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Abstract—Utilities have deployed tens of millions of smart
meters, which record and transmit home energy usage at fine-
grained intervals. These deployments are motivating researchers
to develop new energy analytics that mine smart meter data
to learn insights into home energy usage and behavior. Unfor-
tunately, a significant barrier to evaluating energy analytics is
the overhead of instrumenting homes to collect aggregate energy
usage data and data from each device. As a result, researchers
typically evaluate their analytics on only a small number of
homes, and cannot rigorously vary a home’s characteristics to
determine what attributes of its energy usage affect accuracy. To
address the problem, we develop SmartSim, a publicly-available
device-accurate smart home energy trace generator. SmartSim
generates energy usage traces for devices by combining a device
energy model, which captures its pattern of energy usage when
active, with a device usage model, which specifies its frequency,
duration, and time of activity. SmartSim then generates aggregate
energy data for a simulated home by combining the data from
each device. We integrate SmartSim with NILM-TK, a publicly-
available toolkit for Non-Intrusive Load Monitoring (NILM), and
compare its synthetically generated traces with traces from a
real home to show they yield similar quantitative and qualitative
results for representative energy analytics.

I. INTRODUCTION

Utilities are deploying “smart” electric meters, which record
and transmit average home energy usage at fine-grained inter-
vals, in large numbers, as part of a broad effort to transition
to a smart electric grid. As of 2011, utilities had already
installed nearly 40 million smart meters [1]. Researchers and
companies are increasingly interested in mining smart meter
data to develop new energy data analytics to learn insights into
home energy usage and behavioral patterns. Such insights can
be used to provide i) users more visibility into their energy
usage at a low cost, e.g., without deploying any sensors or even
requiring access to the home, and ii) third-party companies
with private information they can use for marketing.

Researchers are actively developing such energy data ana-
lytics, e.g., [2], [3], [4], [5], and a number of well-established
and startup companies, such as Bidgely, PlottWatt, OPower,
Belkin, etc., have emerged to commercialize analytic tech-
niques. One prominent example of energy data analytics and
the focus of many of the companies above is Non-Intrusive
Load Monitoring (NILM) or disaggregation, which analyzes
smart meter data to infer (or disaggregate) the energy usage
of individual electric devices. Researchers are also actively
developing new ways to prevent such analytics to preserve
consumer privacy [6], [7] and prevent third-parties from ex-
ploiting consumer data for profit. Unfortunately, there are a
variety of logistical problems that make rigorously evaluating
energy data analytics, such as NILM, or ways to prevent

them challenging. Most importantly, there are no complete
sub-metered datasets of home energy consumption that are
publicly-available. By “complete,” we mean energy usage data
over an extended period, e.g., months to years, at a per-
second resolution for an entire home and all of its devices. Of
course, a complete sub-metered dataset that includes accurate
ground truth data from each device is necessary for properly
evaluating the accuracy of any energy data analytics technique,
or any technique for preventing it.

While some public datasets exist, the most complete sub-
metered datasets that include per-second resolution [5], [8], of
which there are few, typically include only energy data from
each circuit in a home, even though many devices may connect
to a single circuit. Further, these public datasets with second-
level data generally include only a few homes, e.g., 3-6, over
a short period of time due to the expense of deploying such
instrumentation. While existing utility smart meters record
average power data every few minutes at most, we focus on
second-level granularity in this paper for many reasons. First,
second-level resolution is the finest granularity that commodity
in-panel and plug-level energy sensors, such as the TED,
eGauge, and WeMo, use, and there are indications that the
next generation of utility smart meters will operate at second-
level resolution [9]. Next, second-level resolution is capable
of yielding highly accurate results that compromise privacy,
as the probability of two devices starting at the same second
is low [8]. Finally, second-level resolution is the granularity
that many current researchers are targeting [3].

