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Abstract—The focus of our work is to design and build a dynamic data distribution system that is coherence-preserving, i.e., the

delivered data must preserve associated coherence requirements (the user-specified bound on tolerable imprecision) and resilient to

failures. To this end, we consider a system in which a set of repositories cooperate with each other and the sources, forming a peer-to-

peer network. In this system, necessary changes are pushed to the users so that they are automatically informed about changes of

interest. We present techniques 1) to determine when to push an update from one repository to another for coherence maintenance,

2) to construct an efficient dissemination tree for propagating changes from sources to cooperating repositories, and 3) to make the

system resilient to failures. An experimental evaluation using real world traces of dynamically changing data demonstrates that

1) careful dissemination of updates through a network of cooperating repositories can substantially lower the cost of coherence

maintenance, 2) unless designed carefully, even push-based systems experience considerable loss in fidelity due to message delays

and processing costs, 3) the computational and communication cost of achieving resiliency can be made to be low, and 4) surprisingly,

adding resiliency can actually improve fidelity even in the absence of failures.

Index Terms—Resiliency, dynamic data dissemination, data coherence, cooperation.
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1 INTRODUCTION

THE Internet and the Web are increasingly used to
disseminate fast changing data such as sensor data,

traffic and weather information, stock prices, sports scores,
and even health monitoring information [18]. These data
items are highly dynamic, i.e., the data changes continuously
and rapidly, streamed in real-time, i.e., new data can be
viewed as being appended to the old or historical data, and
aperiodic, i.e., the time between the updates and the value of
the updates are not known a priori. Increasingly, users are
interested in monitoring such data for online decision
making. The growth of the Internet has made the problem
of managing dynamic data both interesting and challenging.

Resource limitations at a source of dynamic data will

limit the number of users that can be served directly by the

source. A natural solution to this is to have a set of

repositories which replicate the source data and serve it to

geographically closer users. Services like Akamai and IBM’s

edge server technology are exemplars of such networks of

repositories, which aim to provide better services by

shifting most of the work to the edge of the network (closer

to the end users). Although such systems scale quite well,

when the data is changing rapidly, the quality of service at a

repository farther from the data source will deteriorate. In
general, replication can reduce the load on the sources, but
replication of time-varying data introduces new challenges.
Unless updates to the data are carefully disseminated from
sources to repositories (to keep them coherent with the
sources), the communication and computation overheads
involved can result in delays as well as scalability problems,
further contributing to loss of data coherence.

In situations where the data is to be used for online
decision making, users specify the bound on the tolerable
imprecision associated with each requested data item, this
can be viewed as coherence requirement (cr) associated with
the data. The coherence requirements associated with a
time-varying data item depend on the nature of the item
and user tolerances. For example, a user involved in
exploiting exchange disparities in different markets or an
online stock trader may impose stringent coherence
requirements (e.g., the stock price reported should never
be out-of-sync by more than one cent from the actual value),
whereas a casual observer of currency exchange rate
fluctuations or stock prices may be content with a less
stringent coherence requirement. The basic framework
underlying the coherence model is outlined in Section 2.

The focus of our work is to design and build a dynamic
data distribution system that is coherence-preserving, i.e., the
delivered data must preserve associated coherence require-
ments, and resilient, i.e., the system should be resilient to
failures. We consider a system in which the necessary
changes are pushed to the users, i.e., the users are
automatically informed about changes of interest, rather
than each user independently polling the source(s) for
changes of interest. The effectiveness of the system’s
response to users’ requests can then be measured using
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fidelity, which is indicative of degree to which the user’s
coherence needs are satisfied. Contrary to expectations, we
find that push-based systems, unless designed carefully,
can experience considerable loss in fidelity due to commu-
nication delays and processing costs. Addressing this
challenge, even in the presence of failures in the system,
is the goal of this paper.

In this paper, we examine techniques to maintain the
coherence of time-varying data items at a set of repositories.
Each repository is assumed to store a subset of these data
items, each of which has a coherence requirement asso-
ciated with it. A particular focus of our work is to
investigate how repositories can cooperate with each other
and the source to reduce the overheads of coherence
maintenance. To do so, we assume that repositories storing
a particular data item are logically connected to form an
overlay network that we refer to as a dynamic data
dissemination tree (abbreviated as d3t). The source of the
data item forms the root of the d3t. Instead of directly
disseminating changes to a data item to all interested
repositories, the source pushes these changes only to its
children in the d3t (each child is also referred to as a
dependent of its parent). Each repository, in turn, pushes
these changes to its dependent repositories. Dissemination
using the d3t incurs two kinds of overheads:

1. Communication delays. This is the delay incurred in
propagating an update from a repository to a
dependent and includes all communication related
delays, the message processing delays at the source
and destination of a message, and the delays on all
physical links between the two.

2. Computational delays. This is the delay resulting from
the computations performed by a repository to send
an incoming data change to one of its dependents.

The contribution of this paper lies in providing efficient
solutions to the three major issues that need to be solved to
effectively deliver dynamic data with high fidelity in
distributed systems:

1. Filtering of dynamic data in the overlay network.
When disseminating updates to its dependents, a
repository needs to be cognizant of their data and
coherence needs. We show that

a. it is necessary to place repositories with strin-
gent coherence requirements closer to the
source,

b. cooperation amongst repositories—where each
repository pushes updates of data items to other
repositories—helps reduce the overheads for
coherence maintenance, and

c. a repository may have to receive more than the
updates it itself needs so as to meet the
coherence needs of its dependents—even if the
coherence needs of its dependents are less stringent
than its own.

2. Construction of an effective dissemination network
of repositories. The objective is to construct a d3t that
reduces the overheads while meeting the coherence
requirements at all repositories. We develop two

different algorithms to meet this objective. Our first
approach makes decisions—regarding where to
insert a repository in a network —one level at a time,
whereas our second approach examines nodes along
a chosen path to make this decision. We compare the
performance of the two algorithms and show that it is
essential that the d3t be structured so as to balance the
computational and communication costs to achieve high
fidelity.

3. Making the network resilient to failures. Any
algorithm for dynamic data dissemination must
handle failures of repositories as well as the links
connecting the repositories. Our approach is based
on adding back-up parents to a dependent, but of
significance is the design feature that a back-up
parent is asked to deliver data with coherence that is
less stringent than that associated with the parent.
This reduces the overheads of providing resiliency,
yet allows the dependent to determine if the parent
has failed. Upon failure, the back-up parent becomes
an alternative parent. Our measures to add resi-
liency to the dissemination tree result in an interest-
ing and useful side effect: In many of the cases,
adding resiliency improves fidelity even in the absence of
failures.

The rest of the paper is structured as follows: The basic
framework underlying the coherence model is outlined in
Section 2. We present efficient methods for data filtering
based on coherence requirements in Section 3. Section 4
discusses an algorithm for constructing an overlay network
for dynamic data dissemination followed by the experi-
mental evaluation in Section 5. Section 6 presents another
algorithm to build the network and compares it with that
presented in Section 4. Techniques to add resiliency to the
network and their performance evaluation are given in
Section 7. Section 8 presents related work, and Section 9
presents our conclusions and directions for future work.

