor these
initial segments (over the subsequent larger segments) for caching. Second,
unequal segment sizes enable a proxy to quickly free up a large amount of
space by discarding a large segment that is no longer popular. In case of equal
size segments, multiple evictions are necessary to free up the same amount
of space. Consequently, it is easier for a proxy to adapt to changing segment
popularities.

Another approach had advocated caching of the prefix as well as arbitrary
segments of the video at the proxy, while storing the remainder of the file at the
server. This approach is called selective caching [Miao and Ortega, 1999], and
suggests storing intermediate segments or frames of the video at the proxy to
permit efficient scan operations such as fast-forward, jump or rewind. Storing
of the prefix allows the technique to provide similar benefits to prefix caching.

4,2 Bandwidth-based Partial Caching
In contrast to time-based partial cache, bandwidth-based partial caching re

quires that the video file be partitioned in the spatial dimension and involves
storing portions of the file at proxies in the CDN and the remainder at the origin
server. We discuss two techniques that are based on this idea.

Video Staging. The video staging approach [Zhang et al., 2000] involves
partitioning the file into two layers—a fixed rate lower layer and a variable rate
upper layer. The lower layer is stored at the server, while the upper layer is stored
at one or more proxies in the CDN (see Figure 11.5). When a client requests
a file, the lower layer is streamed from the origin server and the upper layer
from a proxy cache, thereby reducing the backbone bandwidth requirement.
The main advantage of video staging is that it imposes a fixed overhead on the

Caching and Distribution Issues for Streaming Content Distribution Networks 253

Origin Server

variable-rate layer

fixed-rate layer

Proxy

variable-rate
layer(cached)

lA^Wi

complete
objects

- fixed-rate layer

variable-rate layer (from cache)

fixed-rate layer (from server)

Client

Figure 11.5. Video staging

server and the server-proxy network path due to the fixed rate of the lower layer.
The variability in the video file is handled by the proxy. Observe that video
staging is analogous to prefix caching, except for one important difference—in
video staging, the lower layer is stored at the server, while in prefix caching,
the prefix, which is the first segment, is stored at a proxy.

Caching of Layered Video. While bandwidth-based techniques for caching
partial content have received little attention, some recent efforts have focused
on caching of layered video files [Rejaie et al., 1999, Rejaie and Kangasharju,
2001a].

The Mocha proxy addresses this issue by assuming layered video files and
caching different layers at a proxy, while fetching additional segments from the
origin server in an on-demand basis [Rejaie et al., 2000, Rejaie and Kangasharju,
2001b]. User requests are serviced by streaming cached layers from the local
disk, while fetching the missing layers from the origin servers (see Figure 11.6).
A rate adaptive protocol is used to prefetch missing layers in the cache in a
demand driven fashion in order to improve the quality of the cached video.
Observe that, this technique is analogous to caching of arbitrary segments of
the video at a CDN proxy. Other related efforts have also proposed caching of
certain layers of a video file at CDN proxies and using user-perceived quality
metrics to dynamically fetch additional layers from the origin server in order
to improve video quality [Zink et al., 2004, Zink et al., 2003].

A disadvantage of partial time- or bandwidth-based caching techniques over
caching complete objects is the reduced resilience to failures. Since only a
subset of the file is stored in the CDN, the remaining content needs to be fetched
from the server. Thus, a server failure will result in the content becoming

254 WEB CONTENT DELIVERY

Origin Server

layer 2 — ^ ^ 1

layer 1

Proxy

layer 1
(cached)

complete
-objects

layer 2

layer 2 (from server)

layer 1 (from cache)

Figure 11,6. Caching of layered video.

unavailable to the end-user. In contrast, caching complete objects enables the
CDN to mask server failures from the end-user.

5, Cluster-based Proxy Servers in a CDN
Our discussion thus far has focused on caching techniques at a single proxy

in a CDN. However, in many scenarios, the CDN consists of multiple proxy
clusters, where each cluster contains multiple proxy servers interconnected
by a high-speed LAN (see Figure 11.7). In these environments proxies in
the cluster can cooperate with one another to cache content; such cooperation
often results in better service to the end-user. For instance, the cache at each
proxy can be shared with other proxies in the cluster—in the event of a cache

Internet

I—1| Desktop
client

Figure 11.7. Architecture of a clustered-based proxies in a CDN.