Given the lack of complete public datasets at per-second
resolution, researchers must either deploy their own sensor
systems in selected homes to gather data for evaluation,
limit their evaluation to a few large appliances (connected to
dedicated circuits), or use coarser-data, e.g., minute-level or
worse [10], where energy data analytics are not as effective.
Each of these options is undesirable. The former requires
a significant investment in time and money to gather data,
while the latter two severely restrict the range of analytics
suitable for evaluation. Many NILM algorithms and energy
analytics techniques already exist that focus on identifying
a small number of the largest home appliances, which are
generally the easiest to detect. We expect future NILM and
energy analytics research to focus on other aspects of energy
usage, such as detecting smaller appliances, tracking device
energy usage in real-time [4], or using energy usage to infer
home occupancy [11], [12]. However, even if a complete large-
scale dataset were available, it would restrict researchers to
evaluating analytics on the homes within the dataset, which



may not be representative, as homes vary widely by region and
climate. For example, while the Pecan Street dataset provides
per-minute resolution data for a large number of homes in
Texas [13], the energy usage of these homes likely differs
from those in the Northeast U.S., Europe, etc.

Ultimately, no single dataset, no matter how large, can en-
able researchers to rigorously evaluate the data characteristics
that affect NILM accuracy, or other similar types of energy
data analytics. Prior work [3] has evaluated popular NILM
algorithms against a variety of public datasets and found
widely disparate results across multiple accuracy metrics. The
disparate results are due to the energy usage characteristics of
the homes in each dataset. To date, there has been little work
on evaluating what characteristics of a home’s energy usage (or
its set of devices) affect NILM accuracy. To perform such an
evaluation, researchers must be able to vary the characteristics
of home energy use, e.g., the type and number of devices,
usage patterns, etc., in a controlled fashion and evaluate the
accuracy. Such an evaluation would be highly useful given the
plethora of NILM algorithms now available, enabling users to
select the best one for home energy usage characteristics. Such
an analysis might lead to improvements in existing algorithms
or the development of new algorithms by identifying weak
points in existing algorithms.

In this paper, we address the problem by developing Smart-
Sim, a device-accurate smart home energy trace generator.
SmartSim enables researchers to generate complete datasets
for homes that include second-level energy data for the entire
simulated home and each of its simulated devices. Smart-
Sim generates second-level energy usage traces for devices
by combining a device energy model, which specifies the
device’s energy usage pattern when on, with a device usage
model, which specifies the device’s frequency, duration, and
time of operation. SmartSim leverages an empirical modeling
methodology from prior work [14] to generate device energy
models, and can generate custom device usage patterns based
on well-known distributions or derive usage patterns from real
datasets. In the latter case, we observe device usage patterns
can be inferred using coarse energy data, e.g., every minute
or five minutes without requiring access to high resolution
second-level data. For the device energy model, SmartSim
relies on a library of device models we created based on real
trace data. To the best of our knowledge, SmartSim is the first
device-accurate energy data simulator intended to support the
development and study of new energy data analytics.

We are publicly releasing SmartSim as a tool for re-
searchers.1 SmartSim integrates with the recently released
NILM Toolkit (NILM-TK) [3] in that it generates trace files
in NILM-TK format, which is based on the HDF5 binary
file format. NILM-TK includes canonical implementations of
well-known NILM algorithms, including Hart’s original com-
binatorial optimization (CO) algorithm [15] and one based on
applications of Factorial Hidden Markov Models (FHMM) [5],

1See https://github.com/sustainablecomputinglab/smartsim/
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Fig. 1. Modern homes operate complex loads, resulting in a highly stochastic
power profile that complicates energy data analytics.

[16]. NILM-TK also includes support for the wide variety of
accuracy metrics used when evaluating NILM algorithms.

In this paper, we describe the SmartSim tool, its design
methodology, its basic data pipeline, as well as different
potential use cases and areas for improvement and further
work. We then use the tool to generate energy traces for
a simulated home, leverage NILM-TK to analyze the data
using the CO and FHMM NILM algorithms, and compare
the results to the results of the algorithms for both the REDD
dataset and the Smart* dataset, which are the two publicly-
available datasets with second-level resolution that are closest
to being complete. Our results indicate that SmartSim yields
quantitatively similar results for these NILM algorithms as
when using real datasets, while producing energy traces that
also are qualitatively similar.