2 PROBLEM FORMULATION AND BACKGROUND

As shown in Fig. 1a, we build a network of sources and
repositories with users connecting to the repositories, and
repositories deriving their data needs from users’ data and
coherence requirements. Coherence requirement (cu) asso-
ciated with a data item denotes the maximum permissible
deviation of the user (u)’s view from the value of data d at
the source. Generally, cu can be specified in units of time

(e.g., the item should never be out-of-sync by more than
5 minutes) or value (e.g., a stock price should never be out-
of-sync by more than ten cents). In this paper, we only
consider coherence requirements specified in terms of the
value of the object; maintaining coherence requirements in
units of time is a simpler problem that requires less
sophisticated techniques (e.g., push every 5 minutes). Each
data item in the repository from which a user obtains data
must be refreshed in such a way that the coherence
requirements are maintained. Formally, let SxðtÞ and UxðtÞ
denote the value of a data item x at the source and the user,
respectively, at time t (see Fig. 1b). Then, to maintain
coherence, we should have jUxðtÞ � SxðtÞj � cu.
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The issue of what user should connect to which
repository is a separate problem and is not addressed in
this paper. We assume that the repositories transmit the
data updates to the users with negligible delays and, hence,
we focus on maintaining coherence at the repositories, i.e.,
jRxðtÞ � SxðtÞj � cu. Empirically, fidelity f observed by a
user can be defined to be the total length of time for which
the above inequality holds, normalized by the total length
of the observation. The goal of a good coherence mechanism
is to provide high fidelity at low cost. Although Fig. 1b
shows a single data repository, the coherence requirements
are no different if there are multiple data repositories acting
as intermediaries between the source and the end-user.

For each data item, we build a logical overlay network,
as described below. Consider a data item x. We assume that
x is served by only one source. It is possible to extend the
algorithm to deal with multiple sources, but for simplicity,
we do not consider this case here. Let repositories
R1; . . . ; Rn be interested in x. The source directly serves
some of these repositories. These repositories in turn serve a
subset of the remaining repositories such that the resulting
network is a tree rooted at the source and consists of
repositories R1; ; Rn. We refer to this tree as the dynamic data
dissemination tree, or d3t, for x. The children of a node in the
tree are also called the dependents of the node. Thus, a
repository serves not only its users but also its dependent
repositories. We assume that the architecture uses the push
approach for disseminating updates—the source pushes
updates to its dependents in the d3t, which, in turn, push
these changes to their dependents and the end-users. Not
every update needs to be pushed to a dependent—only those
updates necessary to maintain the coherence requirements at a
dependent need to be pushed. To understand when an update
should be pushed, let cp and cq denote the coherence
requirements of data item x at repositories P and Q,
respectively. Suppose P serves Q. To effectively dissemi-
nate updates to its dependents, the coherence requirement
at a repository should be at least as stringent as those of its
dependents:

cp � cq: ð1Þ

Given the coherence requirement of each repository and
assuming that the above condition holds for all nodes and
their dependents in the d3t, we now derive the condition

that must be satisfied during the dissemination of updates.
Let xs

i ; x
s
iþ1; x

s
iþ2; . . .x

s
iþn . . . denote the sequence of updates

to a data item x at the source S. This is the data stream x.
Let xp

j ; x
p
jþ1; . . . denote the sequence of updates received by

a dependent repository P . Let xp
j correspond to update xs

i at
the source and let xp

jþ1 correspond to update xsiþk where
k � 1. Then, 8m; 1 � m � k� 1; jxs

iþm � xs
i j < cp.

Thus, as long as the magnitude of the difference between
last disseminated value and the current value is less than
the coherence requirement, the current update is not
disseminated (only updates that exceed the coherence
tolerance cp are disseminated). In other words, the
repository P sees only a “projection” of the sequence of
updates seen at the source. Generalizing, given a d3t, each
downstream repository sees only a projection of the update
sequence seen by its predecessor.

Dissemination techniques should construct these projec-
tions efficiently because, even if all the necessary updates
are propagated by a repository to its dependents due to the
nonzero computational and communication delays in real-
world networks and systems, data at a dependent will
experience loss of coherence. Thus, it is impossible to
achieve 100 percent fidelity in practice, even in expensive
dedicated networks. The goal of our cooperative repository
architecture is to achieve high fidelity in real-world settings
where computational and communication overheads are
nonnegligible.

3 FILTERING DATA AS IT IS DISSEMINATED

Assuming that a d3t has been constructed for data item x,
consider a source S that disseminates x to a repository P ,
which, in turn, disseminates x to a dependent repository Q.
In this section, we answer the following question: When
should a repository/source forward an update to its
dependent?

Recall from (1) that to effectively disseminate updates,
we require that the coherence requirement at P should be at
least as stringent as that of Q.

Let xs
i ; x

s
iþ1; x

s
iþ2 . . . denote a sequence of updates to x

at the source S. Let xp
j ; x

p
jþ1; x

p
jþ2 . . . denote the updates

received by P and xq
k; x

q
kþ1; x

q
kþ2 . . . denote the updates

received by Q. Since cp � cq, the set of updates received by
Q is a subset of that received at P , which, in turn, is a subset
of unique data values at the source. Specifically, an update
xpj received by P is forwarded to Q if

j xp
j � xq

k j � cq; ð2Þ

where xq
k denotes the previous update received by Q.

Intuitively, (2) indicates that any update that violates the
coherence requirements of Q is forwarded to Q. We now
show that this is a necessary but not sufficient condition for
maintaining coherence at Q. Suppose xs

i , xp
j , and xq

k

represent the value of x at S, P , and Q, respectively. Let
the next update at S be xs

iþ1 such that

j xs
iþ1 � xp

j j < cp; ð3Þ

j xs
iþ1 � xq

k j � cq: ð4Þ
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Thus, the next update is of interest to repository Q but

not to P . Since S is logically connected only to P , if S does

not disseminate this update to P , then Q will miss this

update (causing a violation of Q’s coherence requirement).

Fig. 2 provides an example of this situation. Thus, even

under ideal conditions of zero processing and communica-

tion delays, a dissemination technique that uses solely (2) to

disseminate updates might not provide 100 percent fidelity

(indicating (2) is not a sufficient condition to maintain

coherence). Hence, dissemination algorithms need to be

developed carefully to avoid such a missed updates problem.
Next, we present two approaches to address this issue

and also examine the entailed overheads.

3.1 Repository-Based (Distributed) Approach

The missed updates problem described earlier occurs when

an update xs
iþ1, where xs

i < xs
iþ1 < xs

i þ cp, satisfies both (3)

and (4). From these equations, we get,

j xs
iþ1 � xp

j j � j xs
iþ1 � xq

k j < cp � cq: ð5Þ

Also,

j xp
j � xq

k j < cq: ð6Þ

Let us consider the following cases for (5):

Case 1. Let xsiþ1 > xp
j and xs

iþ1 > xqk. In this case, it is trivial

to see that (5) reduces to:

cq � j xp
j � xq

k j < cp: ð7Þ

Similarly for the case of xs
iþ1 < xp

j and xs
iþ1 < xq

k.

