
Non-Intrusive Load Identification for Smart Outlets
Sean Barker, Mohamed Musthag, David Irwin, and Prashant Shenoy

University of Massachusetts Amherst
[sbarker,musthag,shenoy]@cs.umass.edu, irwin@ecs.umass.edu

Abstract—An increasing interest in energy-efficiency com-
bined with the decreasing cost of embedded networked sensors
is lowering the cost of outlet-level metering. If these trends
continue, new buildings in the near future will be able to install
“smart” outlets, which monitor and transmit an outlets power
usage in real time, for nearly the same cost as conventional
outlets. One problem with the pervasive deployment of smart
outlets is that users must currently identify the specific device
plugged into each meter, and then manually update the outlets
meta-data in software whenever a new device is plugged into
the outlet. Correct meta-data is important in both interpreting
historical outlet energy data and using the data for building
management. To address this problem, we propose Non-Intrusive
Load Identification (NILI), which automatically identifies the
device attached to a smart outlet without any human intervention.
In particular, in our approach to NILI, we identify an intuitive
and simple-to-compute set of features from time-series energy
data and then employ well-known classifiers. Our results achieve
accuracy of over 90% across 15 device types on outlet-level energy
traces collected from multiple real homes.

I. INTRODUCTION

Despite recent advances in energy-efficiency, residential
and commercial buildings continue to be responsible for over
40% of the energy consumption in the United States, which
is significantly more than the other two broad sectors of
energy consumption—industry and transportation [1]. As a
result, even small improvements in building energy-efficiency,
if implemented across many buildings, have the potential to
substantially improve energy-efficiency. This potential has led
to an increased interest in the design of “smart buildings,”
which dynamically regulate energy usage to optimize their
energy-efficiency, e.g., by responding to changes in building
occupancy, electricity prices, renewable generation, etc.

The foundation of smart building design is access to timely,
accurate, and fine-grained data about a building’s operations,
including its energy usage and occupancy information. Put
simply, the more data a building management system has at its
disposal, the more opportunities for optimization it can identify
and act on. Ideally, a building management system would
reliably receive accurate fine-grained power data in real-time
from each of a building’s individual electrical loads.1 Such
data would enable analyses that both infer characteristics of
the building’s environment, e.g., occupancy [2], [3], and inform
fine-grained scheduling of loads to improve efficiency [4], [5].
For example, in the latter case, a building management system
might identify high demand periods and then automatically
defer elastic loads, such as a washing machine or dryer, to
low demand periods. Utilities often provide price incentives
for customers to perform this type of adaptive load scheduling.

Achieving the ideal above is challenging, since even a small
home may contain 30 or more individual outlets [6], with

1We use the term electrical load, or simply load, to refer to any distinct
appliance or device that consumes electricity.

larger commercial buildings containing hundreds. In the past,
real-time metering of tens to hundreds of individual outlets
required specialized equipment and was cost prohibitive. As a
result, researchers focused largely on analysis techniques for
disaggregating data from smart meters, which monitor an entire
building’s energy usage, to infer the energy usage of individual
loads [7]. Unfortunately, disaggregation, which is also referred
to as Non-Intrusive Load Monitoring (NILM), remains largely
inaccurate when applied to even small buildings [7].

Recently, however, the increasing interest in energy-
efficiency combined with the decreasing cost of embedded net-
worked sensors has lowered the cost of outlet-level metering.
If these trends continue, in the near future, we expect new
buildings to be able to install “smart” outlets, which monitor
and transmit an outlet’s power usage in real time, for nearly the
same cost as conventional “dumb” outlets. Examples of smart
outlet-level meters that are now widely available commercially
include the Belkin WeMo Insight Switch [8], the Insteon
iMeter Solo [9], the Budderfly controllable outlet [10], and the
Z-Wave Smart Energy Switch [11]. Typically, companies also
provide dashboard software to collect and record outlet-level
data, and allow users to view it. As a whole, the mainstream
home automation sector, which includes both the low-cost
smart sensors above, as well as outlets capable of remote load
control, is expected to grow by 60% from 2012 to 2018 [12].

