Cost-aware Cloud Bursting for Enterprise Applications'

Tian GUO, University of Massachusetts Amherst
Upendra Sharma, IBM Research

Prashant Shenoy, University of Massachusetts Amherst
Timothy Wood, The George Washington University
Sambit Sahu, IBM Research

The high cost of provisioning resources to meet peak application demands has led to the widespread adoption of pay-as-
you-go cloud computing services to handle workload fluctuations. Some enterprises with existing IT infrastructure employ a
hybrid cloud model where the enterprise uses its own private resources for the majority of its computing, but then “bursts” into
the cloud when local resources are insufficient. However, current commercial tools rely heavily on the system administrator’s
knowledge to answer key questions such as when a cloud burst is needed and which applications must be moved to the cloud.
In this paper we describe Seagull, a system designed to facilitate cloud bursting by determining which applications should
be transitioned into the cloud and automating the movement process at the proper time. Seagull optimizes the bursting
of applications using an optimization algorithm as well as a more efficient but approximate greedy heuristic. Seagull also
optimizes the overhead of deploying applications into the cloud using an intelligent precopying mechanism that proactively
replicates virtualized applications, lowering the bursting time from hours to minutes. Our evaluation shows over 100%
improvement compared to naive solutions but produces more expensive solutions compared to ILP. However, the scalability
of our greedy algorithm is dramatically better as the number of VMs increase. Our evaluation illustrates scenarios where
our prototype can reduce cloud costs by more than 45% when bursting to the cloud, and that the incremental cost added by
precopying applications is offset by a burst time reduction of nearly 95%.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems
General Terms: Design, Prototype, Algorithms, Performance

Additional Key Words and Phrases: Hybrid Clouds, Resource Management, Live Migration

1. INTRODUCTION

Many enterprise applications see dynamic workloads at multiple time scales. Since predicting peak
workloads is frequently error-prone and often results in underutilized systems, cloud computing
platforms have become popular with their ability to rapidly provision computing and storage ca-
pacity to handle workload fluctuations. At the same time, many medium and large enterprises have
significant current investments in IT data centers that is often sufficient for the majority of their
needs, while offering greater control and lower operating costs than the cloud. However, workload
spikes, both planned and unexpected, can sometimes drive the resource needs of enterprise appli-
cations above the level of resources available locally. Rather than incurring capital expenditures
for additional server capacity to solely handle such infrequent workload peaks, a hybrid model has
emerged where an enterprise leverages its local IT infrastructure for the majority of its needs, and
supplements with cloud resources whenever local resources are stressed.

1 This paper is an expanded version of a short paper that appeared in USENIX 2012 Annual Technical Conference

This research was supported in part by NSF grants CNS-0855128, CNS-0916972, CNS-1117221, CNS-1253575, OCI-
1032765 and an IBM OCR award and an Amazon AWS grant.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions @acm.org.

© YYYY ACM 1533-5399/YYYY/01-ARTA $15.00

DOT : http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A2 T. Guo et al.

This hybrid technique, which is referred to as “cloud bursting”, allows the enterprise to expand its
capacity as needed while making efficient use of its existing resources. Cloud bursting typically re-
lies on virtualization technologies to encapsulate applications in virtual machines that can be transi-
tioned between different hardware platforms with relative ease. While commercial and open-source
virtualization tools are beginning to support basic cloud bursting functionalities [Openstack 2012
] [Opennebula 2012] [VDataCenter 2012], the primary focus has been on the underlying mecha-
nisms to enable the transition of VMs between locations or to seamlessly integrate the networks
at different sites. These systems leave significant policy decisions in the hands of system admin-
istrators, who must manually determine when to invoke cloud bursting and which applications to
“burst”. Such decision processes require individual administrators to have profound knowledge of
the running applications, and as a result often lead to poor choices in terms of minimizing cloud
costs or reducing downtime during the transition. Further, unanticipated spikes that arrive at off
hours may see a delayed response unless support staff are available at all times.

One of the insights of our work is that rather than naively moving an overloaded application to
the cloud, it may sometimes be cheaper and faster to move one or more “smaller” applications and
then assign the locally freed-up resources to the overloaded application. Judiciously making these
choices manually is difficult especially when there are a large number of diverse applications in the
data center and different cloud platform pricing models.

Bursting an application to the cloud involves copying its virtual disk image and any application
data. Since this disk state may be large, consisting of tens or hundreds of gigabytes, a pure on
demand migration to the cloud may require hours to copy this large amount of data. A second
insight of our work is that occasional precopying of virtual disk snapshots of a few overload-prone
applications can significantly reduce the cloud bursting latency, since only the incremental delta of
the disk state needs to be transferred to reconstruct the image in the cloud. Our work examines the
impact of judiciously choosing the candidate applications for such precopying.

We have developed a system called Seagull to address the above challenges; Seagull automati-
cally detects when resources in a private cloud are overloaded, decides which applications can be
moved to a public cloud at lowest cost, and then performs the migrations needed to dynamically
expand capacity as efficiently as possible. Seagull supports both horizontally and vertically scalable
applications for cloud busting. It also allows flexible policies to be specified in terms of which ap-
plications to periodically precopy into the cloud. By automating these processes, Seagull is able to
respond quickly and efficiently to workload spikes, allowing the data center to be safely operated at
a higher utilization level.

Our article makes several contributions:

(1) an efficient greedy heuristic that determines which applications should be moved to minimize
cost, as well as an optimal ILP formulation;

(2) a precopying algorithm that decides which overload-prone applications should be proactively
replicated to the cloud to enable much faster VM migrations;

(3) aprototype of Seagull using a Xen-based local data center and the Amazon EC2 cloud platform;

(4) a detailed experimental evaluation of Seagull for different applications.

Seagull supports live and non-live migration to enable cloud bursting and we show Seagull’s
placement algorithm can make intelligent decisions about which applications to move, lowering
the cost of resolving an overloaded large scale data center by over 45% in some settings. We also
demonstrate our precopying algorithm can dramatically lower the time needed to move applications
into the cloud while incurring only a small cost to retain replicated states in the cloud.

2. BACKGROUND AND PROBLEM STATEMENT

This section provides intuition of the hybrid model and background information on existing cloud
bursting tools. We then detail the challenges faced by a cloud bursting management system and
describe the problem we seek to resolve.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A:3

$40.6K

or TTTTATT a 20 $38.0K
S S
3 8 Cloud Burst S $28.8K
@ 230
v
z 6 §
5 4 =20
g g
& 2 Private Site (5 servers) o 10
. o
0 - o 0
Mon Tues Wed Thur Fri Sat Sun Private Cloud Hybrid

() (b)

Fig. 1: Hybrid clouds can utilize cheaper private resources the majority of the time and burst to the
cloud only during periods of peak demand, providing lower cost than exclusively private or public
cloud based solutions.

2.1. Cloud Bursting Background

Employing cloud bursting can save enterprises a significant amount of money. Typically provision-
ing all resources locally implies buying sufficient servers to handle peak load. In contrast, while
renting a server in the cloud is typically more expensive than buying one, the ability of to rent a
smaller number of servers most of the time and adding additional servers only during peak periods
can yield cost savings over locally owning servers. The hybrid approach of owning some resources
locally and renting additional servers from the cloud when needed is cheaper than both approaches
by extracting the best of both worlds. Figure 1 illustrates a example where a business typically re-
quires five “extra large” servers for its daily needs, but two days a week experiences a spike up
to ten servers. Using Amazon’s EC2 Cost Calculator [AWSECO 2013], we find that using private
resources for this would cost about $40K a year since it requires all ten servers be paid for up front.
A cloud-only solution provides greater elasticity, allowing the business to pay for ten servers only
during the two days a week they are needed, but the premium paid for the cloud negates much of
this benefit, only lowering the cost by $2,600. However, a hybrid approach could drop the total price
by a further $9,200, a saving of 27%, due to more efficient local and cloud resource utilization.

These observations have resulted in new product offerings from software vendors and cloud
providers such as Amazon, VMware, and Rackspace that help businesses connect and manage “hy-
brid” clouds that span both private and public resources. Cloud management tools such as Open-
Nebula and Eucalyptus have begun to support flexible placement models where new applications
can be easily deployed into either a local or public cloud.

However, these existing solutions are generally designed to move resources between private and
public clouds at very coarse time scales. For example, Terremark’s cloud bursting system for a
government agency could take between two and ten days to fully burst from the local to cloud
site [Terremark 2012]. This slowdown is caused by the large amount of application (disk) state that
must be transferred over relatively slow links between a private and a public data center and any
manual configuration necessary to bring up the application in the cloud. Our work seeks to enable
agile cloud bursting that can respond to moderate workload spikes within hours or even minutes.