Case 2. Let xs
iþ1 > xpj and xs

iþ1 < xq
k. The above condition can

be combined into

xq
k > xs

iþ1 > xp
j : ð8Þ

Now from (8), (3), and (4), we get xq
k � xpj > cq which is

in contradiction with (6). Hence, this case is not possible at

all. We can similarly argue for the last case where xs
iþ1 < xp

j

and xs
iþ1 > xq

k. Hence, we can see that (5) reduces to (7).

Equation (7) represents the additional condition that

must be checked by any repository P to see if an update

should be disseminated to its dependent Q. Note that this

applies even to the source, i.e., when P is the source. Thus,

the dissemination technique propagates an update xp
j

received by P to dependent Q if either (2) or (7) is satisfied.

In the example illustrated in Fig. 2, such a technique would

propagate the update corresponding to value 1.4 from P to

Q (since it satisfies (7)). Consequently, the subsequent

increase in value to 1.5 does not result in a violation at Q.

Note that the update of 1.4 is not strictly required as per the

coherence requirement of Q (2), but is essential to prevent

the missed updates problem.
It is easy to show that if a repository makes dissemina-

tion decisions based on (2) and (7), then 100 percent fidelity
will result in the absence of delays: In addition to P and Q,
consider repository R such that P , Q, and R form a chain. If
(2) and (7) hold between P and Q, as well as between Q and
R, they will also apply between P and R. Generalizing, it
will apply between source S and any repository R. Given
that S has complete coherence, cs ¼ 0 and the claim that the
two equations guarantee 100 percent fidelity for all
repositories follows.

3.2 Source-Based (Centralized) Approach

In this approach, the source maintains a list of all the unique
coherence requirements for a data item x specified by
various repositories. For each such coherence requirement,
the source also tracks the last update disseminated for that
coherence requirement. Upon a new update, the source
examines for each unique coherence requirement c the last
update sent for that c. It determines all cs that are violated
by the update. The update is tagged by the maximum such
coherence requirement c max and the tagged update is then
disseminated through the d3t. The source also records this
data value as the last update sent for all cs that are less than
or equal to c max.

Each repository receiving the update forwards it to all
dependents that 1) are interested in the data item, and
2) have a coherence requirement less than or equal to the
tagged value. As sketched below, this filtering algorithm
achieves a fidelity of 100 percent (in the absence of delays).

Consider a data item x with a value of v. Let the
coherence requirement at repository P be c. Suppose that an
update causes the value of x to change to v0. If jv� v0j < c,
then clearly the algorithm works (since no action is
necessary for P ). Let jv� v0j � c. Then, the coherence
requirement has been violated for c. Hence, an update with
the new value v0 is tagged with c0 � c and disseminated
through the d3t. Consider the path from the source to
repository P . As per (1), the coherence requirement for
every repository on this path is at least c. Consequently,
every repository on this path receives the update and
disseminates it to its dependent, until it reaches P . Thus, P
receives every update that exceeds its coherence require-
ment, resulting in a fidelity of 100 percent. Since this
argument holds for any repository P , the approach can
achieve perfect fidelity at all repositories in the absence of
communication and computational delays.
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We now discuss the overheads of this approach. Since
this approach disseminates updates only when necessary, it
makes efficient use of the communication resources. In this
algorithm, the source finds the maximum coherence value,
if any, affected by an update. A large number of unique c
values can result in large computational and space over-
heads at the source. This may affect the scalability of the
source as compared to the distributed repository based
filtering approach. We study this issue in Section 5 where
we evaluate the overheads with real-world dynamic data.

4 WHAT SHOULD THE LOGICAL STRUCTURE OF THE

d3g BE?

In this section, we describe an algorithm to build the
overlay network. Initially, the overlay network consists of a
set of sources S1; . . . ; Sn. The repositories are then inserted
into the network, one by one. For simplicity, we describe the
algorithm assuming the following scenario: When a
repository Q wishes to enter the network, it specifies the
list of data items of interest, their c values, and it’s degree of
cooperation. By degree of cooperation, we mean the
maximum number of dependents the repository is willing
to serve. If a repository’s data needs change or its data
coherence needs change, then to handle the changed
requirements, the algorithm is reapplied. We do not go
into the details of this step in this paper.

Our algorithm constructs a single dynamic data dis-
semination graph, d3g, during a single traversal of the
repository network starting with the sources S1; . . . ; Sn. For
any particular data item x, the d3g reduces to a tree (i.e., the
d3t) that consists of the paths along which an update to x is
disseminated. The d3g is the union of the d3ts of the data
items of interest.

We call our algorithm LeLA (Level by Level Algorithm)
because it looks for a position for Q in the current d3g, level
by level. The sources are at level 0, the repositories to which
the sources disseminate data are in level 1, the dependents
of repositories at level l are at level lþ 1, and so on.

Starting at level 0, repositories at the current level are
examined for their suitability to serve the new repository Q,
that is, whether Q can become the dependent of a set of
repositories at that level. This decision is made by a
specially designated load controller node at each level. One
of the sources Si vacuously serves as the load controller for
level 0. This load controller examines if Q can be served by
the sources, if not, the request is passed to load-controller of
the next level.

The function of the load controller at a level l is to find a

set of suitable parent repositories, at that level to serve the

data needs of Q. For each repository in its level, the load

controller calculates a preference factor. The smaller this

factor, the more preferred the repository is to be a parent of

Q. We will explain the calculation of the preference factor

shortly. For now, let us assume that this factor has been

calculated for each repository at level l. We consider all

repositories with preference factor within 5 percent of the

smallest preference factor for the current level as potential

parents. This allows multiple repositories to become parents

of Q, each serving a different subset of data needed by Q. A

potential parent P can serve a data item x to Q, if both Q

and P are interested in x and if the coherence requirement

of P for x is at least as stringent as that of Q. If more than

one repository can serve a data item x to Q, then the more

preferred among these is asked to serve x to Q.

It is quite likely that Q might want some data items, say,

xi; . . . ; xk, which are not served by any of the potential

parents. The most preferred repository P is made to serve

xi; . . . ; xk to Q. This process of augmenting a parent’s data

requirements—to serve the needs of a new child—can have

a cascading effect: For each of these data items, P checks if

any of its parents are serving it and, if so, requests the

parent for service, else it randomly selects one of its parents

and asks it to service the data item to P at the coherence

required by Q. This is continued all the way up the d3g until

there is a path from the source to Q for those data items.
The following factors are used to determine the pre-

ference factor of a node:

1. Data Availability Factor. The number of data items
that a parent can serve Q, with its current data and
coherence requirement.

