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Abstract. While deploying a sensor network is necessary for proof-
of-concept experimentation, it is a time-consuming and tedious task
that dramatically slows innovation. Treating sensor networks as shared
testbeds and integrating them into a federated testbed infrastructure,
such as FIRE, GENI, AKARI, or CNGI, enables a broad user commu-
nity to benefit from time-consuming deployment exercises. In this paper,
we outline the challenges with integrating sensor networks into feder-
ated testbeds in the context of ViSE, a sensor network testbed we have
integrated with GENI, and describe our initial deployment experiences.
ViSE differs from typical embedded sensor networks in its focus on high-
bandwidth steerable sensors.
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1 Introduction

Apart from the additional burden of developing, operating, and maintaining
an experimental shared testbed, researchers do not typically co-opt their field-
deployed sensor networks to serve as shared testbeds for at least three reasons.
First, the benefits of multiplexing node resources are unclear, since computa-
tional, bandwidth, and energy constraints restrict embedded platforms to oper-
ating a few passive sensors that collect similar data regardless of the application.
Thus, controlling the data gathering process at each sensor node has little value,
and end-user applications may simply “share” the collected data at the network’s
sink.
Second, embedded platforms generally do not support the hardware mecha-
nisms, e.g., MMU or TLB, or software abstractions, e.g., virtual memory or
processes, necessary for either basic control plane functions or efficient multiplex-
ing, making it undesirable or even impossible. Software platforms for embedded
nodes often do not provide the separation between kernel-space and user-space
that testbed’s use as the linchpin for safe execution of untrusted user software.
Third, the specialized nature of a sensor network deployment often lends itself
to only a single application rather than multiple diverse applications. For exam-
ple, the choice of sensors and node placement for a network designed specifically
for monitoring the vibrations of a volcano [3] are unlikely to be suitable for, say,
tracking the movements of nearby wildlife [4].

However, there are a range of “large” sensor types that exist today that do
not adhere to the extreme power and form factor constraints of embedded sensor



nodes and, instead, (i) expose programmable sensor actuators to applications,
(ii) support the basic mechanisms/abstractions for safe software execution, and
(iii) incorporate multiple types of sensor supporting a range of applications.
Most notably, networks of steerable sensors are distinct from their embedded
counterparts by allowing applications to dictate the type, quality, and quantity
of data they collect by steering the sensor to different points in space.

Unlike passive sensors that collect the same data regardless of the applica-
tion, the data gathering process for each steerable sensor is highly application-
dependent. Further, the energy required to move a steerable sensor’s mechanical
motor necessitates the use of higher-power computing components that support
both the hardware mechanisms and software abstractions critical for a testbed
control plane. Finally, node platforms are generally powerful enough to operate
a range of sensors useful for different applications. Examples of steerable sensors
include both steerable weather radars and pan-tilt-zoom video cameras. Recent
work has proposed using networks of small steerable weather radars to fill cov-
erage gaps in the NEXRAD radar system [5], while the U.S. Border Patrol uses
networks of pan-tilt-zoom cameras to monitor both the northern and southern
border [6].

Thus, the basic characteristics of steerable sensor networks do not preclude
exposing them as shared testbeds for use by external researchers. As with their
embedded counterparts, steerable sensor networks are costly to deploy, operate,
and maintain, which magnifies the potential benefits of sharing them with ex-
ternal users. For instance, he hardware cost alone for CASA’s steerable radars
is $250,000 and does not include infrastructure, operational, or labor costs [5],
and the cost for the Border Patrol’s 20-mile “virtual fence” using pan-tilt-zoom
cameras is over $20 million [6]. In general, much like early mainframe computing
systems, the cost and expertise necessary to build and maintain sensing systems
significantly restricts the scope of users available to experiment with them.

We also believe that continuing advancements in low-power embedded sensor
nodes will eventually mitigate, or even eliminate, the characteristics that discour-
age testbeds using small form factor field-deployed sensor nodes. For instance, in
Section 4.1, we briefly discuss a prototype of a small form-factor sensor node we
have built capable of (i) separating control plane functions from user functions
using two distinct processors and (ii) supporting multiple types of “high-power”
sensors off harvested energy. Steerable sensor networks provide an early opportu-
nity to address challenges, such as control plane separation, multiplexing shared
sensor actuators, and dealing with unpredictable energy availability, that are, or
will be, relevant to all types of sensor network testbeds.