A further limitation is that existing cloud bursting products focus primarily on providing the
low-level mechanisms that transfer data or enable cross data center communication. The difficult
high-level policy decisions of when to invoke these migration tools, which applications to move
and for how long, are still done manually by system administrators. These decisions are nontrivial,
particularly in private cloud data centers with a large number of applications.

2.2. System Model and Problem Statement

Our work assumes a medium or large enterprise that has its private cloud infrastructure housed in
one or more data centers. We further assume that: i) each application is virtualized and comprises
one or more VMs and all VMs that make up the application must be kept together either in the

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 T. Guo et al.

Private Cloud

\
_I Cloud Management Layer I:\rb
\\ //
v
Forecaster : [B @
1| Placement Precopy Traffic >
—>!| Aigorithm | | Algorithm || Royter [¢ ===~ D>Clients

| Burst Manager 1
b e [0
Metadata

Manager | >[Data] Seagull

Fig. 2: Seagull architecture

private site or the cloud. ii) components within an application can be scaled either horizontally or
vertically;? iii) each server may host one or more VMs from different applications; and iv) data
centers are virtualized and are agile in terms of allocating server capacity to applications;

The goal of our work is to design a system that can both automate and optimize cloud bursting
tasks. We assume that the application resource needs and constraints such as whether an application
is horizontally or vertically scalable are known and so is the cloud pricing model which dictates
server rental and network I/O costs. Given this knowledge, our system must answer the following
questions: (i) When to trigger a cloud burst? (ii) Which applications to cloud burst so that cloud
server and I/O costs are optimized? (iii) How to judiciously employ precopying to reduce cloud
bursting latency? In what follows, we present the design and implementation of our Seagull system
to address these questions.

3. SEAGULL DESIGN: BURSTING TO THE CLOUD

Figure 2 depicts the architecture of Seagull. The main components of our system include algorithms
to control placement and precopying, the actuator that enacts the decisions of these algorithms, and
the cloud management layer which translates generic Seagull orders into data center or cloud spe-
cific commands. At the heart of our system are its intelligent bursting and opportunistic precopying
algorithms that we describe in this section.

The decision of when to trigger a cloud burst involves monitoring one or more metrics and using
a threshold on them. Depending on the scenario, Seagull can use system-level metrics (such as CPU
utilization, disk/network utilization or memory page fault rate) or application-level metrics such as
response time. We assume that the system administrator makes a one-time decision on which metrics
are relevant and the corresponding thresholds. In case of system-level metrics, the desired metrics
can be monitored at the hypervisor-level, and for application-level metrics, we assume the presence
of a monitoring system such as Ganglia that supports extensions to monitor any application metric
of interest. Once an overload warning is triggered, Seagull can use either an optimal ILP based
algorithm or a greedy heuristic to decide which applications to move to the cloud.

3.1. Optimal Cloud Bursting Algorithm

Seagull’s cloud bursting algorithm must determine which applications to move to the public cloud
when local resources are overloaded. A naive approach is to simply move the overloaded appli-
cations themselves and allocate additional resources to each such application in the public cloud.
However a key premise of Seagull is that, in many scenarios it may be cheaper to move one or more

2In horizontal scaling, the application capacity is increased by starting new VM replicas. In vertical scaling, a VM’s capacity
is increased, possibly after migrating to a more powerful server. An application in Seagull may employ both scaling methods.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A5

“smaller” applications to the public cloud and use the freed-up server resources to locally allocate
additional capacity to overloaded applications. Our optimization algorithm can be formulated as a
integer linear program (ILP) that “searches’ through various such possibilities of which applications
to move to cloud for the cheapest solution to alleviate the overload in the private cloud.

Our ILP algorithm assumes that there are /N distributed applications in the private cloud. Each
application ¢ can be composed of M; virtual machines. Let L be the number of different cloud loca-
tions, with the first being the private cloud location (in the simplest case where there is one private
and one public cloud, L = 2; however our approach can also handle bursting to multiple public
cloud providers). Let H; be the number of hosts in location [. The resource requirement of each vir-
tual machine is specified as a resource vector that specifies its CPU allocation (in terms of number of
cores?), its memory needs, its disk and network bandwidth needs: (Pijkts Tijhts dijkt, bijrr), Where
subscripts indicate the j th VM of 34" application on k4" host of I** location. Let (P, Rk, Dk, Big)
be the cores, RAM, disk size and network interface bandwidth respectively, of k" host at I*" loca-
tion. Let C;jx; be the cost of moving the j** VM of i‘" application to k" host at I*" location; this
cost depends on the VM’s resource usage, and whether it is a local move within the current location
or a wide area transfer as defined in the next section.

Let o5 and B;;1; be binary variables, such that:

oy — 4 Lf 4" VM of i*" app is on k'" host of " loc
UKL= 0 otherwise

By = 1if i*" app is at the [*" loc
=00 otherwise

The ILP-based algorithm is as follows:

minimize Zfil Z;\/I:ll Zlel lejél aijkCostijkl

subject to
L H
> =1 Vi=1...M;,Vi=1...N (1)
=1 k=1
N M;
SO aijupije < P Vk=1...H,¥l=1...L)
i=1 j=1
N M;
> aijmirije < Ri Vk=1...HN¥l=1...L 3)
i=1 j=1
N M;
Zzaijkldijkl < Dy Vk=1...H,Vli=1...L 4)
i=1 j=1
N M;
ZzaijklbijklgBlk Vk=1...H,Vli=1...L (®)]
i=1 j=1
M; L H
DD =M, Vi=1...N (6)
j=11=1 k=1

3the number of cores required on each host varies depending on the hardware of host; thus the number of cores also depends
on the host &

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 T. Guo et al.

M; H,
1/Hl ZZaijklpijklg,Bu VZZIN,VZZlL (7)
j=1k=1
L
> Ba=1 Vi=1...N (8)
@ijk, Bu € {0,1} Vi, j, 1 k
€))

Constraint (1) ensures that each VM is on a single host. Constraints (2) through (5) ensure that
CPU, memory, disk and network resources, respectively, used by VMs do not exceed the host ca-
pacity, while constraint (6) ensures that all the VMs of each application are placed. Constraints (7)
and (8) together ensure that all the VMs of an application stay in one location.

The objective function minimizes the cost of migration. The cost Cost;;x; captures the cost of
migrating a VM either from one location to another or from one host to another. We classify the
migrations to be of two essential types, namely 1) inter cloud migration, i.e. cloud bursting, and ii)
intra-cloud migration, i.e. local migration within the private cloud. In either case, Seagull requires
knowledge of 7, the predicted length of the overload period.

Inter cloud migration: In this work we have considered only two locations, namely private cloud
and public cloud. We thus define the inter data center migration cost (i.e. cost of bursting a VM to
public cloud) as the sum of i) transferring the memory and storage from private cloud to public
cloud, ii) storing the data, and iii) running the VMs in public cloud. More formally, to move the j"
VM of i*" application to the k' host at remote location [has cost:

Costijrr = Tijir + (Rijir * 7) + (Sijri * months(t)) (10)

Tijrr = T'Sijia + T M (11)

where T, stands for the network cost of transferring all the VM’s data to the cloud and is repre-
sented as the sum of the dollar cost of transferring the VM’s storage (i.e., 1'S;;x1) and the memory
pages (i.e., T'M; ;1) to the cloud. The term R;;y; describes the hourly cost of running an equivalent
VM instance in the the public cloud. We use the resource mapping approach [Sharma et al. 2011] to
determine the corresponding instance type in Amazon. Therefore, multiplying by the burst duration
7 gives the total running cost for the j** VM in the public cloud. Finally, S;;x; is the cost to store
the VM’s data in the public cloud, which is typically paid for in a minimum of monthly increments.

Intra cloud migration: Seagull accounts for the cost of migrations within a data center in order
to prevent the optimization function from completely reorganizing the local site. While local migra-
tions have minimal economic cost compared to a cloud burst, it is still desirable to minimize their
impact on application performance. To do this, Seagull requires the system administrator to define a
parameter, § < 1, that represents the relative cost of local and remote transfers. Using this, Seagull
calculates the cost of a local migration as:

COStijkl =0 % TMijkl (12)

since local migrations only require the VM’s memory to be shifted. We assume that local storage
and compute resources have already been paid for upfront, and thus do not need to be included in
the cost.

The optimization problem Seagull must solve is a multi-dimensional bin packing problem, and
is known to be NP-hard [Coffman et al. 1997; Dowsland and Dowsland 1992]. We can use an ILP
solver such as CPLEX to implement this optimization algorithm. Not surprisingly, we found that
such numerical ILP solvers yield good solutions for small to medium-sized private clouds and a
small number of applications, but the algorithm becomes increasingly expensive as the size of the

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A7

private cloud data center and applications begins to grow. Consequently, we next present a greedy
heuristic that approximates this ILP optimization but can scale to much larger settings. Seagull
supports both the ILP-based algorithm as well as the greedy approximation and favors the more
accurate ILP when possible, while resorting to the greedy approach for tractability in larger settings.
We also compare the ILP-based approach and our greedy heuristic in our evaluation section.