2. Computational Delay Factor. The larger the computa-
tional delay incurred at a parent P to disseminate a
data change to its dependents, the less preferred it is.
We approximate this delay by the number of
dependents P has: On an average, more the depen-
dents P has, greater will be the computational delays
encountered by Q to get a data update from P .

3. Communication Delay Factor. Parents which have a
large communication delay withQ are less preferred.

Since we want to choose parents such that the delays are
low and the data availability is high, we calculate the
preference factor as:

communication delayðP;QÞ � number DependentsðP Þ
number of data items P can serve Q

:

A repository is considered as a candidate for becoming a

parent only if the number of dependents currently served by

it is smaller than its degree of cooperation. The degree of

cooperation offered by a repository P is its maximum fan out

in the d3g. As long as there are repositories with less

dependents than the degree of cooperation specified, the

load controllerwill find suitable parents from its level. To this

end, a load controller’s view of a repository at its level is

updated whenever a new repository becomes its dependent.

If all of the repositories have as many dependents as the

degree of cooperation, the load controller passes the request

to the load controller of the next level.

4.1 How Much Should a Repository Cooperate?

We saw that each repository that requests insertion into the

cooperative repository network, indicates how many

dependents it is willing to support, namely, its degree of

cooperation. In this section, we argue the need to

judiciously choose the degree of cooperation and present

a heuristic to do so.
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A high degree of offered cooperation implies that a
repository is willing to take on increased responsibilities,
which can help reduce source overload and potentially
improve fidelity. But, a repository offering a high degree of
cooperation can also indirectly lead to a loss in fidelity—it
may just transfer the source load onto itself. A greater
degree of cooperation increases the computational delay but
reduces the end-to-end network delay (by virtue of
reducing the path length from the source to the farthest
repository). On the other hand, a small degree of coopera-
tion reduces the computational delay at a repository but
increases the end-to-end network delays. In one extreme
case, if the degree of cooperation is reduced to one, the d3t

becomes a linear chain of repositories with a large network
delay. The other extreme results in the source serving all the
repositories resulting in large computational delays. To
maximize fidelity, the d3t should be constructed such that
the sum of two delay components is minimized.

As shown in Fig. 3a, for a given set of repositories, the
variation in the (loss of) fidelity with increasing degree of
offered cooperation exhibits a U-shaped curve. The left end
of the x-axis corresponds to the d3t being a chain and the
right end to the case where a source directly disseminates
updates to all its dependents. This curve portrays the
results for different values of a parameter T—which
encodes the stringency of the overall coherence require-
ments of repositories. (Section 5 presents details of how
these curves were derived.) For now, it suffices to know that
T ¼ 100% signifies that all repositories have very stringent
coherence requirements. As we can see from the plots,
except when repositories do not have stringent coherence
requirements, the choice of the degree of cooperation
offered does make a difference on the achieved fidelity.

The point where the loss in fidelity is minimized

depends on the minimum total network and computa-

tional delays incurred by the d3t. In the falling part of the

U-shaped curve, the communication delays dominate and

in the rising part, the computational delays dominate. The

figure shows that arbitrarily increasing the degree of

cooperation can, in fact, be detrimental to fidelity. Hence, in

a system where communication delays dominate, it is

prudent to use a high degree of cooperation. On the other

hand, if computational delays dominate, then a small

degree of cooperation should be chosen. In other words,

the degree of cooperation should be directly proportional

to the communication delays and inversely proportional

to the computational delays. This results in the following

heuristic to compute the degree of cooperation:

min

�
1

C
� average comm delay

average comp delay
;

offered degree of cooperation

�
;

ð9Þ

where average comm delay and average comp delay denote

the average communication delay from one repository to

another and the average computational delay in dissemi-

nating an update from one repository to its dependent,

respectively. The above formula assumes that, on average,

only C% of the dependents of a node would be interested in

an update. Thus, the above formula allows us to set the

degree of cooperation depending on the expected over-

heads. In Section 5.2, we study the effectiveness of this

formula.

5 EXPERIMENTS AND RESULTS

In this section, we demonstrate the efficacy of our
techniques through an experimental evaluation. In what
follows, we first present the experimental methodology and
then the experimental results.

Traces—Collection Procedure and Characteristics. The

performance characteristics of our solution are investigated

using real-world stock price streams as exemplars of

dynamic data. The presented results are based on stock

price traces (i.e., history of stock prices) obtained by

continuously polling http://finance.yahoo.com. We col-

lected 1,000 traces making sure that the corresponding

stocks did see some trading during that day. The details of

some of the traces are listed in the table below to suggest the

characteristics of the traces used. (Min and Max refer to the

minimum and maximum prices observed in the 10,000 va-

lues polled during the indicated Time Interval on the given

Date in Jan./Feb. 2002.) As we can see, we were able to

obtain a new data value approximately once per second.
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Since stock prices rarely change faster than once per second,

the traces can be considered to be “real-time” traces.

Repositories—Data, Coherence, and Cooperation Char-

acteristics. We simulated the situation where all reposi-
tories accessed data kept at one or more sources. Each
repository requests a subset of data items, with a particular
data item chosen with 50 percent probability. A coherence
requirement c is associated with each of the chosen data
items. We use different mixes of data coherence. Specifi-
cally, the cs associated with data in a repository are a mix of
stringent tolerances (varying from 0.01 to 0.05) and less
stringent tolerances (varying from 0.5 to 0.99). At each
repository, T% of the data items have stringent coherence
requirements (the remaining ð100� T Þ%, of data items have
less stringent coherence requirements). We also present
results where the data item chosen for a repository follows a
Zipf distribution. This simulates a situation where some of
the data items served by each server are needed by almost
all the repositories, i.e., they are highly popular.

Physical Network—Topology and Delays. The physical
network consists of nodes (routers and repositories) and
links. The underlying router topology was generated using
BRITE (www.cs.bu.edu/brite). Once the router topology
was generated, we randomly placed the repositories and
the sources in the same plane as that of the routers and
connected them to the closest router. For each repository,
the set of data items of interest is first generated and then
coherencies are chosen from the desired range depending
on the value of T .

For our performance measurements, we used a network
topology consisting of 600 routers, 100 repositories, and
four servers. The number of data items that a server was
servicing was varied from 25 to 250, i.e, the total number of
data items served by all the servers was varied from 100 to
1; 000 (corresponding, say, to the most traded 1,000 stocks in
a market). Also, T , the parameter that adjusts the data
coherence mix, was varied from 0 to 100. Each data item is
served by only one source.

Node-node communication delays are derived from a
heavy tailed Pareto [22] distribution: x ! 1

x
1
�
þ x1, where � is

given by �xx
�xx�1 , �xx being the mean and x1 is the minimum delay

a link can have. �xx was set to 1.5 ms (milli secs) and x1 was
0.2 ms. As a result, the average nominal node-node delay in
our networks was around 20-30 ms. This is lower than the
delays reported based on measurements done on the
Internet [8]. We also present the results obtained at higher
link delays.