While the widespread deployment of low-cost outlet-level
meters will provide new visibility into building energy con-
sumption, it also raises new challenges related to managing a
large and diverse sensor deployment. In particular, since the
meters above are built into general-purpose outlets, rather than
devices themselves, users must manually identify each specific
device plugged into each meter and then update the outlet’s
meta-data in the dashboard software any time someone plugs
a new device into an outlet. For example, if someone plugs a
toaster into an outlet, a user must manually associate the outlet
with the toaster. The correct association is important, since an
particular device might also be associated with other useful
attributes, such as its degree of scheduling flexibility or its peak
power consumption. While some static outlets may power the
same device for long periods of time, as with a refrigerator,
many outlets are dynamic and frequently changing due to the
use of transient devices, including laptops, vacuums, seasonal
air conditioners, and niche kitchen appliances. Even for static
outlets attached to the same device, users must still correctly
enter the device’s name into the dashboard software during
setup, which often requires manually recording an obscure
outlet identifier—often printed on the back of each outlet—
with each device prior to installation.

Such manual identification is both cumbersome and error-
prone: users often do not enter any per-outlet meta-data, and
whatever meta-data they do enter is either too general to be
useful, e.g., “living room outlets,” or is never updated and

quickly becomes stale. Ultimately, meta-data errors reduce the
usefulness of the data to automated management systems and
operators. Thus, rather than require users to manually enter
device meta-data, we propose a technique for Non-Intrusive
Load Identification (NILI) that automatically identifies new de-
vices plugged into smart outlets without any user intervention.
NILI is inspired by the well-studied NILM problem. However,
rather than analyze building energy data to disaggregate it into
data for individual loads, as with NILM, NILI analyzes outlet
energy data to identify the type of load plugged into the outlet.

While there has been substantial work on NILM [7], [13],
[14], the NILI problem, which is becoming increasingly rele-
vant, has received little attention. Furthermore, we expect NILI
to continue to remain relevant in the future, since embedding
sensing into general-purpose outlets is more cost-effective than
relying on sensors being embedded into devices themselves
(i.e., self-reporting devices). While the sensor meta-data does
not change in the latter case, since each sensor is tightly
coupled to the device, this approach requires a sensor for
each device rather than a sensor for each outlet. In addition,
outlets are easily standardized during building construction and
management, while reliance on third-party manufacturers for
device-level support is likely to introduce additional complex-
ities, e.g., differing sensor hardware capabilities, data formats,
and network protocols.

Our approach to NILI is based on the categorization of
outlet-level (or for large appliances, circuit-level) timeseries
power data using standard classification techniques. We first
perform training on a set of input devices representing basic
device types to construct the classifier. The input classes may
either be models for specific device types, e.g., a specific type
of GE refrigerator, or general models of broad device classes,
e.g., a generic refrigerator of any type. During runtime, we
periodically ingest recent data from each smart outlet to the
classifier and then update the mapping in the outlet meta-data
table based on the classifier’s output, which specifies the type
of device plugged into the outlet. In this paper, we describe
the set of features we use for each type of device, as well as
our choice of classifiers. We then evaluate each classifier using
a dataset of labeled device energy data collected from several
homes, and consider identification of both previously seen and
unseen devices. We find that our classifier can achieve accuracy
of over 90% on our sample dataset, even with a relatively small
and straightforward set of classification features.