Caching and Distribution Issues for Streaming Content Distribution Networks 255

Table 11.1. Summary of Cluster-based Proxy Architectures.
Approach
Intelligent Agent
Middleman
Rcache/Silo
Dynamic Reconfiguration
SOCCER

Architecture
Centralized, LAN
Centralized, LAN
Distributed, LAN
Distributed, LAN
Distributed, WAN

Content
Layered
Segments
Segments
Segments
Segments

Coordinator
Yes
Yes
No
No
No

miss, a proxy can simply forward a user request to another proxy in the cluster,
rather than fetching the missing content from the origin server. Similarly, proxy
clusters can be employed for load balancing, where multiple proxies in a cluster
can participate in servicing requests for very popular videos. In this section,
we discuss several cluster-based proxy architectures that have been proposed
recently. Table 11.1 summarizes these approaches.

Middleman Cluster Proxy: Early work on cluster-based proxies assumed a
centralized coordinator for proxies in the cluster. The coordinator is assumed to
have full knowledge about the files cached at each proxy as well as the requests
currently served by each proxy in the cluster. The coordinator is responsible
for implementing the caching policy on behalf of all proxies in the cluster as
well as for determining which proxy should service an incoming request. The
Middleman cluster proxy is an example of such an approach [Acharya and
Smith, 2000]. Middleman employs a coordinator proxy to make decisions for
all proxies in a cluster. Upon receiving a request, a proxy forwards the request
to the coordinator, which determines the best proxy in the cluster to service the
request. The requested file is then streamed from that proxy to the end-client.
In the event of a cache miss or if all proxies are overloaded, the request is
forwarded to the origin server. Middleman also implements an LRU-k cache
replacement strategy.^ Each video file is partitioned into equal size segments
and the LRU-k policy is employed to determine which segments are cached
locally by each proxy in the cluster.

While Middleman requires that a file be partitioned into segments and em
ploys time-based partial caching within the proxy cluster, caching of layered
video in a proxy cluster has also been studied in the intelligent agent cluster-
based proxy [Paknikar et al., 2000]. Like in Middleman, a centralized coor
dinator is used to determine which layers of a video should be cached and at
which proxy in the cluster.

Silo and RCache Cluster-based Proxy: Since a centralized coordinator can
become a bottleneck and is a single point of failure, distributed architectures
for proxy clusters have been studied recently. Such cluster-based proxy do not
assume the presence of a coordinator and make all decisions in a distributed
fashion.

256 WEB CONTENT DELIVERY

The RCache approach employs a cluster of K cooperating proxies that ran
domize the placement of video segments onto proxies in the cluster [Chae et al.,
2002]. RCache proxies assume equal size segments for a video and cache a
segment with a fixed probability a/K, where a is a constant. A randomized
strategy that maps video segments to proxies can avoid hot spots that occur
when multiple popular segments are placed on a single proxy, resulting in over
load. Note, however, that in the RCache approach, the probability of caching a
segment is independent of its popularity.

The Silo approach overcomes this drawback by using unequal segment sizes
and a randomized placement strategy that takes popularities into account [Chae
et al., 2002]. The approach also assumes a cluster of proxies and employs expo
nentially increasing segment sizes and exponentially decreasing probabilities
for caching later segments of a video. Specifically, the i^^ segment of a video
has a size a^~^ and is cached with a probability 1//?*" .̂ Thus, initial segments
are more likely to be cached (the first segment, also the smallest, is cached
with a probability 1). Since different files can have different popularities, the
probability of caching a segment can be biased by its current popularity. The
approach also uses a cache replacement policy that takes both the local popu
larity of a segment (i.e., the popularity at a single proxy in the cluster) and the
global popularity (the popularity across all proxies) when evicting segments.

Dynamically Reconfiguring Proxy Cluster: Since popularities of video
files change dynamically over time, the set of segments cached at proxies in
a cluster needs to be adapted to this changing popularity. Specifically, video
segments that are increasing in popularity need to be fetched into the caches and
segments that are no longer popular need to be replaced. A cluster-based proxy
that can adaptively reconfigure the caches at proxies in the cluster was proposed
in [Guo et al., 2003]. In this approach, a video file is partitioned into segments,
that are ranked according to their bandwidth to space ratio (BSR), The mapping
of segments onto caches in the cluster is modeled as a two-dimensional knapsack
problem, and a greedy first-fit heuristic is employed to place these segments
onto proxies in the cluster. Depending on its popularity, each segment can be
replicated at multiple caches, placed on a single proxy cache, or not cached
at all. As the popularity of video file changes over time, the proxy cluster
adapts this initial placement in an incremental fashion to match the new object
popularities. This adaptation involves (i) determining an ideal mapping for the
new popularities and (ii) use of a minimum weight perfect matching (MWPM)
heuristic that transforms the current mapping to the new mapping such that
the overhead of moving segments from one cache to another is minimized.
Like in the Silo and the Middleman approaches, each user request is serviced
by streaming available segments from the proxy cluster, while fetching the
missing segments from the origin server.