A packet (containing a data update) which comes to a
repository is first queued. The repository then checks which
of its dependents are interested in the update and for the
interested dependents, it pushes this update to them.
Queuing delay is the delay encountered by the packet
while it is waiting in the queue to be processed by the node.
Checking delay is the delay experienced when the
repository is checking if a change is of interest to a
dependent. Depending on the nature of the queries, this
delay can be short for a simple check to the tune of a few
tens of milliseconds for some complex query processing [6],
[16]. We derive the checking delay for each data item for
each repository from a heavy tailed Pareto distribution
where �xx was 5 ms and x1 was 1 ms. The average checking
delay was around 4 ms. The pushing delay was also
derived using a Pareto distribution where �xx was 1 ms and
x1 was 0.125ms. We also experimented with other check
and push delays. To model enterprise class source servers,
computational overheads for the sources were set to
25 percent of those of the repositories.

Simulation Procedure. After generating the physical
network topology, we generate the topology of the d3t using
the technique discussed in Section 4. The simulation of data
dissemination is then done, using the algorithms discussed
in Section 3.

Metrics. The key metric for our experiments is the loss
in fidelity of data. Recall from Section 2 that fidelity is the
degree to which a user’s coherence requirements are met
and is measured as the total length of time for which the
inequality jRðtÞ � SðtÞj � c holds (normalized by the total
length of the observation). The fidelity of a repository is
the mean fidelity over all data items stored at that
repository, while the overall fidelity of the system is the
mean fidelity of all repositories. The loss in fidelity is
simply ð100� fidelityÞ%. All the experiments were run
multiple times to obtain a 90 percent confidence interval
whose width was 10 percent of the mean.

5.1 Experimental Results

5.1.1 Baseline Results—With and Without Cooperation

Our first experiment examines the efficacy of the d3t
construction algorithm LeLA. We used the source-based
algorithm as the baseline data filtering algorithm. For seven
different T values, we vary the degree of cooperation
offered from 1 to 100 and measure the efficacy of the
resulting d3t in providing good fidelity. Note that in the
presence of the nonzero communication delays, the
structure of the d3t has a significant impact on fidelity.
The larger the end-to-end delay, the greater the loss in
fidelity. Fig. 3a shows that there is a significant loss of
fidelity at low values for the degree of cooperation. As the
number of allowable dependents of a repository (i.e., the
maximum degree of cooperation offered) is increased, the
loss in fidelity decreases to a minimum and then starts
increasing again. This is because when the number of
permitted dependents is large, the source serves most
repositories directly and the d3t effectively reduces to a one-
level tree with most repositories becoming a direct
dependent of the source. Note also that in Fig. 3a, as the
fraction of data items with stringent coherence tolerances
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decreases, the gradient of the loss in fidelity also decreases.
Our experiments showed that if the source is entrusted with
the task of disseminating updates directly to repositories,
then there is a loss in fidelity, regardless of other system
parameters. When the number of data items to be handled
is large, the computational delays at the source will
adversely affect the scalability of the source. This effect
will be pronounced when all repositories desire their data at
high coherence (as indicated by the T ¼ 100% graph).

5.1.2 Improvement in Fidelity When Coherence

Requirements are Used to Filter Updates

In this section, to demonstrate that to achieve high fidelity
only updates of interest should be disseminated by a
repository to its dependent, we compare our approach to a
system where all updates to a data item are disseminated to
repositories interested in that data item. Such a system is
emulated by simply using a very stringent coherence
tolerance (T ¼ 100%) causing all updates to be dissemi-
nated. We compare this system to one where (some of) the
coherence requirements are not stringent (T < 100%). Less
stringent cs result in filtering and selective forwarding of
updates.

As can be seen from Fig. 3a, the approach that
disseminate all updates (corresponding to T ¼ 100%),
results in worse fidelity across the complete range of
offered values of the degree of cooperation. This is because
the latter approach disseminates more messages, which
increases the network overheads as well as computational
delays at repositories, resulting in greater loss in fidelity. In
contrast, intelligent filtering and selective dissemination of
updates based on data’s coherence requirements can reduce
overheads and improve fidelity.

We also compared the performance of the centralized
and distributed filtering algorithms presented in Section 3.
Our results (not shown here) show that 1) with the
centralized filtering approach, the source does nearly
50 percent more checks of incoming data updates to
determine if the data updates needs to be disseminated to
its dependents, and 2) both approaches send around the
same number of messages through the system and as
discussed in Section 3, both approaches guarantee 100 per-
cent fidelity. So, the distributed approach is preferable.

These results clearly show that, as long as there is some
data with stringent coherence requirements, it is important
for repositories to cooperate with one another to improve
fidelity. Moreover, it is inappropriate to use a very large
number of resources toward cooperation. We study the
effect of setting the “optimal” level of cooperation in the
next section.

5.2 Effect of Controlled Cooperation on Fidelity

We repeat the scenario whose results were depicted in
Fig. 3a, but with the degree of cooperation chosen as per (9).
That is, irrespective of how many cooperative resources a
node has, (9) limits the number of resources exploited. As
shown in Fig. 3b, the behavior becomes an L-shaped curve,
that is, after the limit, loss of fidelity stabilizes.

With controlled cooperation in effect, we studied the
impact of communication and computational delays on
fidelity. The results [24] show that we can counter the effect

of large delays in the system by adjusting the degree of

cooperation as per (9). We studied the sensitivity of our

results to the constantC.We ran the experiments on different

traces for 100 data items to determine the sensitivity ofC to a

chosen trace. In general, the resulting fidelity is insensitive to

the value ofC ifC is in the range 20� 50. Variation in fidelity

loss in such cases is only around 1 percent. In general, the

results also show that, using our approach, high fidelity can

be obtained even if a repository incurs large computation

costs (example, if we extend our approach to execute general

continuous queries [6]) or when data sizes are large, inwhich

case the communication delays will be larger.
This clearly demonstrates the benefits of choosing the

degree of cooperation based on system overheads for

providing high fidelity. We performed some sensitivity

experiments which are presented in [24]. Our experiments

indicate that the choice of degree of cooperation has a larger

impact on performance than the specific formula used to

calculate the preference factor.

5.3 Scalability of LeLA

We studied the effect of increasing the number of

repositories on fidelity in [24]. We observed that, even

when the number of repositories grew from 100 (for the

base case) to 300 (and with that the total number of nodes in

the system grows from 700 to 2,100 nodes), the increase in

the loss in fidelity with controlled cooperation was

observed to be less than 5 percent.
However, when we increased the number of data items

served by the servers was increased and, hence, the number

of data items required by a repository, the loss in fidelity

increased considerably, even with controlled cooperation.