The focus of this paper is the design and implementation of the ViSE 1

testbed and its integration with Orca [7, 8], a candidate control framework for
GENI [9]. ViSE focuses on virtualizing steerable sensors to benefit from the
strong resource and fault isolation of modern virtualization platforms. Virtual
machines isolate ViSE’s control plane from untrusted users, and untrusted users

1 See http://geni.cs.umass.edu/vise. ViSE stands for Virtualized Sensing
Environment.



(a) Prototype Node (b) Topology

Fig. 1. ViSE contains nodes (a) spread throughout the Amherst, MA area (b).

from each other. Each ViSE node includes a weather radar, a pan-tilt-zoom
camera, and a weather stations that applications programmatically control to
sense aspects of their surrounding environment. Thus, ViSE users request slices
composed of virtual machines bound to not only isolated slivers of each node’s
CPU, memory, storage, and bandwidth, as in other GENI testbeds [10, 11], but
also one or more attached sensors.

ViSE reflects our view that new innovation in sensing systems is necessary
to take advantage of new innovation in the Internet and cloud computing, since
sensors must transmit their data over the Internet to the computers that ulti-
mately process the data to some end. Section 2 gives an overview of ViSE, while
Section 3 details ViSE’s current integration with Orca/GENI, using Orca’s
extensible slice controller implementation, as well as deployment issues we have
observed in practice. Section 3 then briefly outlines three specific challenges for
ViSE, and other sensor network testbeds, moving forward. Finally, Section 4
discusses concludes.

2 ViSE Testbed Overview

The ViSE testbed currently includes one Internet-accessible node that acts as
a gateway to three sensor nodes located on the roof of the UMass-Amherst
Computer Science Research Center at 140 Governors Drive in Amherst, MA (42
23’ 42.33” N, 72 31’ 50.96” W at elevation 62 meters), on the MA1 Radar Tower
on the UMass-Amherst campus (42 23’ 30.95” N, 72 31’ 2.53” W at elevation 120
meters), and on the Mount Toby firetower in Sunderland, MA (42 29’ 17.00” N,
72 32’ 14.96” W at elevation 385 meters). The distance between Mount Toby and
the UMass-Amherst Computer Science Research Center is 10.37 kilometers and
the distance between Mount Toby and the MA1 Tower is 10.83 kilometers. There
is no link between the MA1 Radar Tower and the Computer Science Research
Center since there is no line of sight.

Figure 1(a) shows the ViSE node on the roof of the UMass-Amherst Com-
puter Science building. The relative location of each node is depicted in Fig-



ure 1(b). We are planning to add one additional node on the Pelham firetower,
approximately 10km east of the MA1 tower, and other nodes on campus build-
ings in the near future. Each node includes three distinct sensors, a Davis Van-
tagePro2 Weather Station, a Sony SNC-RZ50N Pan-Tilt-Zoom Camera, and
a Raymarine RD424 Radome Radar Scanner. Testbed nodes use 802.11b over
directional antenna for communication. Importantly, programmatic control is
available for each sensor, allowing users to build sensor control into their ex-
perimental applications. The ViSE testbed is part of the GENI prototype and
integrates with GENI’s Orca control framework, which we describe in the next
section.

ViSE’s primary usage scenario is as a platform for experimenting with closed-
loop control of adaptive sensor networks using non-traditional steerable sensors.
Experiments actuate sensors to capture data at a specific time, location, spatial
region, etc., stream that data over a wireless network to compute clusters for
analysis, and use the new results to actuate and refocus sensors on important
regions as conditions change. For example, recent work [12] explores how shared
high-bandwidth sensor systems can intelligently prioritize and compress data
when not enough bandwidth exists to transmit all of the sensor data. ViSE also
targets the study of multi-sensor experiments, such as performing longitudinal
climate studies or studying the fidelity of the long-distance wireless link under
different atmospheric conditions including rain, snow, wind, or fog [13]. Finally,
ViSE is also useful for experimenting with long-distance wireless communication
using directional antennas—the testbed includes two links over 10 kilometers
long. Setting up long-distance links, like those in ViSE, is cumbersome since
they require line-of-sight from elevated vantage points.