3.2. An Efficient Greedy Bursting Algorithm

The intuition behind Seagull’s greedy algorithm is to maximize the utilization of local resources,
which are cheaper than public resources, and migrate the cheapest applications when local resources
are stressed. Seagull uses the following algorithms to determine when a data center is overloaded,
whether to cloud burst, and which applications to migrate.

Use local resources first when possible. We assume that the capacity increase C' necessary for
each overloaded application can be determined using one of the many empirical or analytical meth-
ods proposed in the literature [Urgaonkar et al. 2005; Shivam et al. 2005]. Seagull first examines
if any of the local servers have sufficient idle capacity to satisfy this desired capacity C'. If so, the
overloaded application can be live migrated to this server (for vertical scaling) or a new VM replica
can be spawned on the server (for horizontal scaling). This is the simplest scenario for addressing
the overload; Seagull also supports more sophisticated local “repacking” of VMs to first free up the
desired capacity C' on a particular server and then move (or replicate) the application to that server.
This is done in Seagull using a greedy technique that sorts all servers in decreasing order of free
capacity. Starting with the first server on the list, if its idle capacity is less than C, the technique
examines if one or more current VMs can be moved to a different server to free up sufficient capac-
ity C. If so, this sequence of VM moves can address the overload. Otherwise it moves on the next
server with the most idle capacity and repeats.

Move the cheapest applications first. If the overload cannot be handled locally, Seagull must
choose a set of applications to burst to the cloud. The objective is to pick the cheaper option between
the overloaded application and a set of other applications for cloud bursting. To do so in a cost-
effective manner, the algorithm picks those applications to move that free up the most local resources
relative to their cost of running in the cloud.*

To determine which applications should be moved, we assume the duration of the workload spike,
7, and the desired capacity C' for each VM are known and may be obtained from a workload fore-
casting technique such as [Zhang et al. 2000] [Ranjan et al. 2002] Note that C' is a vector repre-
senting the CPU, disk, network and memory capacity needs of the VM. For a VM j, we use C; =
< cpuj, disk;, network;, mem; > as a representation.

The VMs in the overloaded application are considered in decreasing order of their resource re-
quirements. For each of these VMs, Seagull considers the potential hosts in the local data center
sorted by their free capacity in descending order. This approach is biased towards utilizing the free
capacity in the local data center first, potentially reducing the number of applications that needs to
be moved to the cloud.

The secondary sorting criteria (tie breaker) we consider is the total cost of moving all applications
on a host to the cloud; this includes the cost of not only the VMs on that particular host, but all other
VMs that belong to those applications. This causes the hosts that run primarily low cost applications
to be considered first.

We define the cost of bursting an application, say A, that is composed of n VMs using:

Costy = ZCostAjkl (13)

j=1

4 Additional administrative criteria such as security policies may also preclude some applications from being valid cloud
burst targets; we assume that system administrators provide this information as a cloud bursting black list.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 T. Guo et al.

where Cost 41, is defined in equations (10), and k£ and [are used to determine the price of the
required instance type of V' M; in the cloud. We sum over the cost of all n VMs of application A
in Equation(13) to account for the constraint that all VMs that comprise an application be grouped
together either in the local data center or on the cloud.

When hosts have been sorted in this way, the algorithm considers the first host and attempts to
decide if a set of VMs on that host can be moved in order to create space for the overloaded VM.
Each virtual machine, V' M; that is part of some application A, on the host is ranked based on:

C;/Costa (14)

where Costy, is the cost of transferring and running the full application that V' M; is part of. The C}
metric represents the resource capacity required by the virtual machine. In our current implementa-
tion, we set C'; = num_cores;, but this could be trivially extended to support multiple resources
by using either an aggregate metric such as server volume as proposed in [Wood et al. 2009] or
resource skew as suggested by [Xiao et al. 2013]. The VMs on the host are considered in decreasing
order of this criteria, and the first & VMs are selected such that the free capacity they will generate
is sufficient to host the overloaded VM. The intuition behind this greedy heuristic is that it optimizes
the amount of local capacity freed per dollar.

Each of the overloaded applications is considered for bursting systematically. When a solution
is found, the total cost of moving all of the marked applications is compared to moving just the
overloaded application; the cheaper option is chosen to form the cloud bursting list.

3.3. Opportunistic Precopying Algorithm

An application’s state may consume tens or hundreds of gigabytes. Migrating all this data at cloud
bursting time will take hours or even days, significantly reducing the agility a data center needs for
varying workloads.

Seagull reduces migration time by precopying an incremental snapshot of some virtual machines’
disk-state to the cloud. Seagull’s precopying technique must make two important decisions: (i)
which applications to precopy, and (ii) how frequently to precopy each one. The precopying al-
gorithm takes two inputs: the Burst Capacity, B, and a Burst Deadline, D. The first term represents
the expected amount of capacity that may need to be burst into the cloud while the second provides
a time deadline by which that amount of capacity should be able to be transitioned from the local
site to the cloud. These knobs allow the data center administrator to control the agility with which it
can respond to workload fluctuations without requiring them to know specific details about individ-
ual applications. The output of the precopy selection algorithm will be a set of applications and a
precopying schedule which will allow the configured workload size to be shifted to the cloud within
the required interval.

Selection Strategy: Seagull decides which applications to precopy based on what it would most
likely pick for cloudbursting if a workload spike arrived. To do this, Seagull runs one of the cloud
bursting algorithms, described in Sec 3.1 and Sec 3.2, in an offline mode with an extra application
added which consumes B total resources. The extra application is pinned to the local site so it cannot
be selected for bursting, and ensures that the desired amount of capacity will be freed by moving
other applications. The result is a list of applications that can be run in the cloud at the lowest cost;
together these form the precopying set.

Precopying Frequency: Disk state of applications in the precopying set is replicated to the cloud
based on a frequency strategy. In the simplest case the precopying frequency can be chosen statically,
e.g., once a day or once a week. Alternatively, Seagull can analyze the write rates of the virtual disks
of each application and compute the frequency that data needs to be synchronized to ensure that the
remaining data can always be sent to the cloud within the Burst Deadline, D.

Precopying Cost: The economic benefit of cloud bursting comes from the fact that local resources
are more economical than cloud resources if they are being fully utilized. Thus, in order for pre-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A9

Public Cloud

Coordinator
Registered

Private Cloud

Fig. 3: Seagull Cloud Bursting Procedure

copying to be economical, it must not increase the cost by more than the premium charged for cloud
resources.

In general, the cost of storage is substantially lower than executing virtual machines in the cloud
(e.g., $0.10 for 1GB of storage versus $43.20 to run a small VM for a month). However, precopy-
ing also incurs network transfer costs to continuously synchronize disk state. Seagull can use the
calculated schedule and disk write rates to estimate the cost of performing precopying. Seagull can
then give purchasing recommendations to the data center administrator by comparing this cost to
the expected price of buying additional servers for the local data center.

Cloud bursting with precopying: Both the ILP and the greedy heuristics can easily handle the case
when some applications are subjected to pre-copying. Since each approach must estimate the copy-
ing overheads for bursting, we simply use the incremental cost to copy newly modified data since
the last precopy as the “cost” for each precopied VM; the cost of other VMs is the full copy cost.
Thus, both approaches will automatically favor precopied VMs whenever possible.

4. CLOUD BURSTING: HOW TO BURST?

Once Seagull determines a plan for which applications to move to the cloud, the Actuator must
execute this plan. Bursting an application involves copying its virtual disk image to the cloud and
starting a VM that contains all the data. In practice, current cloud platforms require several addi-
tional steps to prepare a disk image for booting within the cloud, thus Seagull uses the following
procedure, shown in Figure 3, to “burst” a VM to the cloud:

(1) Create a Snapshot: Seagull creates a snapshot of the VM’’s file system as the VM is running and
transfers the snapshot to the cloud to create a new disk image.

(2) Create a Replicable Public Cloud Image: Seagull then takes the image and transforms it to the
public cloud’s usable image format. After that Seagull then registers the image with the public
cloud management system and boots the VM.

(3) Synchronize Image: Seagull next shuts down the application in local data center to synchronize
any file system changes, that have occurred since the snapshot was taken, with the new VM.

(4) Start Application and Redirect Traffic: Seagull restarts the application in the cloud VM and
redirects the application workload accordingly.

We implemented these procedures for Amazon EC2 in Seagull. This approach is designed to
minimize the amount of downtime incurred during a migration; We will not stop the application
until step 3. Seagull also supports precopying by periodically copying the delta difference between
local application and the cloud VM, reducing the data that must be sent in step 1.