Fig. 4 shows the performance of LeLA with controlled

cooperation with increasing number of data items. As can

be seen in the graph, for T ¼ 80% and 1,000 data items, the

loss in fidelity is almost 8 percent. (The curves marked

DiTA will be explained in the next section.) In LeLA, if a

repository with loose coherence requirements becomes a

parent of a repository with stringent coherence require-

ments, it will have to process many more packets than it

needs and this, in turn, will also increase the delays

experienced in the system. To overcome this, repositories

with stringent coherence requirements should be kept

closer (at a smaller depth) to the source. Next, we describe

an algorithm that does this.
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6 DITA: DATA ITEM AT A TIME ALGORITHM

In DiTA, repositories with more stringent coherence
requirements are placed closer to the source in the network.
As mentioned earlier, the motivation is that such reposi-
tories will in most cases get more updates than those with
looser coherence requirements. By placing them closer to
the source, we can reduce the number of messages in the
system and improve fidelity. Since a repository will
typically need multiple data items, each with a different
coherence requirement, we build a d3t for each data item.
The position of a repository in a d3t will be governed by its
coherence needs for that data item. When multiple data
items are considered, each physical repository can be seen
as cooperating with other repositories in the physical
network, forming a peer-to-peer relationship.

As with LeLA, we do not want to overload a repository;
consequently, we place a limit on the number of unique
< child; data item > pairs that it can serve. We assume in
DiTA that if a repository requests n data items, it has the
resources to have at least n unique pairs associated with it.
If a repository is currently serving less than this fixed
number, then we say that the repository has the resources to
serve a new dependent. Thus, DiTA has a built-in limit on
the resources that a repository offers toward cooperation.

A repository R interested in data item x requests the
source of x for insertion. When the source gets the request,
it checks if it has enough resources to serve x to R. If it has
the resources or if the d3t consists of only one node, i.e., the
source, R is made a child of the source in the d3t for x. If the
source does not have the resources, as described next, it
determines the most suitable subtree rooted at its children
for the insertion of R. Each repository P in a d3t maintains
the least stringent coherence requirement for that data item
at each level in the subtree rooted at P . Every time a new
node is inserted in the d3t, we update the data structures at
all its ancestors if its coherence requirement is the least
stringent in its level. This information is used by P to
determine the most suitable subtree rooted at its children
for the insertion of R.

The subtree is chosen such that the level of R in the d3t is
the smallest possible and that communication delays
between R and its parent are small. This is recursively
applied to select subtrees in the subtree until we reach a
node Q such that

1. Q has data that is stringent enough to meet R’s
requirements and Q has the resources to serve R. In
this case, R is made the dependent of Q.

2. Coherence requirement of Q is less stringent than R.
In this case, R pushes Q down in the subtree. It
replaces Q. The parent of Q now serves R and R in
turn serves Q. R also serves as many dependents of
Q as it can.

The motivation behind this replacement technique is to get
a d3t where repositories with more stringent coherencies
serve repositories with loose coherencies.

We refer to the above algorithm as Data-item-at-a-Time-
Algorithm (DiTA). DiTA requires very little bookkeeping
and, experimental results, discussed next, show that it

indeed produces d3ts that deliver data with high fidelity,
and is almost an order of magnitude better than LeLA.

6.1 Comparison: DiTA versus LeLA

We can clearly see from Fig. 4 that DiTA does much better
than LeLA. Specifically, for T ¼ 80%, whereas DiTA has
around 1 percent loss of fidelity, LeLA has between 1 and
8 percent loss. For T ¼ 20%, the loss for DiTA is lower than
that of LeLA. In DiTA, a parent serves one data item to a
child on an average whereas in LeLA, a parent can serve
many more items to a single child. If we take the number of
unique < child; data item > pairs to be the fanout of a node,
then the average fan out in LeLA is higher. This amounts to
less work done at a node in DiTA and this is a primary
contributor to DiTA’s superior performance.

Since each node in DiTA does less work than its
counterpart in LeLA, the side-effect of this is that the height
of the dissemination tree in DiTA is expected to be more
than that in LeLA. Thus, only when link delays dominate,
can LeLA be expected to have an edge. This can be seen for
a smaller number of data items, e.g., 100, where DiTA
shows a higher loss in fidelity. In DiTA, the bound placed
on the number of data items that are served by a repository
increases with the increase in the number of data items
needed by the repository. For a smaller number of data
items, e.g., 100, the computational delays experienced by
the system are small leading to dominance of link delays
and, hence, an increased loss in fidelity. We also experi-
mented with varying link and computational delays in [25].
We found that the behavior of LeLA was better (by just 1.5
percent) than that of DiTA for very high link delays
(average 110ms) and for negligible computational delays
(0:5 ms). For all other delays, DiTA does substantially better
than LeLA (difference in loss in fidelity is 1-3 percent).
Fortunately, the high link delays we experimented with are
not very common on the internet [8], and, hence, DiTA is
preferable in practice.

7 ENHANCING THE RESILIENCY OF THE

REPOSITORY NETWORK

Since dynamic data is increasingly used in online decision
making, there is a need to have fault tolerant dynamic
dissemination systems. Two classical approaches for fault
tolerance are to have either active backups or passive
backups. The latter takes less time to deal with a failure but
increases the normal load on the system. In our case, the
increased load can, in turn, lead to loss of fidelity. Clearly,
we need to carefully balance these trade offs: fidelity loss
incurred upon failure should be low, but the fault-tolerance
mechanism should not degrade normal operation. We
achieve this compromise by using active back-up parents,
so that the resulting overheads do not lead to loss of fidelity
during normal operations—the back-up parent serves data
with a coherence > c.

Let P serve data item d to Q. Q wants the data item at
coherence c. Let B be the back-up parent serving Q at cb.
Once we fix the coherence cb at which B serves a dependent
Q, we can calculate the expected number of updates lost in
case of a failure assuming that data changes as a random
walk on a line. (If all changes are less than cb, thenwewill not
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knowwhen P fails. A possible embellishment to address this
is to make P send periodic “I am alive” messages.)

Once P fails, Q requests B to serve the data item at c.
Once P recovers from the failure, Q requests B to serve the
data item at cb. Note that this simple approach continues to
provide data, albeit with a lower coherence, to a dependent
even when a parent fails. We now elaborate upon the choice
of a) the coherence associated with the back-up parent, and
b) the back-up parent itself.

7.1 Choosing Coherence of Back-up Parent Using a
Probabilistic Model

For the sake of simplicity, we set cb, the coherence
maintained by the back-up parent, as a multiple of c, i.e.,
cb ¼ k � c. The choice of k is important as it will decide how
many updates will be missed on average in case of failure of
P . If k is small and, in particular, if k ¼ 1, then both the
parent and the back-up parent will send all updates of
interest to the child and we will incur high computational
and communication overheads. If k is set at a high value, we
might miss a large number of changes. Hence, it is
necessary to find out what value to set k as. This depends
on the acceptable overheads imposed on the back-up parent
and the acceptable number of missed messages. To
calculate the number of missed messages, we have two
options: 1) observe sample runs, or 2) develop an analytical
model. We present a technique to analytically calculate the
expected number of updates missed as a function of k. To
simplify the treatment, we assume that the data values
change in either direction (i.e., increase or decrease) with
uniform probability. No assumptions are made about the
unit of change or the time taken for a change.