3 GENI/Orca Integration

As with other GENI testbeds [7, 10, 11], ViSE uses virtualization to separate its
control plane from each user’s data plane. The control plane has mechanisms to
start and stop user VMs, create and destroy VM root disks, attach and detach
sensors to VMs, and configure network connections. Users currently request a
slice of the testbed by logging into ViSE’s web portal and issuing a slice request.
Each ViSE slice consists of a virtual machine on each node bound to an isolated
sliver of each node’s CPU, memory, storage capacity, network bandwidth, as
well as one or more attached sensors 2. Note that since, currently, ViSE has a
chain topology every slice must include a virtual machine on each ViSE node—
otherwise, users would have no means of accessing virtual machines at the end
of the chain. ViSE users may log into the gateway of their slice using a secure
shell session at vise-testbed.cs.umass.edu on a specified port. ViSE currently
uses ssh as the method for users to bootstrap their own services and/or inject
their own code into a slice, although we are working on integrating the Gush
experiment workflow tool [14]. Once inside the gateway, ViSE nodes operate
within a private IP address space: the node on the roof of the Computer Science
2 See [9] for complete description of terminology.



Research Center has IP address 192.168.2.25, the node on the firetower at Mount
Toby has IP address 192.168.2.26, and the node on the MA1 Tower on the
UMass-Amherst campus has IP address 192.168.2.27.

3.1 Requesting Slices

To gain access to ViSE, each user sends a ssh public key to vise@cs.umass.edu
and receives in return a unique username and password to access ViSE’s web por-
tal. Slice requests made through the portal under each login account are tagged
by an Orca slice controller, discussed below, with the public key associated with
that account. As with other testbeds, on slice creation, each user’s ssh public
key is copied to the root disk image of each of its virtual machine, allowing it
to access the machine with its corresponding private key. ViSE currently uses
Linux VServers as its virtualization technology because it simplifies attaching
privileged sensing devices, such as cameras and radars, to virtual machines. We
initially used Xen as our virtualization technology. However, we were forced to
switch to VServers since the device driver for our radar’s analog-to-digital con-
vertor uses DMA operations that Xen does not currently support. Since ViSE
focuses on exposing sensors to users, the OS-level virtualization provided by
VServers is sufficient. Note that VServers and Xen exhibit similar resource and
fault isolation capabilities [15].

We implement ViSE’s web portal as a simple front-end to a customized Orca
slice controller. The portal uses PHP to log user slice requests to a backend
MySQL database, which the ViSE-Orca slice controller polls for new requests
every tick of its internal clock. By default, Orca’s internal clock ticks every
10 seconds, although, as with a conventional operating system, the tick rate is
configurable. Upon detecting a new request, the slice controller reads the request
from the database and issues it to Orca’s instantiation of the GENI Clearing-
house. GENI testbeds that use Orca are able to delegate the right to allocate
their resources to the Clearinghouse. As a result, GENI users—including ViSE’s
web portal and slice controller—request slices from the Clearinghouse, and not
from the testbed itself. Note that Orca does not require testbeds to delegate
their resources to the Clearinghouse. If necessary, testbed’s may retain control
of resource allocation. However, the Clearinghouse serves as a focal point for
a GENI facility to implement GENI-wide resource allocation and authorization
policies.

3.2 Clearinghouse Integration

If testbed’s retain control of resource allocation then GENI cannot implement
coordinated global policies, such as ensuring that slice requests spanning dif-
ferent testbeds and networks at multiple institutions are allocated atomically
with the same start time. One alternative to a Clearinghouse approach that im-
plements GENI-wide policy is to force the burden on individual end-users to
request resources from each individual testbed. Using this approach, if testbed’s
do not coordinate with each other, end-users will have no guarantee of being



granted resources from each testbed at the same time. Orca currently operates
a GENI Clearinghouse for multiple institutions, including Ohio St. University,
Duke University, University of Massachusetts at Amherst, Northwestern Uni-
versity, and the University of Houston, at the Renaissance Computing Institute
in Chapel Hill, North Carolina. Once the Clearinghouse approves or declines a
ViSE slice request, it sends the response, in the form a signed ticket, to the ViSE
slice controller, which then logs a state change for the request to the web portal’s
database to notify the portal, and hence the user, of the request’s current status.

The Clearinghouse allocation policy for ViSE always approves requests from
the ViSE slice controller for the next available unallocated time slot. If the re-
quest is approved, the portal notifies the user of the start time of its slice. To
activate the slice, the ViSE slice controller redeems the ticket it received from
the Clearinghouse with ViSE’s aggregate manager. The slice controller also at-
taches important user-specific configuration properties to this redeemed ticket;
in ViSE, the most notable property is the public key the user initially registered,
described above. ViSE’s architecture in combination with GENI/Orca’s archi-
tecture, separates the slice controller, which accepts and issues slice requests,
from the aggregate manager, which uses ViSE’s control plane to allocate and
configure virtual machines, to accommodate slice controllers operated locally by
end-users. Thus, rather than ViSE operating a single monolithic web portal that
end-users leverage to issue slice requests, end-users may operate their own slice
controllers that programmatically issue slice requests for ViSE or other testbeds.