4.1. Supporting Live Cloud Bursting

Since today’s public cloud platforms such as EC2 and Azure do not support live VM migration,
Seagull’s cloud bursting mechanisms employ migration strategies that involve VM and application
downtimes. However, if live migration were to be supported by public cloud platforms, Seagull’s

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 T. Guo et al.

cloud bursting mechanisms could be easily adapted to take advantage of such features. For instance,
we recently proposed the CloudNet system to support live migration of VMs over a WAN from
one data center to another [Wood et al. 2011]. Seagull can easily support live cloud bursting by
employing our CloudNet system to live migrate virtual machines from a private cloud to a public
cloud over a WAN. CloudNet employs VPN and VPLS protocols to enable transparent migration
of a VM’s IP address from one WAN location to another and CloudNet uses several optimization
techniques such as content-based redundancy elimination and block deltas to efficiently transfer
memory (and disk) state of the VM over slow WAN links, all of which can be directly employed by
Seagull.

In Section 6.2.3, we experimentally demonstrate how Seagull can employ such WAN migration
mechanisms from CloudNet to support live cloud bursting from a private cloud to a public cloud
site.

4.2. Reverse Cloud Bursting

After the workload surge passes, it is important to bring the applications back into the private data
center to save cost. We refer to such procedure as reverse migration.

To avoid migration oscillations between private and public cloud and also minimize the cloud
costs, we make careful decisions about i) When to perform the reverse migration? ii) and who to
bring back to the local data center? We actively monitor the local data center’s resource utilization
and trigger the reverse migration when the utilization falls below a threshold for a time window. We
can adjust the parameters to control the frequency of reverse migration. We employ the algorithm
in Sec 3 but attempts to choose the most expensive application possible back to the private cloud by
sorting the cost in Equation(13) in descending order.

After determining the VM to bring back to the local data center, a similar procedure described in
Sec 4 is performed to move back the VM disk state and to restart it locally.

5. SYSTEM OVERVIEW AND IMPLEMENTATION

This section describes Seagull’s five main components shown in Fig 2.

Cloud Management Layer: We extended OpenNebula [Opennebula 2012] to implement the
Cloud Management Layer in our prototype. This layer exposes the mechanism of cloud bursting,
precopying, managing and monitoring VMs’ resources across private and public cloud as XML-
RPC API. Also, it offers a common abstract interface to the public cloud for all the other functional
blocks of Seagull and adapts accordingly based on different destination clouds.

Resource Monitor: We have extended OpenNebula to support sophisticated monitoring capabili-
ties like that of EC2 cloudwatch. Our monitoring engine is implemented using the Ganglia monitor-
ing system. Ganglia consists of a monitoring agent (gmond), which runs inside each host machine
and VMs, and a gathering daemon (gmetad), that aggregates monitoring statistics from multiple
monitoring/gathering daemons. Each VM image used by applications is pre-configured with a mon-
itoring agent; thus, when new virtual machines are dynamically deployed, the Ganglia system au-
tomatically recognizes new servers and begins to monitor them. When cloud bursting happens, we
tune the monitoring agents to report data according to the destination cloud setting, e.g., using EC2’s
cloudwatch service.

Metadata Manager: In our prototype, we have implemented the Metadata Manager as python
classes for each application, which store their data, e.g., VMs and network configurations, in the
backend MySQL database. This offers the functionality of safe retrieval and updating for application
metadata.

Workload Forecaster: The workload analyzer uses the workload statistics to estimate future
workloads. It obtains the application resource list and the workload statistics from both Metadata
Manager and the Cloud Management Layer. It then coalesces the information to generate applica-
tion level workload data from which a forecaster derives the future application workload. Seag-
ull focuses on “what to migrate where”, so the question of when to migrate is orthogonal to our
main goals. The design of Seagull is generic and any time series based forecaster [Hellerstein et al.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A:11

1999],[Urgaonkar et al. 2008], conforming to the interface, can be used. In our current implemen-
tation, we have implemented an ARIMA forecaster. The ARIMA forecaster obtains a time-series
of workload observations from the monitoring engine and models it as an ARIMA time-series. The
forecaster detects when the aggregate workload of the private site’s applications will exceed the
available capacity. It then analyzes how long this workload peak is expected to last in order to cal-
culate 7. Since cloud platforms typically charge by the hour, these predictions can be fairly coarse
grain. Our evaluation illustrates how the accuracy of the forecaster affects both precopying cost and
burst time. The results suggest that a conservative predictor that over predicts demand can cause a
small cost increase, but that this prevents the substantial increase in burst time which can occur if
the forecaster under predicts the workload.

Burst Manager: This is the core of Seagull that must 1) find applications to move to public cloud
and to bring back into the private cloud and ii) find applications to precopy and schedule their peri-
odic precopying. Using the workload predictions and the application metadata, it runs the placement
algorithm outlined in Sec 3. The output of the placement algorithm is a list of applications and their
final destinations. If precopying is enabled, it also computes a list of applications to precopy, using
the precopying algorithm outlined in Sec 3.3, and creates a precopying schedule.

Actuator: It takes the list of candidate VMs from Burst Manager for cloud bursting and precopy-
ing; by calls the API exposed by Cloud Management Layer. The actuator has two components:

Migrator: The migrator is implemented as python wrapper around the basic VM operations and
supports both live and non-live migrations between private and public clouds.

Precopier: We have implemented a filesystem level precopier using rsync to replicate selected
VMs between local and public clouds. Our precopier supports both live and non-live precopying.
In the live precopying, Seagull’s precopier could synchronize the VM image data while it is still
serving workload. Similarily, precopier can also take care of the data copying task while a VM
is shut down. Precopier has two phases 1) Initial Copy: In this phase the precopier executes the
following control sequences: i) creates a storage volume on public cloud and attaches it to the Co-
ordinator VM, ii) rsync the local VM data to the remote volume, iii) update the Metadata Manager.
2) Subsequent Copy: In this phases, the precopier performs the step (ii) of the Initial Copy.

6. EXPERIMENTAL SETUP AND EVALUATION

In this section we describe the experimental setup used for evaluating the performance of Seagull.
We have created a private cloud environment on a lab cluster using OpenNebula [Opennebula 2012];
for public cloud we have used Amazon EC2. We conducted experiments to illustrate the effective-
ness of our algorithms and the intuition behind them. We also present an analysis of the costs and
benefits when moving applications to the cloud and using precopying.

Private Cloud: We have created a private cloud environment using two types of servers: §-core
2GHz AMD Opteron 2350 servers and 4-core 2.4 GHz Intel Xeon X3220 systems. All machines
run Xen 3.3 and Linux 2.6.18 (64bit kernel). We deployed OpenNebula on these machines to create
a private cloud and manage a total of 44 cores distributed across 9 physical hosts. Our private cloud
supports small, medium and large servers, comprising 1, 2 and 4 cores, respectively.

Public Cloud: We have used Amazon EC2 as the public cloud in our experiments. EC2 offers
two type of storage solutions for their instances, i.e., S3 and EBS. We have used the latter for our
experiments, primarily to simplify the implementation of data replication across cloud boundaries.

6.1. Application appliances

We use three applications, TPC-W, Wikibooks and CloudStone for our evaluation. We have created
private-cloud as well as public-cloud appliances for each of these three applications and their re-
spective client applications. An appliance instance will create the virtual machine(s) which house
the complete application. We warm up each application, using its clients, for two minutes before
collecting data.

TPC-W is a multi-tier transactional web benchmark that represents an online bookstore [Ob-
jectWeb]. We use the Java implementation of TPC-W which has two-tiers: a Web server tier based

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 T. Guo et al.

Bl Copying to EC2

-’.‘5 800 Il Preparing an image
§ 600 EEE Starting VM —. Read
& — Write
=~ 400
g — Pre-Re
i 200 — Pre-Wr
o 0.4 Client Response Time (ms)
No Precopy Pre-10 Pre-100
0 200 400 600 800 1000

Fig. 5: CDF of client response time

Fig. 4: Application size impact on cloud with heavy workload.

bursting.

on Apache Tomcat servlet container and a database tier based on MySQL. In our appliance we have
deployed both the tiers on the same VM.

Wikibooks is an open-content textbooks collection website for which an http replay tool has
been developed [Cecchet et al. 2011]. It uses a MySQL database with a front-end PHP application.
We have created two separate VMs for this application, one containing Wikimedia software and the
other hosting the database.

CloudStone is a multi-platform, multi-language benchmark, which represents Web 2.0 applica-
tions in a Cloud Computing environment [Sobel et al. 2008]. It implements a social online calendar
as an AJAX application, called Olio. Olio uses MySQL as the backend database and supports a
memcached tier which can be horizontally scaled. We use CloudStone both in a single VM de-
ployment and in a multi-node, replicated setup. We again use the http replay tool as a workload
generator.