Caching and Distribution Issues for Streaming Content Distribution Networks 257

every
advertisement

region over which proxy
advertisements are sent

every 4
advertisement

Figure 11.8. The expanding ring advertisement protocol.

Self-Organizing Cooperative Caching Architecture (SOCCER): While
Middleman, Silo and the dynamically reconfiguring proxy architectures as
sume a cluster of proxies interconnected by a local area network, the SOCCER
approach extends the notion of a proxy cluster to a wide area network [Hof-
mann et al., 1999]. In this approach, a collection of geographically distributed
proxy servers cooperate with one another to service user requests. Coopera
tive caching requires a proxy to know the current status of other proxies in its
cluster. While maintaining the state of all proxies is easy in a LAN setting,
exchanging state updates is expensive in WAN environments. The SOCCER
approach explicitly addresses this issue using an Expanding Ring Advertise
ment (ERA) protocol, where a proxy multicasts any updates to its cache with
dynamic TTL values. Proxies that are further apart receive such advertise
ments less frequendy, while nearby proxies have more up-to-date knowledge
of each other's proxy cache contents (see Figure 11.8). The advertisements are
also used to propagate load information to other proxies. The knowledge of a
proxy load and its cache contents enables other proxies to determine whether
to forward a user request to it.

6. Peer-to-Peer Streaming Techniques

The previous sections have discussed streaming from a client-proxy-server
perspective. In this section, we provide an overview of an alternative streaming
approach, namely peer-to-peer streaming. Peer-to-peer streaming is motivated
by a number of reasons. Origin servers as well as CDN proxies have limited ca
pacity on the number of concurrent streams they can support. If an overloaded
server or proxy is unable to service a client, then the client can request an object
from another client (i.e., a peer) that is currently being served by the proxy. The

258 WEB CONTENT DELIVERY

Origin
server

Proxy
/

Peers

/
Peers

Peer 1 |

/ \
\

Peer 2

T

Peer 4

Figure 11.9. Peer-to-peer streaming

client then receives a stream from this peer and in turn streams the file to other
interested clients. In other words, the proxy streams the file to a small number
of client (or peers). Each peer in turn streams the file to other peers, until all
interested clients receive a copy of the stream (see Figure 11.9). In effect, peer-
to-peer streaming uses a form of multicast at the application level (referred to as
application-level multicast). The network of peers form a multicast distribution
tree rooted at the origin server or a CDN proxy. Observe that clients are inher
ently unreliable, since they can be disconnected or switched off by their owners
at any time. Consequently, a peer-to-peer streaming technique must be able
to adapt the distribution tree as peers dynamically join and leave the network.
Further, the distribution tree needs to employ redundant streaming techniques
to mask disruptions in the media playback caused by peers leaving the network.
Consequently, much of the ongoing research in P2P streaming focuses on: (i)
tree construction algorithms, (ii) handling dynamic joins and leaves, and (iii)
redundant streaming techniques that mask packet losses due to peers leaving
the network. This section discusses several peer-to-peer streaming approaches
that have been proposed in the literature.

Zigzag streaming: The Zigzag P2P approach focuses on tree construction
algorithms for streaming content to a large number of peers. The proposed
tree construction causes the depth of the tree to grow logarithmically with the
number of peers [Tran et al., 2003]. A distribution tree with a smaller depth
reduces the number of intermediaries between the server and a leaf peer, which
in turn reduces the end-to-end delay. The technique also bounds the number of
children for each intermediate node in the tree, which in turn limits the network
bandwidth requirement at each peer. Reducing the bandwidth requirements at
each peer is especially important, since many peers tend to be connected over
home broadband connections, which are asymmetric in nature with limited
upload bandwidth. Departures of a peer are handled by reconnecting all peers
in the subtree rooted at the departed peer with other live peers in the system.