II. PROBLEM STATEMENT AND APPROACH

Formally, we define the NILI problem for a smart outlet Oi

as inferring the name of the device dj plugged into Oi at time
t, given the outlet’s average power usage pi(t) each (t− τ, t].
Equivalently, NILI computes the function Oi(t) ∈ {namej}
∀j and t > 0, given pi(t). NILI assumes a table (”database”)
of known devices and the key energy characteristics (e.g.,
distinguishing features) of each device. The table may be
either general, including only coarse features that distinguish
one type of device from another, or highly specific, including
detailed features that distinguish two different models of the
same device. In addition to the features, the table may also
include other meta-data associated with the device useful for
a building management system, such as a device’s peak power
(which may also be a feature) or its degree of elasticity, i.e.,

Power Readings

Outlet
1

Outlet
2

Outlet
3

Fan Power

Light PowerNILI
Controller Oven Power

Your
Usage

Mobile
Data
App

Energy
Web

Interface

Device Usage:
131 watts

Past Usage:

← → http://umass.edu/power...

3 Oven

2 Light

Fan1

Outlet Mapping

Smart Building
Applications

Fig. 1. Software and hardware architecture for NILI-enabled smart building.

how far in the future a scheduler may shift its power usage
without violating its operating constraints, such as maintaining
temperature within a specified guardband.

As might be expected, selecting the important features
for each device is critical; we discuss feature selection in
the next section. A smart outlet’s sampling interval τ also
affects NILI accuracy. In general, a longer sampling interval
“averages out” features in pt(t), revealing fewer identifiable
features and decreasing NILI’s accuracy, while a shorter inter-
val reveals more identifiable features and increases accuracy.
Our work specifically targets the consumer-grade smart outlets
mentioned in the previous section, which commonly provide a
sampling resolution on the order of seconds, e.g., τ ∼ seconds.

Figure 1 depicts the software and hardware architecture for
a building management system that includes a NILI controller,
which dynamically updates the meta-data for each of the
building’s outlets. Specifically, for each of 1 . . . k smart outlets,
the controller continuously receives energy data transmitted by
the outlet and analyzes it to determine the attached device
and update the device name associated with the outlet in
the meta-data table. The table represents only the current
mapping of outlets to devices; our NILI controller also stores
all prior mappings by annotating each outlet’s timeseries of
power data to record each time t a certain device attaches
or detaches from an outlet. These annotated data streams can
then be used by higher-level data-driven applications, e.g., such
as schedulers [4] that use each load’s power usage data to
determine which loads to defer and when. These data-driven
applications require sensors attached to each device, and often
implicitly assume a static mapping (or tight coupling) between
the sensor and the device. However, as we discuss in Section
1, such a static mapping is usually not feasible in practice.

Our general approach to determining the device attached
to each outlet is to train a timeseries classifier on historical
power data for each device. The classifier uses the training
data to learn an association between the device and the high-
level features of its timeseries power usage. Once trained, the
classifier simply outputs a device name for a fixed set of
consecutive energy readings from each outlet. We represent
a set of consecutive energy readings as a series of three-tuples
that specify a timestamp, outlet, and average power in watts
over τ . Since the device name may change, the controller
periodically re-executes the classifier on new outlet data. The

interval at which the controller updates each outlet’s mapping
may be either static, e.g., once every 10 minutes, or dynamic,
e.g., based on sudden changes in an outlet’s power usage.

III. ALGORITHM

Before classifying an outlet’s timeseries of energy readings,
our NILI algorithm first converts them into a small set of fea-
tures that serve as inputs to the classifiers. As discussed below,
this process requires first preprocessing the raw timeseries data,
then extracting the necessary features for classification, and
finally applying various classifiers to the feature set.

Preprocessing. The raw input data consists of average
power readings every τ seconds from a smart outlet. We store
these power readings, since the classifier operates over a rolling
window of historical data. The length of the window necessary
to classify an outlet is device-dependent: some device behavior
is distinctive enough to classify within seconds of being turned
on, e.g., a microwave, while other devices may require multiple
duty cycles to discern a distinctive pattern of usage, e.g., a
refrigerator. To aid in feature extraction, we preprocess the raw
timeseries by computing a timeseries of energy deltas, or the
difference between two consecutive power readings. Analyzing
energy deltas is common in NILM algorithms, since the size
of a delta is device dependent, e.g., a 60W power increase due
to a light bulb being turned on, and not affected by a building’s
aggregate absolute energy usage.