6.2. Migration and Precopying Tools

This section evaluates the tools used by Seagull to burst applications to the cloud and perform
precopying.

6.2.1. Burst Operation Time Costs. We analyze the amount of time needed for each of the steps
to burst an application to the cloud with and without precopy. The total cloud bursting time can be
decomposed into three major parts: copying data to the cloud, preparing an application image and
booting up the VM. We migrate CloudStone VM with a disk-state size of SGB.

As shown in Figure 4, the total time to migrate an application with even a very small 5GB disk
state, is 1336 secs; this clearly illustrates the need for precopying in enterprise applications that may
have ten or more times as much state. We then precopy the application and reduce the delta (i.e.
difference between the original and precopied snapshot) to I0OMB or 100MB:; the total time to burst
the application significantly reduces to 115 secs for a delta of 10 MB. In our many trials, we notice
that boot time stays almost constant and the image preparation time flatten around 70 secs which
makes the data copying our primary concern and justifies the precopying approach.

6.2.2. Performance Impact of Precopying. To measure the impact of precopying on application’s
performance, we run a TPC-W application and continuously precopy its data to the cloud during
a thirty minute measurement interval. While the replication process is running, we measure the
response time observed by the TPC-W clients running a “shopping” workload. We repeat this ex-
periment ten times and report average statistics across these runs.

The response time performance for light (100 clients) and heavy workloads (600 clients) is shown
in Table I. When there is only a light workload, the average response time of all request types only
increases by 2ms. When the workload is at peak capacity, the average response time of all requests
increased by 19%, but write requests observed a 37% increase, which is mostly caused by a small
number of outliers. As we observe in Figure 5, 90% of all requests see only a small performance
change of less than 17%.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A:13

Table I: Average client response time (ms) comparison for TPC-W in Shopping Mode

READ WRITE ALL
TPC-W workload None | Precopy None | Precopy None | Precopy
Shopping Light 29 31 21 25 28 30
Shopping Heavy 117 131 120 190 118 140

6.2.3. Migration Downtime. We next study the application downtime when migrating applications
over the WAN with Seagull. Our current implementation relies on non-live migration of VMs for
lack of live migration supports in existing clouds. However, we can test what the performance of
live migration might be by running a process on the cloud platform that receives a stream of Xen
migration data from a private data center.

Our experiment migrates a VM running TPC-W benchmark application, which is being accessed
by a set of 200 clients running an “ordering” workload. The VM is configured with 1.7GB of RAM
and a 5GB disk. When using non-live migration, the application is inaccessible during the shutdown
process at the origin site (1.2 secs), for the final copy of data to the cloud (7.0 secs), and while
the application is reinitialized in the cloud VM (1.2 secs). In total, Seagull’s non-live migration
incurs 9.4 seconds of downtime. Note that a naive approach of VM migration could increase this
to a minute or more if the cloud VM was not booted until after the origin VM was shutdown. In
comparison, running a live migration to EC2 incurs only 0.978 seconds of downtime while copying
the virtual machine’s memory. Using live migration does cause a slight increase in cost since more
data must be sent; in total, the memory migration added 1.84GB of data transfer and required 236
seconds to run.

Conclusion: Precopying has only a modest impact on response time, but can dramatically reduce
the total time required to burst an application to the cloud and reduces the downtime to less than 10
seconds, even with non-live migration.

6.3. Placement Algorithms
In this section we examine the algorithm used by Seagull to decide which applications to burst.

6.3.1. Placement Decisions. We first analyze the placement efficiency of Seagull compared to a
naive algorithm in a small scenario that demonstrates the intuition behind Seagull’s decision making.
We show that when a hotspot occurs, Seagull is able to make better use of local resources as well as
pick cheaper applications to move to the cloud.

We use three hosts of 6 cores, each hosting two applications, and three types of applications:
TPC-W(A, D) Wikibooks (B, E), and CloudStone (C, F). Each application is running inside a
single VM and we treat all applications in a scale up style. The initial arrangement of applications
and the number of cores dedicated to each is shown under ¢(in Figure 6. To simplify the scenario,
we assume that all applications have identical storage requirements.

We change application A’s workload every hour (marked by instants ¢;, where ¢+ = 1...3) such
that its CPU requirement increases to 4 cores, then 6 cores, before falling back to four cores at 3.
To eliminate the impact of prediction errors in this experiment we assume a perfect forecaster.

Local Reshuffling: When Seagull detects the first upcoming workload spike at ¢1, it attempts to
resolve the hotspot by repacking the local machines, shifting application C to ho and then moving
A to h; at effectively no cost. In the naive solution, application A is cloud burst to EC2 directly
without considering local reshuffling.

Bursting A Better Application: In the workload’s second phase, Seagull migrates a cheaper
application, D, to EC2 since the local data center could not provide enough capacity needed for A.
On the other hand, the naive algorithm had already moved A to the cloud, so it simply allocates
extra resources to it making it more expensive.

Reverse Migration: Eventually, the workload spike for application A passes, Seagull migrates D
back to the local data center while naive algorithm, lacking the ability to perform local reshuffling,
still needs to keep A in the cloud, consuming more money.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 T. Guo et al.

to t1 t2 t3
ho‘ B: 5 cores ‘? ‘ B: 5 cores § ‘ B: 5 cores ;l_’_) ‘ B: 5 cores §
1
1
o feaale]) ECEE IEZEED
L \
\

h2 ‘E:z F: 2 [free [\

EZ‘FZ‘C:Z‘ ‘E:Z‘F:Z%:Z‘

>3

Fig. 6: The naive approach uses only one migration, immediately moving A from hg to the cloud.
Seagull initially avoids any cloud costs by rebalancing locally, and is able to move back from the
cloud sooner than the naive approach.

400
. Seagull
0 300 - Naive
) 233225 224
5200 181
= 100
F 42
o

Fig. 7: Seagull uses local, live migrations at ¢;, and benefits from reverse pre-copying at 3, substan-
tially reducing the time spent at each stage compared to naively cloud bursting at ¢; and restarting
instances at ¢t and ¢3.

Naive --» Seagull —>

Time and Monetary Cost: The use of local resources in Seagull allows it to respond to overload
faster than the naive approach. Figure 7 shows the amount of time spent by each approach to resolve
the hotspots at each measurement interval; note that for both systems we precopy all applications
once to the cloud before the experiment begins. Seagull is substantially faster because it uses only a
local, live migration at ¢ whereas the naive approach requires a full cloud burst. Subsequent actions
performed by Naive also incur substantial downtime since VMs must be rebooted in the cloud to
adjust their instance type to obtain more cores. Seagull’s migration back from the cloud at ¢3 is also
quite fast because it does not require the full image registration process needed for moving into the
cloud. Most importantly, the fact that Seagull only requires a virtual machine in the cloud for the
hour starting at £o means that it pays 30% less in cloud data transfer and instance running costs.

Conclusion: This experiment illustrates the intuition behind Seagull’s placement algorithm. To
find more capacity while minimizing the infrastructure cost and transition time, Seagull first tries
to find free resources locally; if cloud resources are needed, then it moves the cheapest application
possible to the public cloud.

6.3.2. Cost Efficiency. We compared the costs of our placement algorithm with both the naive and
ILP approach. We simulate a data center comprising 100 quad-core hosts and test these strategies
using three types of applications randomly selected from Table II. We fill the private data center
to approximately 70% of its capacity and then compute the cost of the cloud bursting decisions
made while varying the percentage of applications (i.e. from 10% to 30%) to be overloaded. Both
Figure 8(a) and Figure 8(b) presents the performance of these three algorithms averaged over 30
trials.

Conclusion: In Figure 8(a), our ILP algorithm achieves as low as zero monetary cost because it
can perform an optimal bin packing of the local data center, which the heuristic-based algorithms
are unable to do. This shows the importance of utilizing local resources before resorting to cloud

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A:15

o
S
15)
=]

= Greedy 1 XX XX = Greedy —J
£ gop P £ g0l ILP =
c X KX S
£ 60| 2 eo0f
=1 X =1
8 40f % X2 8 a0
o o
g 20+ X KX ‘g’ 20
o o
° 10 20 30 0 30
Overload Level (%) Overload Level (%)
(a) With local reshuffling (b) Without local reshuffling

Fig. 8: Comparison of cost reduction percent of cloudbursting with ILP solution compared to Naive
approach

Table II: Application Details

App-Type | Reps | Active Disk Size | Image Size | Write Rate
Small 1-2 3-4GB 10G IMB/min
Medium 3-6 6-8GB 15GB 2MB/min
Large 7-12 12-16GB 20GB 3MB/min

bursting. However, Seagull’s greedy algorithm still lowers the cost by at least half compared to the
naive approach. Figure 8(b) shows that if we do not consider local reshuffling, the ILP algorithm
provides only a small improvement beyond what the greedy algorithm offers. This suggests that
maximizing the load displaced per dollars is an effective heuristic solution to this problem. Note
that since the data center setups in Figure 8(a) and Figure 8(b) are not identical, their cost results
cannot be directly compared.