The underlying assumption of Orca’s architecture is that the only thread
common to all GENI testbeds is that they share resources and do not use them
forever. As a result, all delegations and requests in Orca are represented as
leases with well-defined start and end times. Since Orca does not make any as-
sumptions about the attributes of a resource, integrating ViSE’s non-traditional
sensing resources with its slice controller, Clearinghouse, and aggregate man-
ager implementations was straightforward. Orca includes extensible implemen-
tations of each server that exposes lease handler interfaces that execute, for each
request, at the start and end of its lease at both the slice controller and the
aggregate manager.

3.3 Slice Controller Integration

For ViSE’s slice controller, we implement lease handlers that update the web
portal’s database when leases start and end to notify users of the status of their
slice through the web portal. For ViSE’s aggregate manager, we implement lease
handlers that setup and teardown virtual machines on each ViSE node, attach
sensors to them, and write the user’s public key to each VM’s root disk. The
aggregate manager setup handler snapshots a copy-on-write template virtual
machine disk image using Linux’s logical volume manager to create the root
disk for each virtual machine in a slice. The template disk image includes simple
scripts and code segments that provide examples for how to control each sensor.
Once active, the aggregate manager notifies the slice controller, which logs the
notification to its database.



Initially, we are limiting the degrees of freedom available to users through the
ViSE web portal, even if Orca’s default slice controller provides them. Examples
of degrees of freedom include the ability to (i) request leases with variable lengths
and variable start times, (ii) extend leases with a variable duration, (iii) lease
virtual disks or sensors independently of virtual machines, (iv) cancel a lease
before its end time, (v) add or remove nodes from a slice on or before a lease
extension, or (vi) increase or decrease the size of a node’s sliver, i.e., share
of CPU, bandwidth, memory, etc., attached to each virtual machine. Instead,
ViSE’s portal currently forces users to issue slice requests for four hour durations
starting in the next available slot. Users cannot extend leases beyond this four
hour period or submit additional requests before their current lease has finished
to prevent hoarding.

Some of the degrees of freedom above do not apply to ViSE, although they
may apply to other testbeds. In particular, as previously mentioned, we allocate
all ViSE nodes in each slice (v) rather than allocate partitions of the network.
Initially, we are only allocating dedicated nodes, so (vi) does not currently ap-
ply, although we are investigating multiplexing actuators, which we discuss in
Section 4.2. While (i), (ii), (iii), and (iv) may be useful, they burden the user
with formulating complex requests, and the Clearinghouse with implementing
sophisticated allocation policies that require mechanisms to prevent users from
hoarding resources. We plan on integrating these functions for users as necessary.
Our approach is to start simple as we attract users, and allow their experiences
to motivate the degrees of freedom we ultimately add and support.

4 Challenges

While Orca’s minimalist design based on leases, which only assumes that users
do not use resources forever, simplified our initial integration of ViSE with GENI,
we have identified at least three challenges moving forward. We outline current
challenges in ViSE related to control plane separation, fine-grained actuator
multiplexing, and unpredictable energy supplies below. Although ViSE focuses
predominantly on steerable sensors, we view these challenges as also being ap-
plicable to embedded sensors as well.

4.1 Control Plane Separation

As with other testbeds, sensor network testbeds must separate their control plane
from each user data plane. ViSE accomplishes this separation on each node using
virtual machines. However, since ViSE nodes connect wirelessly, it currently does
not separate control plane communication. The control plane operations occur
over the same wireless channel used by each testbed user. In related work, we
built a small form factor sensor platform that uses two distinct nodes and radios
for control plane and data plane communication [16]. The advantage of the dual
node/radio approach is that the properties of the control plane’s node/radio can



be well-matched to its needs. For example, in our work we matched a mote-
class control plane node/radio with a more powerful embedded node, capable of
running Linux, for the data plane.

The control plane node could always remain on because its energy demands
were small compared with the demands of the data plane node, which required
an appropriately sized solar panel. Since the control plane only executes a small
number of operations, the more powerful computing platform of the embedded
node was not necessary. Further, the control plane radio had low bandwidth,
but long range, rather than the high bandwidth, but short range, radio of the
embedded node. The low bandwidth radio is appropriate for a control plane
that only sends short commands to nodes, while the long range is appropriate
for providing greater connectivity in the case of node failures. Finally, separating
the control plane onto a different processor decouples the control plane from the
software on the main embedded node, allowing faults to be tolerated on the
embedded node.