Let k ¼ 2. Now, suppose P fails. This failure is detected
when Q gets two successive messages from B without
getting a message from P in between. Now, we calculate the
expected number of updates missed from the time of P ’s
failure until an update is received from B plus the expected

number of updates missed until the next update from B.
Since the second term is as big as the first, we focus on the
second term and upper bound the first with the second. Let
the current value be v0. The expected number of updates
missed before the value changes by 2c is the expected
number of changes of value c before a change of value 2c.
This can be modeled as the Markov Chain given in Fig. 5.
Starting at v0, we need to know the expected number of
steps taken before we reach state v0 þ 2c or v0 � 2c. Since the
states v0 þ c and v0 � c are similar, we can merge them
together, so also the states v0 þ 2c and v0 � 2c can be used to
get the Markov Chain, as shown in Fig. 6a.

The expected number of steps taken to go from 0 to 2c is
given by X0;2. Therefore, the expected number of updates
from the time of failure until R gets two successive updates
from B is 2X0;2, where X0;2 ¼ X0;1 þX1;2 ¼ 1þX1;2. From
state 1, with probability 1

2 , we reach state 0 and with
probability 1

2 , we reach state 2. Hence,

X1;2 ¼ ð1=2Þ � 1þ 1=2 � ðX0;2 þ 1Þ;

2X1;2 ¼ 2þX0;2; X1;2 ¼ 3; X0;2 ¼ 4.
For every four updates that P sends, B will send one

update, on an average. Therefore, #Misses ¼ 8� 2 ¼ 6.
Similarly, for any k: X0;k ¼ 1þX1;k.

Xi;k ¼
1

2
ð1þXi�1;kÞ þ

1

2
ð1þXiþ1;kÞ; 1 � i � k� 1:

Therefore, Xi;k ¼ 1þ 1
2Xi�1;k þ 1

2Xiþ1;k. Solving this, we get:
Xi;k ¼ k2 � i2. And, hence, X0;k ¼ k2.

We also calculated the number of actual misses for
different values of k experimentally. Essentially, we
calculated the number of updates that a repository got
from the real parent between two consecutive updates from
the back-up parent. The number shown in Fig. 6b is
averaged over 100 repositories and 100 different traces and
is plotted with (2k2 � 2) against k. For traces that do not
exhibit uniform change, the expected number of misses may
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vary considerably from that calculated above. Further, even
(2k2 � 2) is likely to be pessimistic as can be seen in the
figure. We can choose a value for k, depending on the
number of updates a child may be willing to miss. Given the
small number of missed updates for k ¼ 2, we chose this
value of k in our experimentation.

7.2 Determination of Back-up Parents

For each of its data items, repository Q requests for back-up
parents as follows: Let P be the parent of Q in the d3t for
data item x. Let cb be k � c.

7.2.1 LeLA

The load controller at P ’s level searches for a back-up
parent for Q for x at its level. Any repository at the same
level that can serve Q at coherence k � c is made the back-up
parent for Q. However, if no such repository is found, the
load controller of the previous level tries to search among
the repositories at its level for a suitable back-up parent: We
keep going up level by level in search of an eligible back-up
parent. If none is found, the source is made the back-up
parent for Q for x. We would like to mention here that we
did not find a back-up load controller.

7.2.2 DiTA

Consider the siblings of P . If P does not have any siblings,
then consider the siblings of the nearest ancestor of P with a
sibling. One of the siblings is randomly chosen to be the
back-up parent of Q. Let this repository be B. In case the
coherence at which Q wants x from B is less than the
coherence at B, the parent of B is asked to serve x with the
required tighter coherence to B. Note that the coherence
increase will be at one level only. Since the parent of B is
also an ancestor of Q, it will be receiving updates of x at
least at the coherence requirement of Q.

An advantage of choosing a sibling, as opposed to any
other repository in the tree, is that the change in coherence
requirement is not percolated higher up. However, choos-
ing a sibling might not be advantageous all the time. If the
ancestor of P and B is heavily loaded, then the delay due to
loading will be reflected in the updates of both the B and P .
This might result in additional loss in fidelity. Note that in
case the d3t is a chain of repositories, then the source might
finally become the back-up parent of Q for x.

In both of the algorithms, back-up dependents are
processed after the real dependents at any repository. If a
dependent gets the same update from both its parents, then
the update which reaches the dependent later is discarded.

7.3 Modeling of Repository Failures and Recovery
Times

We used a heavy-tailed Pareto distribution to model the
time between failures since it seems to follow the trends
reported in [12]. (Since absolute numbers were not
specified, we could only model based on the trend
observed.) A few repositories experienced a relatively large
number of failures, whereas a large number experienced
few failures while a few did not experience any failure in
the time duration of our runs (which lasted three hours).
Specifically, about 50-60 percent of the failed repositories
experienced at least one failure. About 1 percent of
repositories experienced at least four failures, while
20 percent experienced two or more failures and the rest
failed once.

Our recovery model is also based on the observations of
[12]. The distribution for recovery times (in secs) is given by
2 � ð900Þr, where r is a random number between 0 and 1.
The minimum recovery time was two seconds and the
maximum was 1,800 seconds (30 minutes). Approximately,
10 percent of the failures lasted more than 20 minutes.
Around 40 percent of the failures lasted between one and
20 minutes and the rest were less than a minute. We also
experimented with other recovery times.

Between link failures and repository failures, the one that
affects fidelity more is repository failure. A repository
failure affects all its dependents whereas a link failure
directly will typically affect only the dependents connected
to that link. A link failure can be modeled as a partial failure
of a repository—wherein the repository has failed only for
some of its dependents. We have, however, not modeled
such cases. We would like to mention here that though our
failure model is incomplete, our solutions are complete, and
they will work in the presence of repository failures or link
failures.

7.4 Effect of Resiliency Features on Performance
Loss

First, we discuss fidelity loss in the absence of failures.
Fig. 7a shows the effect of adding resiliency to LeLA while
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Fig. 7b shows the effect of adding resiliency to DiTA. In
Fig. 7a, we see that the loss in fidelity due to addition of
resiliency is negligible for number of data items < 400.
However, beyond 800 data items, the loss in fidelity due to
the addition of resiliency increases considerably. As the
number of data items increases, the cost incurred due to
resiliency is much more than the benefits obtained
(discussed next) and, hence, the increase in the loss in
fidelity.

In Fig. 7b, in many cases, we observe that the resulting
fidelity actually improves because of resiliency. This is
because, if the back-up parent is not loaded, then an update
from the back-up parent might reach the dependent earlier
than an update from the parent, hence improving the
fidelity. We can see that any loss in fidelity due to addition
of resiliency is less than 0.1 percent.

Given the superior performance of DiTA over LeLA both
with and without resiliency, the rest of the results presented
in this section are for DiTA.

Next, we see how DiTA performs when the data items a
repository is interested in are chosen from a Zipf distribu-
tion. In Fig. 7c, we notice that the trend in the loss in fidelity
is same as that in Fig. 7b. However, the loss in fidelity is less
compared to that in the uniform access case due to
popularity of some data items.