Thus, storing and operating on energy deltas is useful for
filtering background noise due to the energy usage of a power
strip or the smart outlet, itself. Additionally, since consecutive
deltas of the same direction, e.g., +40W followed immediately
by +20W) often result from changes in power usage occurring
across a measurement boundary, we collapse them in a single
delta, e.g., +60W. Preprocessing the data to consider such steps
as single energy deltas provides a more accurate representation
of changes in device power usage, especially given that most
energy deltas are zero, i.e., there is no change in power.

Feature extraction. Given a recent window of raw time-
series power data and energy deltas from preprocessing, we
next compute a feature vector that captures the behavior of
the device. While many features are possible given the input
data, we choose a compact set of features that are both intuitive
and easily derived directly from the input data.

• Statistical Metrics. The simplest set of features consist
of simple statistical metrics of the timeseries power data,
including the average power, variance, maximum power,
and minimum power over the input time interval. Since
infrequently used devices often consume no power, thereby
skewing the average power towards zero, we exclude
measurements under a threshold (typically slightly more
than the minimum recorded value) to ensure that we only
considering periods when the device is operating.
• Duty Cycle. The duty cycle feature is useful for dis-

tinguishing continuously operating devices, e.g., an air
conditioner, from devices that typically operate only for
short periods, e.g., a toaster. We capture a device’s duty
cycle as the proportion of time is operates over the input
interval, called the ‘on ratio,’ calculated as the number of
average power readings over the threshold wattage above
divided by the total number of readings.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

P
o

w
e

r
(W

)

Time (min)

refrigerator

Fig. 2. An example of a spike feature in a refrigerator compressor.
• Waveform. The most distinguishing feature of a device’s

power usage is its complete waveform, which represents
a long sequence of specific changes in power specific to
the device. For example, the refrigerator power usage in
Figure 2 includes a large spike followed by a decrease in
power to a steady state. We indirectly capture the waveform
as a feature by separating energy deltas into different bins,
where the size of each bin represents a distinct feature.
We bin the energy deltas as follows: for ten distinct bin
sizes ranging from 5W to 500W (with most bin sizes in
the < 100W range), we filter the energy deltas to include
only changes in average power ranging from the bin size
to 5 times the bin size (e.g., 25W to 125W).
For each bin size, we calculate three features, resulting in
30 features total, as follows: (a) the number of changes
in average power in the filtered set of energy deltas, (b)
the average time interval between steps in the filtered
energy deltas, and (c) the number of ‘spikes’ in the filtered
energy deltas, where a ‘spike’ is defined as a positive step
of at least 10 times the bin size, followed immediately
by a negative step of at least 30% of the magnitude of
the positive step. Informally, a spike is simply a large
but very brief period of energy use caused by the inrush
current when a device turns on. Spike features appear
prominently in many kinds of motor-driven devices, such
as the refrigerator shown in Figure 2.

Classification. Finally, we pass the vector of computed
device features to a classifier, which returns the inferred device
name. The classifier output may either be a general device type,
e.g., refrigerator, or a specific device model, e.g., a particular
refrigerator manufacturer and model. We evaluate the three
different well-known classification algorithms below, ordered
by complexity:

• Naive Bayes. We first consider the naı̈ve Bayes algorithm
for classification due to its simplicity and efficiency. The
key assumption made in naı̈ve Bayes classifiers is the
independence of all features, i.e., each feature is condi-
tionally independent of every other feature given the class.
Through the application of Bayes’ theorem, the conditional
distribution over the classes C, i.e., the device types, given
the features f1, f2, . . . , fn is defined by:

P (C|f1, . . . , fn) ∝ p(C)
n∏

i=1

P (fi|C)

We use the standard implementation of the naı̈ve Bayes’

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140

P
o

w
e

r
(W

)

Time (min)

dryer

 1920

 1930

 1940

 1950

 1960

 1970

5 min
zoom

Fig. 3. Energy trace of a dryer with one-second granularity.