6.4. Precopying Algorithm

In this section, we study the efficiency of Seagull’s precopying algorithm provided different work-
load accuracies.

We compare Seagull’s precopying algorithm to two alternatives. Random Precopying: randomly
selects a set of applications for precopying. The number of applications is determined based on the
maximum expected overload in the data center. Naive Precopying: selects the set of applications
that is predicted to become overloaded for precopying.

6.4.1. Perfect Workload Forecaster. This experiment evaluates the effectiveness of Seagull’s in-
telligent precopy strategy compared to the random (SG-random) and naive precopy strategies at a
larger scale. We simulate a data center comprised of 200 quad-core hosts and test the strategies
using three types of applications, as defined in Table II. To eliminate the impact of Seagull’s local
reshuffling on precopying efficiency, we assume that the data center runs only scale out applications,
preventing the need for local reconsolidation. For computing the cost of each of these precopying
strategies we use Seagull’s placement algorithm.

We use the perfect workload forecaster with a 24 hour horizon, and we perform precopying every
hour. We study the decisions made when the level of overload in the data center increases from 10 to
30 percent. Figure 9 presents the average performance of these three strategies when the simulation
is repeated 40 times for each level of overload.

In Figure 9(a), Seagull achieves the lowest precopying cost across all the overload levels. The
benefits of Seagull increase with rising overload levels, and it is able to lower precopying costs by
up to 75%. The naive approach shows the highest cost because there are often applications which
can be precopied more cheaply than those which are expected to become overloaded.

Figure 9(b) shows the total cost including both precopying and cloud bursting. Seagull reduces
the cost by 45% compared to the naive approach because running the overloaded applications in the
public cloud is more costly. SG-Random and Seagull have similar total cost because they select the
same applications to burst.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 T. Guo et al.

BB SG Random
25| | B Naive
= Seagull

B SG Random
N Naive
H Seagull

B SG Random
B Naive
= Seagull

N
S
Total Cost ($)

Precopying Cost ($)
Y

Bursting Data (GB)

@

=)

10%

30% 10% 30% 10% 30%

20% 20% 20%
Oveload level (%) Oveload level (%) Oveload level (%)

(a) Precopying Costs (b) Total Costs (c) Total Data

Fig. 9: Intelligent precopying reduces total cost and data transferred by over 45% compared to the
naive algorithm.

Figure 9(c) shows our intelligent precopying strategy outperforms SG-Random in saving data
that need to be transferred because it has a poor chance of precopying the applications which will be
selected by the placement algorithm. The naive one behaves well because it selects the overloaded
applications for precopying thereby substantially reducing the actual amount of data transferred
during bursting.

6.4.2. With Prediction Errors. We next evaluate the workload predictor’s error on Seagull’s pre-
copying strategy. In our experiment, we introduced three different types of prediction error, i.e.,
overestimate, underestimate and a mix of those two, when predicting the data center overloading.

We use the same setup as the previous experiment. However, during the precopy stage, the work-
load forecaster gives inaccurate predictions on the future resource requirements of all applications.
We consider three different types of prediction error, i.e., overestimating demand, underestimating
demand, and a mix of those two. We vary the accuracy of the predictor, but keep the actual overload
at the time of the cloud burst to be 20%. We repeat the simulation 40 times for each error level.

Figure 10(a) shows the impact of different prediction errors on the monetary cost of precopying.
When overestimating the overload scenario, Seagull thinks more applications will need to be burst
to the cloud, so it precopies more data than necessary. This raises the cost of precopying by 26%
to 147% relative to a perfect predictor as the prediction errors grow from 10% to 50%. On the
other hand, underestimating reduces the precopying cost by 25% to 83% when the prediction errors
increase from 10% to 50%, since Seagull expects fewer applications to be moved.

Figure 10(b) shows the impacts of different predictions on total monetary costs. Since precopying
is a small fraction of the total cloud burst cost, the relative cost only rises by 14% in the worst case.

Figure 10(c) shows the amount of data that must be transferred to perform the cloud burst once
the 20% overloading happens. We need to transfer up to 20.6 data during the cloud bursting when
underestimating the overload level while only 1.12 when overestimating.

Conclusion:In all, when overestimating the overloading, we are paying more for precopying while
reducing the amount of burst data. When underestimating, we need to burst much more data in
exchange for a smaller precopying bill. In practice, we expect a good workload predictor will have
less than 10% error.

6.4.3. Precopying Cost . Our evaluation has demonstrated that precopying can significantly re-
duce burst time with minimal impact on application performance, however, we must also consider
the monetary cost added by precopying. To study this, we consider the results of simulation similar
to that described in the previous section. We cause 30% of the system to become overloaded and
compare Seagull with and without precopying.

In Figure 11, it shows a modest 22% increase in cost and a substantial 95% saving in data trans-
fer by using precopying. Since the migration time largely depends on the amount of data needed
to transfer given the bandwidth, we conclude that our intelligent precopying strategy provides a
reasonable tradeoff between cost and migration time.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A7

F:
-
n

BB Overestimate

EEE Overestimate
. Mixed
0 Underestimate

BB Overestimate

9 Underestimate S0 Underestimate

w
Iy
-

e
2]

=

Normalized Total Cost
w

Normalized Precopy Cost
N N

(-]
Normalized Data Transfer

oH

o
o

10 50 10 50 10 50

20 30 40
Prediction Errors (%)

40 20 30 40
Prediction Errors (%) Prediction Errors (%)

(a) Precopying Costs (b) Total Costs (c) Total Data

Fig. 10: Three types of prediction errors’ impact on the monetary cost and amount of burst data
compared to perfect prediction.

16 100
s
B S 1l L 4
- 80 m 1500 - * -Greedy
s 120 9 ILP
5 60 £ -é’ 1000
O 80 a S
-— o o
] 40 £ o)
5 2 @D 500t
F a0 5
20
o 5 g PO = e o e o —
[} Burst Dot 0 100 200 300 400 500 600 700 800
urst bata Number of Hosts
Fig. 11: Precopying causes a marginal increase in Fig. 12: Scalability of the algorithms.

cost, but a dramatic reduction in burst time.

Conclusion: Seagull saves up to 45% in total cost as compared to other precopying strategies
while saving up to 95% in data transfer cost when compared to cloud bursting without precopying.

6.5. System Scalability

To test the scalability of each algorithm, we executed Seagull’s heuristic placement algorithm as well
as the ILP solver to obtain the solution on simulated data centers with variable numbers of hosts
and applications (assuming that each application is completely packed in a single virtual machine).
We again considered three types of applications as outlined in Table II. We increased the complex-
ity of the application selection problem by increasing the number of hosts and proportionally the
number of applications. We then measure the running time of the algorithms before they report the
final solution. The results are plotted in Figure 12. As the size of the problem increases, the ILP
solution becomes impractical. Seagull relies on its greedy heuristic to make its placement decisions.
While this leads to a non-optimal solution, it makes this multi-resource bin-packing problem more
tractable.

Seagull is able to process data centers of 800 hosts within 30 secs as compared to 7678 secs taken
by the ILP solver. While large data centers may have many more hosts and virtual machines than
this, we believe that Seagull can produce a solution within reasonable time.

6.6. Multiple Overload Scaling

In this section, we show how Seagull deals with simultaneous overload from multiple applications
that require both scale up and scale out strategies. We deploy seven web applications across the
five hosts in our local cluster as shown in Figure 13(a). Two of the applications, B and C, are VMs
running the CloudStone application, which supports replication of its memcached layer and vertical
scaling of other nodes. The other applications are scale up, and run different instances of TPC-W.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 T. Guo et al.

The full details of each application’s characteristics are shown in Figure 13(c). At time t = 12
minutes, both applications A and B become overloaded for a period of ten minutes; later at ¢ = 70
minutes, application B sees a second spike that lasts until the end of the experiment.

Seagull uses the workload forecast information to guide its precopying strategy, and immedi-
ately begins precopying Application A and F with a ten minute interval once the experiment starts.
Throughout the experiment, we use xentop to gather the CPU utilization of Application A and B,
which is illustrated in Figure 13(b), along with annotations indicating where each is located. The
periodic spikes at ten minute intervals indicate the CPU overhead of precopying.

Seagull detects the overload condition expected to begin at ¢ = 12 from A and B’s rising de-
mands. It decides that bursting Applications A and F is the most efficient use of resources; since
these applications have already been precopied, Seagull is able to burst both applications to the
cloud within one minute. Moving A to the cloud allows it to be started with a larger VM (a 4-core
instance), causing its relative CPU consumption to decrease since it now has more resources avail-
able. Application B, running the replicable Cloudstone application, is able to expand its resource
consumption in the local data center by spawning a new two core VM on host 5 using the resources
freed up by Application F.