Caching and Distribution Issues for Streaming Content Distribution Networks 259

CoopNet Resilient P2P streaming: The resilient P2P streaming approach
[Padmanabhan et al., 2003] focuses on the use of redundant network paths
(in the form of multiple distribution trees) and redundant data transmissions
to minimize the disruptions due to peers leaving the network. A peer-to-peer
streaming system called CoopNet ("cooperative networking") is proposed that
employs multiple descriptive coding. Multiple description coding (MDC) is
a method of encoding an audio and/or video stream into M separate streams,
or descriptions, such that any subset of these descriptions can be received and
decoded. The distortion with respect to the original signal is proportional with
the number of descrip- tions received; i.e., the more descriptions received, the
lower the distortion and the higher the quality of the reconstructed stream. This
differs from layered coding in that in MDC every subset of descriptions must be
decodable, whereas in layered coding only a nested sequence of subsets must
be decodable. By using MDC to encode a video stream and by sending it on
multiple paths to each peer, the CoopNet system ensures that a peer can decode
the video so long as it receives some subset of the descriptions. The use of
MDC also enables CoopNet to handle peer departures in a flexible manner—a
departed peer results in a lower resolution video for all peers served by it until
the tree is repaired.

SplitStream: The SplitStream system [Castro et al., 2003] combines a peer-
to-peer overlay network with an application level multicast for the purpose of
video distribution. In their approach a video is split into stripes which are
distributed via separate multicast trees. The goal of SplitStream is to create a
forest of separate multicast trees in such a way that a node is only an internal node
for only one multicast tree and a leaf node in all other cases. This mechanism
distributes the load equally over all nodes of the distribution system. This
approach is well suited for the distribution of layer-encoded video, since each
layer can be distributed via a separate multicast tree.

Layered Peer-to-Peer Streaming: The issue of streaming layered video in
a peer-to-peer fashion has been explicitly studied in [Cui and Nahrstedt, 2003].
In this approach, each video is assumed to be encoded into a number of layers,
and peers are assumed to be heterogeneous. An algorithm to determine what
layers should be fetched by a peer from upstream peers and which of these
layers to buffer and forward to downstream peers is proposed. The algorithm
attempts to judiciously use the download and upload bandwidth available to
each peer with the goal of maximizing overall viewing quality. For instance,
a peer may fetch six layers from upstream peers, and depending on how many
downstream peers it serves and when they join, only a subset of these six layers
may be forwarded to others.

PROMISE P2P Streaming: The PROMISE peer-to-peer streaming system
focuses on a set of services that are necessary to judiciously construct a P2P

260 WEB CONTENT DELIVERY

distribution tree [Xu et al., 2002, Hefeeda et al., 2003]. For instance, PROMISE
supports a service to infer the underlying network topology between peers. The
knowledge of the underlying topology can be employed to construct a tree where
the number of hops between two connected peers is small. Another service
supported by PROMISE involves monitoring the status of peers, so that peer
departures can be detected with low latency. Detecting peer failures quickly
is important for minimizing the disruptions in video delivery to downstream
peers. A third service involves failure recovery, where the service dynamically
switches peers to standby peers, when a parent peer fails. Together, these
collection of services simplifies the building of peer-to-peer streaming services
over a wide area network. This was demonstrated by designing a multi-path
P2P streaming using these services [Xu et al., 2002].

7, Conclusions

In this chapter, we presented a brief overview of the state of the art in caching
and distribution techniques for streaming media content. Initial work in the
area focused on full object caching. Given the large sizes of streaming media
files, techniques for partial caching of objects have also been extensive studied.
We classified partial caching techniques into two types: time-based partial
caching and bandwidth-based partial caching. More recent research efforts
have focused on caching techniques for a co-located cluster of proxy caches
as well as techniques for streaming using peer-to-peer networks. The area
continues to evolve as researchers shift their attention to distributing streaming
content to small networked devices such as PDAs and next-generation mobile
phones.

Notes
1. The least recently used-K (LRU-K) policy maintains a history of the K most recent access times and

computes the /C-distance of an object as the difference between the current time and the K^^ access. The
object with the greatest K distance is evicted from the cache. LRU-k is a generalization of the basic LRU
policy, where LRU-1 is same as LRU.

References
Acharya, Soam and Smith, Brian (1998). Experiment to Characterize Videos

Stored on the Web. In Proceedings of SPIE/ACM Conference on Multimedia
Computing and Networking (MMCN), San Jose, CA, USA, pages 166-178.

Acharya, Soam and Smith, Brian (2000). MiddleMan: A Video Caching Proxy
Server. In Proceedings of NOSSDAV 2000, Chapel Hill, NC, USA.