classifier [15] used in the Weka toolkit [16].
• Decision Tree. We also consider a decision tree clas-

sifier [17], which is trained by recursively partitioning
the input space, then defining a local model in each
resulting region of the input space according to feature
values. Although finding the optimal data partitioning is
NP-complete, greedy approximation algorithms perform
well and benefit from very low training overhead. In our
experiments, we use J48, an implementation of the C4.5
decision tree algorithm [18] used in Weka.
• Support Vector Machines. Finally, we consider a clas-

sifier using support vector machines (SVMs), a more
complex algorithm based around mapping the input feature
space into a second, linearly separable feature space using a
kernel function. We use the libSVM implementation [19]
of SVMs supported through Weka. Our reported results in
Section IV use a polynomial kernel of degree 2, which was
chosen after experimentation with several different kernels.

IV. EVALUATION

We evaluate our algorithm using a dataset collected from a
sensing deployment in three homes. Each home is instrumented
with a wide array of energy sensors collecting outlet-level
energy usage at approximately one second granularity. This
granularity of data is readily available using off-the-shelf
meters [9] and reveals many interesting properties of device
energy usage that may be lost in lower resolution sampling.
As an example, a trace of average energy usage each second
collected from a dryer is shown in Figure 3 and reveals
multiple modes of operation, including highly variable usage
in the first phase and cyclic, decaying usage in the second.

We train our classifiers using a dataset gathered from
several dozen devices collected over a three month period.
For each device over the three month period, we first split the
data into 24-hour blocks, then compute a feature vector over
each day-long period as described in Section III. Thus, each
device results in roughly 90 instances used in training, though
we exclude days in which devices went completely unused.

We consider two scenarios – identifying specific devices
models, e.g., a specific refrigerator, or identifying general
device types, e.g., any refrigerator. The primary advantage of
the latter approach is the ability to generalize to previously
unseen devices; while the classifier can only output the specific
models that it has observed in training, returning device types
allows classification of devices not represented in the training
dataset. In practice, we envision training a classifier on a very

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Naive Bayes C4.5 SVM

A
c
c
u

ra
c
y
 (

%
)

Classifier

Specific Device
Device Type

Fig. 4. Classification performance on the entire dataset, i.e., identifying
previously seen devices, using 10-fold cross-validation. Both performance on
specific device instances and general device classes is shown.

large dataset of devices collected from many homes, then
using that classifier on both existing and new devices not
present at the time of training. Although our evaluation dataset
is relatively small, i.e., 3 instances of most major appliance
types, we consider both approaches to illustrate the potential
of unseen device identification.

Identification of previously seen devices. We first con-
sider classification performance when training on the com-
plete dataset – i.e., identification of previously seen devices.
For each of the three classifiers—Naive Bayes, C4.5, and
libSVM—we perform 10-fold cross-validation on the dataset
to quantify identification accuracy both for specific devices
and for device types. The results are shown in Figure 4. We
see that accuracy is quite high in all scenarios – both C4.5 and
SVM demonstrate accuracy of over 90% for device types, with
naı̈ve Bayes somewhat lower at roughly 70%. Performance
on specific device identification is modestly lower than for
general device types. The difference stems from the ability of
the classifier to generalize the properties of the device types,
e.g., a refrigerator, given a broader training dataset, as well as
the smaller number of possible classes. However, this different
only amounts to less than 10% in all cases.

Breakdown by device and type. The results in Figure 4
demonstrate the overall performance of the classifiers, but
classification accuracy may vary significantly from device to
device, due to the presence of unique characteristics, or lack
thereof, reflected in the feature vector. For example, refrigera-
tors have a regular cyclic power usage pattern, which typically
results in a high ‘on ratio’, while most electronic loads have
highly erratic power consumption, due to the variable behavior
of switch-mode power supplies, which typically results in
higher power variance than other types of devices.