We wanted to understand the behavior in Figs. 7b and 7c
better. To this end, we examined the number of updates
disseminated by DiTA with and without resiliency. In Fig. 8,
we see that the number of updates disseminated in the
network increases due to resiliency (in the absence of
failures). Despite this increase in load, we see that the

fidelity offered by the system actually improves. For 100 data
items, we observed that 23 percent of the updates sent by
back-up parents were actually further disseminated by the
dependents. Some of the updates sent by the back-up
parent reached the dependents before the updates from the
parent reached (the back-up parent was less loaded than the
parent) and, in some cases, the values sent by the back-up
parent were different from those sent by the parent (since
they see different views due to different coherence require-
ments). This leads to both the increase in the number of
updates disseminated and also in the decrease in the loss in
fidelity. However, when a back-up parent is loaded, the
updates sent by it will typically reach later than those sent
by the parent. In this case, updates from the back-up parent
are of no use to the dependent. This increases the loss in
fidelity. As mentioned earlier, the dependent reduces this
loss by discarding updates with timestamps earlier than
what it currently has for the same data item.

Finally, Fig. 9 presents the performance under failures.
Fig. 9a shows the effect of varying the maximum recovery
time and Figs. 9b and 9c show the effect of varying the
number of data items. (The maximum recovery time for
Figs. 9b and 9c is 30 minutes.) These figures show that,

1. adding resiliency improves fidelity in failure situa-
tions,

2. loss in fidelity for the Zipf data access is lower than
the uniform data access (similar to the nonfailure
case), and

3. with the addition of resiliency, the loss in fidelity is
stable with respect to both increase in the number of
data items and increase in the recovery times.

Therefore, resilient DiTA displays good scalability
properties.

8 RELATED WORK

Push-based dissemination techniques include broadcast
disks publish/subscribe applications [17], [1], Web-based
push caching [11], and speculative dissemination [2].

The design of coherence mechanisms for Web workloads
has also received significant attention recently. Proposed
techniques include strong and weak consistency [15] and the
leases approach [7], [28]. Our contributions in this area lie in
the definition of coherence in combination with fidelity
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Fig. 8. #Updates disseminated in the absence of failures: uniform

distribution.

Fig. 9. Effect of resiliency on fidelity of DiTA—in the presence of failures. (a) Varying max. recovery times for 100 data Items. (b) Uniform data
access. (c) Zipf data access.
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requirements. Coherence maintenance has also been studied
in the context of Web caching [15] where hierarchical Web
proxy architectures [5] and cooperative Web caching [27],
[26], [28] have been proposed. The difference between these
efforts and our work is that we focus on rapidly changing
dynamic Web data while they focus on Web data that
changes at slower timescales (e.g., tens of minutes or
hours)—an important difference that results in very differ-
ent solutions.

Efforts that focus on dynamic Web content include [13]
where push-based invalidation and dependence graphs are
employed to determinewhere andwhen to push invalidates.
Achieving scalability by adjusting the coherence require-
ments of data items is studied in [29]. The difference between
our approaches and Yu and Vahdat’s is that repositories
don’t cooperate with one another to maintain coherence.

Work on scalable and available replicated servers [29] is
related to our goals. Whereas this work addresses the issue
of adaptively varying the coherence requirement in
replicated servers based on network load and application-
specific requirements, we focus on adapting the dissemina-
tion tree for time-varying data.

Mechanisms for disseminating fast changing documents
using multicast-based push has been studied in [23]. Here,
recipients receive all updates to an object (thereby providing
strong consistency), whereas our focus is on disseminating
only those updates that are necessary to meet user-specified
coherence tolerances. Multicast tree construction algorithms
in the context of application-level multicast have also been
studied in the past [14]. Whereas these algorithms are
generic, the d3t in our case, which is akin to an application-
level multicast tree, is specifically optimized for the problem
at hand, namely, maintaining coherence of highly dynamic
data, given specific data coherence requirement.

Turning to the caching of dynamic data, techniques
discussed in [13] primarily use push-based invalidation and
employ dependence graphs to track the dependence
between cached objects to determine which invalidations
to push to a proxy and when. Several research groups and
startup companies have designed adaptive techniques for
Web workloads [4], [10]. But as far as we know, these
efforts have not focused on distributing very fast changing
content through their networks, instead, handling highly
dynamic data at the server end. Our approaches are
motivated by the goal of offloading this work to reposi-
tories at the edge of the network.

The concept of approximate data at the users was
studied in [20], [21]; the approach focuses on pushing
individual data items directly to clients, based on client
coherence requirements and does not address the addi-
tional mechanisms necessary to make the techniques
resilient. We believe that in this sense, the two approaches
are complementary since our approaches to cooperative
repository-based dissemination can be used with their basic
direct source-client-based dissemination. Our results show
that such cooperation reduces load to the sources and leads
to lower loss of fidelity.

Our work can be seen as providing support for executing
continuous queries over dynamically changing data [16],
[6]. Continuous queries in the Conquer system [16] are

tailored for heterogeneous data, rather than for real time
data, and uses a disk-based database as its back end.
NiagraCQ [6] focuses on efficient evaluation of queries as
opposed to coherent data dissemination to repositories
(which, in turn, can execute the continuous queries
resulting in better scalability).

9 CONCLUSIONS AND FUTURE WORK

We examined the design of a data dissemination architec-
ture for time-varying data. The architecture ensures data
coherence, resiliency, and efficiency. The key contributions
of our work are:

. Design of a push-based dissemination architecture
for time-varying data. One of the attractions of our
approach is that it does not require all updates to a
data item to be disseminated to all repositories since
each repository’s coherence needs are explicitly
taken into account.

. Design of a mechanism for making the cooperative
dissemination network resilient to failures so that,
even under failures, data coherence is not comple-
tely lost. In fact, with our resiliency mechanisms, loss
in fidelity decreases, even under many nonfailure
situations. In failure situations, the mechanisms
display attractive scalability properties.

In [25], we have also examined the problem of schedul-
ing the various actions that a node takes based on coherence
requirements of the dependents, the updated value, and the
cost and benefits of disseminating an update to the
dependents.

Whereas our approach uses push-based dissemination,
other dissemination mechanisms such as pull, adaptive
combinations of push and pull [5], as well as leases [21],
could be used to disseminate data through our repository
overlay network.

Also, using piggybacking will help us improve the
fidelity further. Consider a repository P serving data items
to a set of dependents Q1; . . . ; Qn. When P receives an
update for a data item we can do the following. If a change
is to be pushed to a dependent, we do not immediately send
it but wait for a small time interval. If during that time
interval P receives another update which is also of interest
to the dependent, then the second update is piggybacked on
to the first. All the updates are then pushed to the
dependent at the end of the time interval in one single
communication. In cases where there are no piggyback
messages, addition in the delay at the node may increase
the loss in fidelity. Hence, it is important that we piggyback
only when needed.

The use of such efficiency improvement mechanisms as
well as the evaluation of our mechanisms in a real network
setting is the subject of future research.
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