Acharya, Soam, Smith, Brian, and Parnes, Peter (2000). Characterizing User
Access To Videos On the World Wide Web. In Proceedings of SP IE/ACM
Conference on Multimedia Computing and Networking (MMCN), San Jose,
CA, USA, pages 130-141. SPffi.

Caching and Distribution Issues for Streaming Content Distribution Networks 261

Blanchl, Giuseppe and Melen, Rlccardo (1997). Non Stationary Request Dis
tribution In Vldeo-on-Demand Networks. In Proceedings of the 16th Annual
Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM'97), Kobe, Japan, pages 1\\-1\1. ffiEE Computer Society Press.

Castro, Miguel, Druschel, Peter, Hu, Y. Charlie, and Rowstron, Antony (2003).
SplltStream: Hlgh-bandwldth Content Distribution In Cooperative Environ
ments. In Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS W), Berkeley, CA, USA, pages 103-107.

Chae, Youngsu, Guo, Katherlne, Buddhlkot, Mlllnd M., Surl, Subhash, and
Zegura, Ellen W. (2002). Silo, Rainbow, and Caching Token: Schemes for
Scalable, Fault Tolerant Stream Caching. IEEE Journal on Selected Areas in
Communications, 20, 7:1328-1344.

Cheslre, Maureen, Wolman, Alec, Voelker, Geoffrey, and Levy, Henry (2001).
Measurement and Analysis of a Streaming-Media Workload. In Proceedings
of USITS'02: The 3rd USENIX Symposium on Internet Technologies and
Systems, San Francisco, CA, USA.

Cul, Yl and Nahrstedt, Klara (2003). Layered peer-to-peer streaming. In Proc,
of International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV '03).

Eager, Derek, Vernon, Mary, and Zahorjan, John (2001). Minimizing Band
width Requirements for On-Demand Data Delivery. IEEE Transactions on
Knowledge and Data Engineering, 13(5):742-757.

Griwodz, Carsten, Bar, Michael, and Wolf, Lars C. (1997). Long-term Movie
Popularity In Vldeo-on-Demand Systems. In Proceedings of ACM Multime
dia Conference 1997, Seattle, WA, USA, pages 340-357.

Guo, Y, Ge, Z., Urgaonkar, B., Shenoy, P., and Towsley, D. (2003). Dynamic
cache reconfiguration strategies for cluster-based streaming proxies. In Pro
ceedings of the Eighth International Workshop on Web Content Caching and
Distribution (WCW2003), Hawthorne, NY.

H263 (1995). ITU-T: Video Coding for Low Bit Rate Communication. Inter
national Standard. ITU-T Recoomendatlon H.263.

Hefeeda, M., Hablb, A., Botev, B., Xu, D., and Bhargava, B. (2003). Promise:
Peer-to-peer media streaming using coUectcast. In Proceedings of ACM Mul
timedia 2003, Berkeley CA, pages 45-54. ISBN: 1-58113-722-2.

Hofmann, Markus, Ng, T. S. Eugene, Guo, Katherlne, Sanjoy, Paul, and Zhang,
Hul (1999). Caching Techniques for Streaming Multimedia over the Internet.
Technical report, Bell Labs, Holmdel, NJ, USA.

Hu, Allan (2001). Vldeo-on-Demand Broadcasting Protocols: a Comprehensive
Study. In Proceedings of the 20th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM'Ol), Anchorage, AK,
USA, pages 508-517. IEEE Computer Society Press.

262 WEB CONTENT DELIVERY

Hua, Kien A. and Sheu, Simon (1997). Skyscraper Broadcasting: A new Broad
casting Scheme for Metropolitan Video-on-Demand Systems. In Proceed
ings of the ACM SIGCOMM '97, Cannes, France, pages 89-100.

Miao, Zhourong and Ortega, Antonio (1999). Proxy Caching for Efficient Video
Services over the Internet. In Proceedings of the 9th Packet Video Workshop,
New York, NY, USA, pages 36-44.

MPEG-1 (1993). International Organization for Standardisation (ISO). Infor
mation Technology - Coding of Moving Pictures and Associated Audio for
Digital Storage Media at up to about 1,5 Mbit/s - Part 1: Systems. Interna
tional Standard. ISO/IEC 11172-1:1993.

Nussbaumer, Jean-Paul, Patel, Baiju, Schaffa, Frank, and Sterbenz, James P. G.
(1995). Networking Requirements for Interactive Video on Demand. IEEE
Journal on Selected Areas in Communications, 13(5):779-787. ISSN 0733-
8716.