Figure 5 shows the individual, device-level classification
accuracy for a subset of our devices. As in Figure 4, the best
performance for nearly all devices is observed with the C4.5 or
SVM classifiers, with accuracy of over 95% for many devices.
The performance of the naı̈ve Bayes classifier, on the other
hand, is inconsistent, with some devices showing quite poor
performance (many less than 50%) – in these cases, the naı̈ve
Bayes classifier has difficulty distinguishing between multiple
instances of the same device type, e.g., multiple dishwashers or
multiple dryers. As a result, accuracy on one such instance of a
given type remains high, while performance on other instances
of that type is low (as these instances are identified as the
‘dominant’ first instance).

 0

 20

 40

 60

 80

 100

D
is

h
w

a
s
h

e
r

A

D
is

h
w

a
s
h

e
r

B

M
ic

ro
w

a
v
e

 A

M
ic

ro
w

a
v
e

 B

W
a

s
h

e
r

A

W
a

s
h

e
r

B

D
ry

e
r

A

D
ry

e
r

B

H
o

m
e

 O
ff

ic
e

 A

H
o

m
e

 O
ff

ic
e

 B

R
e

fr
ig

e
ra

to
r

A

R
e

fr
ig

e
ra

to
r

B

H
R

V
 A

H
R

V
 B

C
e

n
tr

a
l
A

/C

F
u

rn
a

c
e

T
e

le
v
is

io
n

P
a

ti
o

 L
ig

h
ts

B
e

d
 L

ig
h

ts
 A

B
e

d
 L

ig
h

ts
 B

G
u

e
s
t

L
ig

h
ts

 A

G
u

e
s
t

L
ig

h
ts

 B

C
e

lla
r

L
ig

h
ts

 A

C
e

lla
r

L
ig

h
ts

 B

K
it
c
h

e
n

 L
ig

h
ts

H
a

ll
L

ig
h

ts

A
c
c
u
ra

c
y
 (

%
)

Bayes C4.5 SVM

Fig. 5. Individual device identification accuracy per device. Devices A and B represent two instances of the same device type (with different specific models).

 0

 20

 40

 60

 80

 100

A
/C

D
is

h
w

a
s
h
e
r

H
R

V

D
ry

e
r

R
e
fr

ig
e
ra

to
r

W
a
s
h
e
r

F
u
rn

a
c
e

M
ic

ro
w

a
v
e

E
le

c
tr

o
n
ic

s

L
ig

h
ts

A
c
c
u

ra
c
y
 (

%
)

Bayes C4.5 SVM

Fig. 6. General device type identification accuracy, broken down by type.

Figure 6 shows the corresponding results broken down by
device types, rather than individual devices. Performance is
more consistent in this case, although naı̈ve Bayes continues
to show significantly lower performance for certain device
classes, such as dishwashers and clothes dryers. These types of
devices exhibit more complex behavior than most of the other
device types, e.g., as indicated by the dryer’s average power
trace in Figure 3, which implies that the simplistic naı̈ve Bayes
classifier is not able to identify them as accurately as the more
sophisticated C4.5 and SVM classifiers.

Identification of previously unseen devices. Finally, we
consider the case where we wish to identify devices that have
not been previously observed during training. This approach
limits us to identifying device types rather than specific device
models, as it is impossible to generate a class label that was
not seen during training. For this experiment, we trained our
classifier on devices within two of the three houses, then
attempted to classify devices in the third house, which are
not represented in the training data. As before, we report the
10-fold cross-validation accuracy of identification.