The applications continue running in this manner and the workload spike subsides. While it would
be possible to immediately move the applications back to the local data center, EC2 charges in
hourly increments, so there is no economic reason to do so. However, Seagull does continue to
perform “backwards precopying” to replicate the state changes occurring to applications A and F in
the cloud to the local data center. At ¢ = 70 minutes, Seagull computes new placement decisions
before the next hour of EC2 charges will begin. Seagull must plan for B’s second workload spike,
so it can only move either A or F back from the cloud. Since both are using the same cloud instance
type, Seagull selects application F to move back to the private data center as it has a slightly higher
cloud cost than A. At the end of the 80 minutes experiment, Application A remains in the cloud to
make space for overloaded Application B.

7. RELATED WORK

Cloud Computing covers a wide range of types of systems; in this work we focus on Infrastructure
as a Service (IaaS) platforms such as Amazon’s Elastic Compute Cloud. Armbrust et al. provide a
survey of cloud computing in [Armbrust et al. 2009], and specifically list “scaling quickly” as one
of the key opportunities in cloud computing. Our work tries to exploit the cloud’s ability to rapidly
obtain resources on-demand to enable rapid scale up of private data centers with minimal cost.

VM placement: VM placement inside a single data center is a well studied research area. This
problem is usually formulated as a multi resource bin packing problem [Coffman et al. 1997] and
different heuristic approaches [Ballani et al. 2011] [Guo et al. 2010] have been proposed to tackle
this general problem in specific areas. Lee et. al. propose a VM placement algorithm with a focus
on MapReduced-based jobs [Lee et al. 2010]. In SecondNet [Guo et al. 2010], the authors come
up with a VM placement to guarantee fair VM bandwidth sharing. In [Rai et al. 2012], the authors
design a specification language, Wrasse, which can also solve the VM placement besides other
general resource allocation problems. In comparison, our work is application agnostic, focuses on
VM placement across multiple data centers, and uses monetary cost of the public data centers as a
metric for making the heuristic decision.

Automated resource management has been an important area of research and product develop-
ment as the scale of data centers has grown beyond the control of system administrators. Research
projects such as [Gulati et al. 2011; Shen et al. 2011; Xiao et al. 2013; Mishra and Sahoo 2011],
automate virtual machine or storage migration to balance the CPU, memory, or I/O loads within a
single data center. These approaches have been adopted by commercial products such as VMWare’s
Distributed Resource Scheduler [VMware DRS]. It is increasingly common for businesses and
service providers to own multiple data centers, so managing resources across data centers is an in-
creasingly important challenge [Rochwerger et al. 2011] [Buyya et al. 2010]. While our work builds
on similar principles, the shift to managing applications across multiple data centers adds new chal-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A:19

Cloudstone C

E i 100 — Application A
H1 i H2 H3 H4 i H5 _5 80 " A B overloaded -~ Application B
|T(;f’2-w i |c1:2 | |c2:2 | |cs:2 | . |T(;:P2-W S 60‘_:'}4 Amazon £G2
_ L. N -~ '] H1,H2,H5
i| [B1:2 g2 | || [Torw || | [Ferw] | [[rerw || S *°
| | | | |] | D:2 | | E:2 | G:2 | a
i] O
{__CloudstoneB ! 0910 20 30 40 50 60 70 80
Time (min)
(@)
(b)
A B C D E F G
Num of VMs 1 2 3 1 1 1 1
Cores) 2,2) (2,2,2) 2 | @ | @ @
Active Disk Size (GB) | (1.2) | (6.84.6) | (4.6,3.2,4.4) | (6.2) | (3.2) | (2.8) | (5.4)
Image Size (GB) (10) | (1212) | (10,10,10) | (10) | (10) | (10) | (10)
Write Rate (MB/min) | (1) (2,2) (1,1,1) (D (1) (@8] (@]

(©)

Fig. 13: (a) The initial set up of local data center. (b) The average CPU utilization of Application
A and B over 80 minutes experiment. (¢) Detail information of each application in the local data
center.

lenges because of limited network bandwidth; Seagull mitigates these issues with its precopying
system that proactively moves data in anticipation of an upcoming cloud burst.

Cloud Bursting was proposed as a way to allow enterprises who already own significant amounts
of IT infrastructure to still make use of public clouds during periods of high loads [Cloudbursting
2008]. Researchers have been investigating the potential economic savings by using cloud bursting
in specific domains such as medical image processing [Kim et al. 2009] and publishing [Kailasam
et al. 2010]. Bicer et. al, study how a data-intensive application can be split across a hybrid cloud
deployment, but their focus is on dividing data between the locations, rather than deciding how mul-
tiple applications should be placed in order to minimize cost [Bicer et al. 2011]. Hybrid clouds have
become a popular service offering for hosting and data center companies, and also have been the
subject of research [Mateescu et al. 2011; Sotomayor et al. 2009]. While this existing work shows
the potential benefits of cloud bursting, to our knowledge there has not yet been comprehensive
work on deciding what applications to run locally or in the cloud.

WAN Migration tools seek to move applications between data center sites with minimal down-
time. Full VM WAN migration techniques such as [VMotion 2009; Nagin et al. 2011; Wood et al.
2011; Bradford et al. 2007] attempt to seamlessly move the memory and storage of a virtual ma-
chine, usually by building upon the existing LAN migration tools included in Xen [Clark et al. 2005]
and VMWare [Nelson et al. 2005]. A recent work on Xen-blanket [Williams et al. 2012] builds a
second layer on top of Xen to homogenize various cloud platforms. Their work relieves the need
to worry about the VM formats of different cloud platforms during the live migration process. Al-
ternatively, storage migration tools such as [Mashtizadeh et al. 2011; Zheng et al. 2011] only focus
on moving the disk state of applications. Since current cloud platforms typically do not support live
VM migration into the cloud, our work focuses only on storage migration. We use a simple rsync-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 T. Guo et al.

based replication scheme, but we note that Seagull could easily be enhanced to use more advanced
migration tools, including support for full VM live migration.

8. CONCLUSIONS

Cloud bursting is a technique to dynamically move applications running in a private data center to
the public cloud to take advantage of additional resources there. In this work we propose Seagull, a
cloud bursting system that automates the decision processes about which applications can be run in
the cloud most efficiently. Seagull uses selective precopying to proactively replicate some applica-
tions from the private data center to the cloud, reducing the migration time of large applications by
orders of magnitude. This allows Seagull to perform agile provisioning of resources across a local
data center and the cloud, resulting in more efficient utilization of local resources while incurring
only minimal expense in the cloud. Our evaluation shows Seagull has reasonable performance in
minimizing costs compared to ILP solution and its scalability is much better. Seagull’s placement
algorithm considers both local re-consolidation opportunities and application cost characteristics,
lowering the total cost of cloud bursting in response to data center overload by 45%. Seagull can
burst applications to the cloud in under three minutes using the precopying algorithm, while incur-
ring only minimal performance overhead.

REFERENCES

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H Katz, Andrew Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. 2009. Above the Clouds: A Berkeley View of Cloud Comput-
ing. Technical Report UCB/EECS-2009-28. EECS Department, University of California, Berkeley. http://www.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

AWSECO 2013. AWS Economics Center. http://aws.amazon.com/economics/. (2013).

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. Towards predictable datacenter networks. In
Proceedings of the ACM SIGCOMM 2011 conference (SIGCOMM ’11). ACM, New York, NY, USA, 242-253.

T. Bicer, D. Chiu, and G. Agrawal. 2011. A Framework for Data-Intensive Computing with Cloud
Bursting. In 2011 IEEE International Conference on Cluster Computing (CLUSTER). 169-177.
DOT : http://dx.doi.org/10.1109/CLUSTER.2011.21

Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald Schioberg. 2007. Live wide-area migration
of virtual machines including local persistent state. In VEE. ACM, San Diego, California, USA, 169-179.
DOT : http://dx.doi.org/10.1145/1254810.1254834

Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. 2010. InterCloud: Utility-Oriented Federation of Cloud Comput-
ing Environments for Scaling of Application Services. In International Conference on Algorithms and Architectures for
Parallel Processing.

Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant Shenoy. 2011. BenchLab: An Open Testbed for
Realistic Benchmarking of Web Applications. In Proc. of 2nd USENIX Conference on Web Application Development
(WebApps).

C. Clark, K. Fraser, S. Hand, J. G Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. 2005. Live migration of virtual
machines. In Proceedings of NSDI.