We are investigating using the same approach in ViSE. However, in the case
of ViSE, we have prototyped a solution using our embedded node from the work
above—the Linux Gumstix platform—as the control plane node, since for ViSE
the Gumstix draws significantly less power than our x86-class nodes. For our
radio, we have prototyped using a GPRS modem connected to AT&T’s cellular
network. Much like the mote-class control plane node in our prior work, the
GPRS modem exhibits low bandwidth but a wide range. An advantage in ViSE
of using a separate control plane radio is that it allows testbed applications
to control the main wireless radio’s operational settings, such as its operat-
ing frequency, bit rate, or MAC-layer protocol. Currently, ViSE does not allow
applications control of these settings because ViSE’s control plane uses them,
and, if they are changed ViSE’s control plane becomes disconnected. However,
long-distance wireless researchers may find the control useful. ViSE also uses
automated reboot switches, triggered by cell phone text messages, as a last re-
sort to rebooting a node that cannot be contacted, since physical access to the
nodes is time-consuming in good weather and nearly impossible in poor weather
or during winter.

4.2 Fine-grained Actuator Multiplexing

ViSE currently allows testbed users dedicated control of each steerable sen-
sor. However, we are integrating support for fine-grained multiplexing of sensor
actuators, which we call MultiSense [17]. MultiSense enables multiple virtual
machines to each control and steer their own virtual sensor. The virtual ma-
chine hypervisor, or privileged management domain, then multiplexes steering
requests at a fine-grain to provide the illusion that each virtual machine controls
a dedicated, albeit, slower sensor. MultiSense optimizes a proportional-share
scheduler, which we call Actuator Fair Scheduing or AFQ, for steerable sensors
by adding support for judicious batching and merging of requests, anticipatory
scheduling, and state restoration. Our results from a MultiSense prototype show



that for ViSE’s pan-tilt-zoom camera it enables a tracking application to pho-
tograph an object moving at nearly 3 mph every 23 ft along its trajectory at a
distance of 300 ft, while supporting a security application that photographs a
fixed point every 3 seconds. Of course, MultiSense diverges from strict fairness
between virtual machines by reordering steering requests, in part, by batching
together requests that are “near” each other. An in-depth description of Mul-
tiSense and a complete experimental evaluation is available in [17]. Once we
integrate MultiSense with ViSE, we will be able to allocate sensor “slivers” in
the same way that we allocate slivers of CPU, memory, or bandwidth.

4.3 Unpredictable Energy Supplies

Finally, while there is currently A/C power available for each ViSE node, we
have also connected nodes to both solar panels, wind turbines, and batteries.
We are studying how to operate nodes purely off harvested energy to enable us
to deploy nodes where external A/C power is not available. One consequence
of operating a testbed using unpredictable energy supplies is that both testbed
users and the GENI Clearinghouse expect predictable behavior. For example,
ViSE’s aggregate manager delegates the right to allocate its resources to a GENI
Clearinghouse for a fixed period of time. Recall that this delegation is important
for implementing GENI-wide policies, such as atomically allocating slices that
span multiple testbeds. However, determining the duration of this time period is
dependent on ViSE’s available energy supply, which is not entirely predictable.

One option is to choose the duration based on the current reserves in the
battery to ensure that the Clearinghouse will not allocate nodes to users when
there is no energy to run them. An alternative option, which we are exploring,
is to use weather forecasts to increase the duration that ViSE can delegate
to GENI. If weather forecasts are accurate, they should provide a means for
increasing the duration of possible requests ViSE can satisfy. Additionally, the
simple policies above allocate resources assuming that testbed users operate
nodes at their full utilization. If nodes are not operated at their full utilization,
then additional energy is available for subsequent experiments. With a GENI-
wide Clearinghouse, these updates must propagate to the Clearinghouse to allow
subsequent testbed users to take advantage of the additional resources. One
avenue for future exploration is the performance impact of these updates on a
federated Clearinghouse.

5 Conclusion

In this paper, we have described the motivation behind ViSE, a steerable sensor
network testbed we are building in Western Massachusetts, described ViSE’s
integration with Orca, a candidate GENI control framework, and outlined three
challenges ViSE presents moving forward. We are actively working on ViSE’s
integration with other substrates and testbeds, including other GENI testbed’s,
cloud computing environments, and networks, such as NLR and Internet2, to
allow cross-testbed slices.
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