Overall identification accuracy is shown in Figure 7. Un-
surprisingly, identification accuracy falls substantially, as we
are relying strictly on the ability of the classifier to distill the
essential properties of the device type rather than any specific
device instance. Accuracy of both the C4.5 and SVM classifier
fall to below 60%. Interestingly, the naı̈ve Bayes classifier

 0

 20

 40

 60

 80

 100

Bayes C4.5 SVM

A
c
c
u

ra
c
y
 (

%
)

Classifier

Device Type

Fig. 7. Overall accuracy of device type identification on previously ‘unseen’
devices.

degrades substantially less (to 65%) and actually outperforms
the other classifiers, reversing the trend seen when identifying
previously seen devices. This result suggests that the simple
naı̈ve Bayes classifier more effectively generalizes the device
type, but at the expense of distinguishing specific instances
of device types (as seen previously in Figure 5). Furthermore,
while the absolute result of 65% is not particularly high, we
stress that we are attempting to generalize the device type given
a very limited set of training instances (just two in most cases),
so we view these results as encouraging and would improve
with more training data.

Finally, Table I shows the confusion matrix for the clas-
sification of unseen devices using the C4.5 classifier (i.e., the
third bar of Figure 7). We see that there is a wide variation
in the accuracy of identification of the various device types.
For example, every light is correctly identified as a light
(i.e., perfect recall), which is understandable given the flat
energy profile of nearly all lights. The same is true of the
microwaves, which as short-lived but high-power devices are
easily identified. The washing machines, on the other hand,
are frequently misidentified as dryers – both types are large,
sporadically active devices with complex and highly variable
power signatures, and as such it is difficult for the classifier to
distinguish the two. A significant portion of the overall classi-
fier error comes from the poor performance of the Electronics
device type (nearly all of which are identified as lights), likely
due to the fact that there are many different types of electronics

displaying differing power signatures. Regardless, we see that
the classifier is generally able to accurately distill device types
with unique energy characteristics and use those characteristics
to identify unseen devices.

Dryer Fridge Washer MWave Electronics Light
Dryer 9 0 0 0 0 0
Fridge 1 99 0 34 21 45
Washer 44 0 5 5 0 0
MWave 3 1 0 53 0 1

Electronics 0 0 0 0 2 14
Light 0 0 0 0 0 86

TABLE I. CONFUSION MATRIX FOR THE DECISION TREE CLASSIFIER
ON UNSEEN DEVICES (ROWS ARE ACTUAL, COLUMNS ARE PREDICTED).

V. RELATED WORK

Prior work on device identification has largely been in
the context of whole-house metering, and thus falls under
the umbrella of NILM. The goal of NILM is to extract all
individual devices from a single aggregate trace as provided
by a house-level smart meter. Existing work on NILM is
substantial [7], [13], [14], including techniques such as Hidden
Markov Models [20] and Viterbi’s algorithm [21] to infer
disaggregated usage. However, due to the number of loads
in homes and the complexity of their operation, applying
NILM to real-world environments remains an active research
area. Device identification from outlet-level meters, i.e., NILI,
however, has received substantially less attention.

Accurate load identification has been achieved using high-
frequency smart meters [22], but this granularity of data is
not typically available from off-the-shelf smart outlets. For
lower frequency data, e.g., 1 Hz, the use of classifiers for
learning device labels has been proposed, but not extensively
evaluated [23], [24], particularly for previously unseen devices.
Other approaches to device classification have focused on
explicit per-device training to generate ‘signatures’ that can
be used to detect devices in the future [25]. These techniques,
however, rely on user-guided training periods to recognize
specific devices, as opposed to transparent recognition of
devices classes.

VI. CONCLUSIONS

In this paper, we considered the problem of Non-Intrusive
Load Identification (NILI), in which devices connected to
outlet-level energy meters, i.e., smart outlets, are automatically
identified, alleviating the user from the cumbersome and error-
prone task of manually maintaining meta-data on specific
devices and outlets. We propose an approach to performing
NILI that transforms energy time-series data into a compact
set of intuitive features, then uses an off-the-shelf classifier to
identify unknown devices. Using a dataset of device energy
traces collected from three homes, our experiments demon-
strate that we can achieve greater than 90% accuracy on
devices represented in training data. Furthermore, even with
a small sample of devices of a given type, e.g., refrigerators,
we are often able to identify previously unseen devices as
particular types of devices, demonstrating the ability of the
classifier to generalize the properties of device types. As future
work, we plan to consider other features and a larger set of
training devices to further evaluate NILI’s potential.