Padmanabhan, V, Wang, H., and Chou, P. (2003). Resilient peer-to-peer stream
ing. In Proceedings of IEEE IntL Coference on Network Protocols (ICNP),
Atlanta, GA, pages 16-27. ISSN 1092-1648.

Paknikar, Shantanu, Kankanhalli, Mohan, Ramakrishnan, K.R., Srinivasan,
S.H., and Ngoh, Lek Heng (2000). A Caching and Streaming Framework
for Multimedia. In Proceedings of the ACM Multimedia Conference 2000,
Los Angeles, CA, USA, pdigcs 13-20.

Paris, Jehan-Francois, Long, Darell D. E., and Mantey, Patrick E. (1999). Zero-
Delay Broadcasting Protocols for Video-on-Demand. In Proceedings of the
ACM Multimedia Conference 1999, Orlando, FL, USA, pages 189-197.

Pereira, Fernando and Ebrahimi, Touradj (2002). The MPEG-4 Book, Prentice-
Hall. ISBN 0-13-061621-4.

Rejaie, Reza, Handley, Mark, and Estrin, Deborah (1999). RAP: An End-to-
End Rate-based Congestion Control Mechanism for Realtime Streams in the
Internet. In Proceedings of the Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies 1999 (INFOCOM'99), New
York, NY, USA, pages 395-399.

Rejaie, Reza and Kangasharju, Jussi (2001a). Mocha: A Quality Adaptive Mul
timedia Proxy Cache for Internet Streaming. In Proceedings of the 11th In
ternational Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAVVl), Port Jefferson, NY, USA, pages 3-10.

Rejaie, Reza and Kangasharju, Jussi (2001b). Mocha: A quality adaptive multi
media proxy cache for internet streaming. In Proceedings of the International
Workshop on Network and Operating Systems Support for Digital Audio and
Video Port Jefferson, NY.

Rejaie, Reza, Yu, Haobo, Handley, Mark, and Estrin, Debora (2000). Multi
media Proxy Caching for Quality Adaptive Streaming Applications in the
Internet. In Proceedings of the Nineteenth Annual Joint Conference of the

Caching and Distribution Issues for Streaming Content Distribution Networks 263

IEEE Computer and Communications Societies 2000 (INFOCOM'OO), Tel-
Aviv, Israel, pages 980-989.

Sitaram, Dinkar and Dan, Asit (2000). Multimedia Servers. Morgan Kaufmann
Publishers. ISBN 1-55860-430-8.

Tewari, Renu, Vin, Harrick, Dan, Asit, and Sitaram, Dinkar (1998). Resource-
Based Caching For Web Servers. In Proceedings of SPIE/ACM Conference
on Multimedia Computing and Networking (MMCN), San Jose, CA, USA,
pages 191-204.

Tran, Due T., Hua, Kien A., and Do, Tai (2003). ZIGZAG: An Efficient Peer-to-
Peer Scheme for Media Streaming. In Proceedings of the 22th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFO-
COM'03}, New York, NY, USA, pages 1283-1292. ISSN 0743-166X.

Wang, B., Sen, S., Adler, M., and Towsley, D. (2002). Optimal Proxy Cache
Allocation for Efficient Streaming Media Distribution. In Proceedings of the
21th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM'02), New York, NY, USA, pages 1726-1735.

Wu, Kun-Lung, Yu, Philip S., and Wolf, Joel L. (2001). Segment-Based Proxy
Caching of Multimedia Streams. In Proceedings of the Tenth International
World Wide Web Conference, Hong Kong, China, pages 36-44.

Xu, D., Hefeeda, M., Hambrusch, S., and Bhargava, B. (2002). On peer-to-
peer media streaming. In Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS 2002), Wien, Austria, pages 363-
371. ISSN 1063-6927.

Zhang, Zhi-Li, Wang, Yuewei, Du, David H.C., and Su, Dongli (2000). Prospects
for Interactive Video-on-Demand. IEEE/ACM Transactions on Networking,
8(4):429-442.

Zink, Michael, Kunzel, Oliver, Schmitt, Jens B., and Steinmetz, Ralf (2003).
Subjective Impression of Variations in Layer Encoded Videos. In Proceed
ings of the 11th lEEE/IFIP International Workshop on Quality of Service
(IWQoS'03), Monterey, CA, USA, pages 134-154. ISBN 3-540-40281-0.

Zink, Michael, Schmitt, Jens, and Griwodz, Carsten (2004). Layer-Encoded
Video Streaming: A Proxy's Perspecive. IEEE Communications, 42(8):96-
103.