Cloudbursting 2008. Cloudbursting - Hybrid Application Hosting. http://aws.typepad.com/aws/2008/08/cloudbursting-.html.
(Aug. 2008). http://aws.typepad.com/aws/2008/08/cloudbursting-.html

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. 1997. Approximation algorithms for NP-hard problems. Chapter Ap-
proximation algorithms for bin packing: a survey.

Kathryn A. Dowsland and William B. Dowsland. 1992. Packing problems. European Journal of Operational Research 56, 1
(1992),2 - 14.

Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Waldspurger, and Mustafa Uysal. 2011. Pesto: online storage
performance management in virtualized datacenters. In SOCC (SOCC ’11). ACM, New York, NY, USA, Article 19, 14
pages. DOTI : http://dx.doi.org/10.1145/2038916.2038935

Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yongguang Zhang.
2010. SecondNet: a data center network virtualization architecture with bandwidth guarantees. In Proceedings of the
6th International COnference (Co-NEXT ’10). ACM, New York, NY, USA, Article 15, 12 pages.

J. Hellerstein, F. Zhang, and P. Shahabuddin. 1999. An Approach to Predictive Detection for Service Management. In /EEE
Intl. Conf. on Systems and Network Management.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Cost-aware Cloud Bursting for Enterprise Applications A:21

Sriram Kailasam, Nathan Gnanasambandam, Janakiram Dharanipragada, and Naveen Sharma. 2010. Optimizing Service
Level Agreements for Autonomic Cloud Bursting Schedulers. In Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops (ICPPW ’10). IEEE Computer Society, Washington, DC, USA, 285-294.

Hyunjoo Kim, Manish Parashar, David J. Foran, and Lin Yang. 2009. Investigating the use of autonomic cloudbursts for
high-throughput medical image registration. In GRID. IEEE, 34-41.

Gunho Lee, Niraj Tolia, Parthasarathy Ranganathan, and Randy H. Katz. 2010. Topology-aware resource allocation for data-
intensive workloads. In Proceedings of the first ACM asia-pacific workshop on Workshop on systems (APSys '10). ACM,
New York, NY, USA, 1-6.

Ali Mashtizadeh, Emré Celebi, Tal Garfinkel, and Min Cai. 2011. The design and evolution of live storage migration in
VMware ESX. In USENIX ATC. Berkeley, CA, USA, 14-14. http://dl.acm.org/citation.cfm?id=2002181.2002195
Gabriel Mateescu, Wolfgang Gentzsch, and Calvin J. Ribbens. 2011. Hybrid Computing-Where HPC
meets grid and Cloud Computing. Future Gener. Comput. Syst. 27 (May 2011), 440-453. Issue 5.

DOTI : http://dx.doi.org/10.1016/j.future.2010.11.003

M. Mishra and A. Sahoo. 2011. On Theory of VM Placement: Anomalies in Existing Methodologies and Their Mitigation
Using a Novel Vector Based Approach. In Cloud Computing (CLOUD), 2011 IEEE International Conference on. 275—
282. DOT : http://dx.doi.org/10.1109/CLOUD.2011.38

Kenneth Nagin, David Hadas, Zvi Dubitzky, Alex Glikson, Irit Loy, Benny Rochwerger, and Liran Schour. 2011. Inter-cloud
mobility of virtual machines. In Annual International Conference on Systems and Storage (SYSTOR ’11). ACM, New
York, NY, USA, Article 3, 12 pages. DOT : http://dx.doi.org/10.1145/1987816.1987820

Michael Nelson, Beng-Hong Lim, and Greg Hutchins. 2005. Fast transparent migration for virtual machines. In ATEC ’05:
USENIX ATC. USENIX Association, Berkeley, CA, USA, 25.

ObjectWeb. the ObjectWeb TPC-W implementation. Website. (??77?). http://jmob.objectweb.org/tpcw.html.

Opennebula 2012. The Open Source Toolkit for Data Center Virtualization. (2012). http://www.opennebula.org/

Openstack 2012. openstack: Cloud Software. http://www.openstack.org. (7???). http://www.openstack.org/

Anshul Rai, Ranjita Bhagwan, and Saikat Guha. 2012. Generalized resource allocation for the cloud. In Proceedings of the
Third ACM Symposium on Cloud Computing (SoCC ’12). ACM, New York, NY, USA, Article 15, 12 pages.

S. Ranjan, J. Rolia, H. Fu, and E. Knightly. 2002. QoS-driven Server Migration for Internet Data Centers. In IWQoS. 3-12.

Benny Rochwerger, David Breitgand, Amir Epstein, David Hadas, Irit Loy, Kenneth Nagin, Johan Tordsson, Carmelo
Ragusa, Massimo Villari, Stuart Clayman, Eliezer Levy, Alessandro Maraschini, Philippe Massonet, Henar Munoz,
and Giovanni Toffetti. 2011. Reservoir - When One Cloud Is Not Enough. Computer 44 (2011), 44-51.
DOT : http://dx.doi.org/10.1109/MC.2011.64

Upendra Sharma, P. Shenoy, S. Sahu, and A. Shaikh. 2011. Kingfisher: Cost-aware elasticity in the cloud. In INFOCOM,
2011 Proceedings IEEE. 206-210. DOT : http://dx.doi.org/10.1109/INFCOM.2011.5935016

Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. CloudScale: elastic resource scal-
ing for multi-tenant cloud systems (SOCC ’11). ACM, New York, NY, USA, Article 5, 14 pages.
DOT : http://dx.doi.org/10.1145/2038916.2038921

Piyush Shivam, Adriana Iamnitchi, Aydan R. Yumerefendi, and Jeffrey S. Chase. 2005. Model-Driven Placement of Compute
Tasks and Data in a Networked Utility. /CAC (2005). DOT : http://dx.doi.org/10.1109/ICAC.2005.41

W Sobel, S Subramanyam, A Sucharitakul, J] Nguyen, H Wong, S Patil, A Fox, and D Patterson. 2008. Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web 2.0. In Proc. of Cloud Computing and its Appli-
cations.

B. Sotomayor, R.S. Montero, .M. Llorente, and I. Foster. 2009. Virtual Infrastructure Management in Private and Hybrid
Clouds. Internet Computing, IEEE 13, 5 (sept.-oct. 2009), 14 —22.

Terremark 2012. Study: USA.gov Achieves Cloud Bursting Efficiency Using Terremark Enterprise Cloud.
http://terremark.com. (2012).

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. 2005. An Analytical Model for Multi-tier Internet
Services and Its Applications. In Proceedings of the ACM Sigmetrics Conference, Banff, Canada.

Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and Timothy Wood. 2008. Agile dynamic provi-
sioning of multi-tier Internet applications. ACM Trans. Auton. Adapt. Syst. 3, Article 1 (March 2008), 39 pages. Issue
1.

VDataCenter 2012. VMware: Public & Hybrid Cloud Computing. http://www.vmware.com/solutions/cloud-
computing/public-cloud/products.html. (2012).

VMotion 2009. Virtual Machine Mobility with VMware VMotion and Cisco Data Center Interconnect Technologies.
http://www.cisco.com/en/US/solutions/collateral/ ns340/ns517/ns224/ns836/white_paper_c11-557822.pdf. (2009).

VMware DRS. Resource Management with VMware DRS. http://www.vmware.com/pdf/vmware\ _drs\ _wp.pdf. (??7?).

Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. 2012. The Xen-Blanket: virtualize once, run everywhere. In Pro-
ceedings of the 7th ACM european conference on Computer Systems (EuroSys ’12). 113-126.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 T. Guo et al.

Timothy Wood, K. K. Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe. 2011. CloudNet : Dy-
namic Pooling of Cloud Resources by Live WAN Migration of Virtual Machines. In VEE. 121-132.
DOT : http://dx.doi.org/10.1145/1952682.1952699

Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. 2009. Sandpiper: Black-Box and Gray-Box Re-
source Management For Virtual Machines. Computer Networks: The International Journal of Computer and Telecom-
munications Networking 53, 17 (Dec. 2009). http://portal.acm.org/citation.cfm?id=1663647.1663710

Zhen Xiao, Weijia Song, and Qi Chen. 2013. Dynamic Resource Allocation Using Virtual Machines for Cloud
Computing Environment. IEEE Transactions on Parallel and Distributed Systems 24, 6 (2013), 1107-1117.
DOT : http://dx.doi.org/10.1109/TPDS.2012.283

Y. Zhang, V. Paxson, and S. Shenkar. 2000. The Stationarity of Internet Path Properties: Routing, Loss, and Throughput.
Technical Report. AT&T Center for Internet Research at ICSI, http://www.aciri.org/.

Jie Zheng, Tze Sing Eugene Ng, and Kunwadee Sripanidkulchai. 2011. Workload-aware live storage migration for clouds.
In VEE (VEE ’11). ACM, New York, NY, USA, 133-144. DOT : http://dx.doi.org/10.1145/1952682.1952700

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