Acknowledgements. This work is supported by NSF grants
CNS-1253063, CNS-1143655, CNS-0916577, CNS-0855128,
CNS-0834243, CNS-0845349, and a grant from the Mas-
sachusetts Department of Energy Resources (DOER).

REFERENCES

[1] J. Kelso, Ed., 2011 Buildings Energy Data Book. Department of
Energy, March 2012.

[2] D. Chen, S. Barker, A. Subbaswamy, D. Irwin, and P. Shenoy, “Non-
Intrusive Occupancy Monitoring using Smart Meters,” in BuildSys,
November 2013.

[3] W. Kleiminger, C. Beckel, T. Staake, and S. Santini, “Occupancy
Detection from Electricity Consumption Data,” in BuildSys, November
2013.

[4] S. Barker, A. Mishra, D. Irwin, P. Shenoy, and J. Albrecht, “SmartCap:
Flattening Peak Electricity Demand in Smart Homes,” in PerCom,
March 2012.

[5] J. Taneja, D. Culler, and P. Dutta, “Towards Cooperative Grids:
Sensor/Actuator Networks for Renewables Integration,” in SmartGrid-
Comm, 2010.

[6] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht,
“Smart*: An Open Data Set and Tools for Enabling Research in
Sustainable Homes,” in SustKDD, August 2012.

[7] K. Armel, A. Gupta, G. Shrimali, and A. Albert, “Is Disaggregation
the Holy Grail of Energy Efficiency? the Case of Electricity,” Energy
Policy, vol. 52, no. 1, January 2013.

[8] “Wemo insight switch,” http://www.belkin.com/us/F7C029-Belkin/p/
P-F7C029/.

[9] “imeter solo,” http://www.insteon.net/2423A1-iMeter-Solo.html.
[10] http://www.budderfly.com/, May 2014.
[11] http://www.aeon-labs.com/site/products/view/5/, May 2014.
[12] M. Brennan, “House of the future: How automation tech is transforming

the home,” in Forbes, October 2013.
[13] G. Hart, “Nonintrusive Appliance Load Monitoring,” IEEE, vol. 80,

no. 12, December 1992.
[14] M. Zeifman and K. Roth, “Nonintrusive Appliance Load Monitoring:

Review and Outlook,” IEEE Transactions on Consumer Electronics,
vol. 57, no. 1, February 2011.

[15] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Eleventh Conference on Uncertainty in Artificial
Intelligence. San Mateo: Morgan Kaufmann, 1995, pp. 338–345.

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., Nov 2009.

[17] K. P. Murphy, Machine learning: a probabilistic perspective. The MIT
Press, 2012.

[18] J. R. Quinlan, C4. 5: programs for machine learning. Morgan
kaufmann, 1993, vol. 1.

[19] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” TIST, vol. 2, no. 3, p. 27, 2011.

[20] J. Kolter and M. Johnson, “REDD: A Public Data Set for Energy
Disaggregation Research,” in SustKDD, August 2011.

[21] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsupervised
Disaggregation of Low Frequency Power Measurements,” in SDM, April
2011.

[22] A. Reinhardt, P. Baumann, D. Burgstahler, M. Hollick, H. Chonov,
M. Werner, and R. Steinmetz, “On the accuracy of appliance identifi-
cation based on distributed load metering data,” in SustainIT, 2012.

[23] D. Zufferey, C. Gisler, O. A. Khaled, and J. Hennebert, “Machine
learning approaches for electric appliance classification,” in ISSPA, July
2012.

[24] A. Ridi, C. Gisler, and J. Hennebert, “Automatic identification of
electrical appliances using smart plugs,” in WoSSPA, May 2013.

[25] A. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P. O’Hare, “Real-
time recognition and profiling of appliances through a single electricity
sensor,” in SECON, 2010.