II. BACKGROUND AND MOTIVATION

The number, diversity, and complexity of electrical devices
in homes continues to increase. A typical home may now
have as many as 100 loads. Many of these loads may be
low power, e.g., alarm clocks, nightlights, phone chargers,
etc., but they contribute to noise that complicates energy data
analytics. In addition, devices are increasingly diverse: many
homes now operate a variety of networked electronic devices
in addition to devices with simple motors, e.g., refrigerators,
and heating elements, e.g., ovens, which are also generally
compute-driven. These devices are complex in that their power
usage is programmatically regulated by internal computers. As
a result, these devices often do not exhibit clear edges due to
distinct power state transitions, but instead vary their power
continuously or operate numerous distinct internal loads.

To illustrate, Figure 1 shows the complexity of a home’s per-
second power usage over one day (a), as well as the power
usage and real-reactive scatterplot. The data is from Home A
of the public Smart* dataset [8]. Many energy data analytics,
including many previously proposed NILM algorithms, do
not account for the complexity of power usage in modern
homes. The techniques generally assume the presence of only
a few simple devices [17]. The primary reason for this is
the difficulty in collecting both aggregate power data from a



home, as well as data from each of its individual loads. Along
with the deployment of smart meters, there has been an effort
to publicly release datasets. While useful, the availability of
public datasets only enables researchers to compare the perfor-
mance of different algorithms on common datasets. However,
public datasets do not enable researchers to rigorously evaluate
the energy data characteristics that affect accuracy.

There exist a wide variety of analytics techniques proposed
and evaluated on various datasets. For example, recent work
identifies 18 different NILM algorithms from prior work [2].
However, researchers have generally not evaluated these tech-
niques to understand what characteristics of energy data and
devices affect their performance. Recent work comparing
different NILM algorithms on many public datasets indicates
widely different performance among algorithms [3]. The only
way to improve upon these existing algorithms (and other
energy data analytics) is to better understand the charac-
teristics of energy data that affect their performance, and
then focus on optimizing for those particular characteristics.
Unfortunately, public datasets, while useful, do not provide
the means to alter a home’s energy data characteristics in
a controlled fashion to understand the impact on accuracy,
or to understand performance on homes that have different
characteristics from those in the dataset.

III. SMARTSIM DESIGN

SmartSim generates per-second traces of average power
usage for simulated homes that are device accurate in that
the simulated home trace is the sum of individual devices in
the home. SmartSim’s goal is to enable researchers to control
the energy data characteristics of simulated homes to evaluate
what aspects of a home’s energy use affect the performance
and accuracy of energy data analytic techniques. Thus, Smart-
Sim relieves analytics researchers from the task of instrument-
ing multiple homes to gather energy data.SmartSim’s design
includes multiple phases that users configure to generate a
simulated home trace. Figure 2 shows SmartSim’s pipeline.

First, the user must choose the set of devices in the home.
Users may choose devices from a library of device models
that comes with SmartSim, or may provide their own device
models. SmartSim models devices based on a well-defined
modeling methodology proposed in prior work [14]. Thus,
users may add new devices based on data they have collected
themselves, e.g., by applying this methodology to construct a
SmartSim-compliant model of a device. Users may also choose
to alter the parameters of existing device models in the library,
either to better model a new device or to evaluate how the
change affects the performance of a particular energy analytic
technique. We discuss device energy models further below.
In addition to choosing specific devices, users may also select
models for background noise, which encapsulate the aggregate
power use of the large number of low-power loads that are
often not metered or modeled in public datasets, but add to the
complexity of real home energy data and significantly affect
the performance of energy data analytics. Users may either
model background noise using a well-known distribution, e.g.,

gaussian, or leverage empirical data to derive a model of
background noise. Explicitly simulating background noise is
important in determining the resilience of NILM algorithms
and other energy data analytics to unmetered devices that lack
training data, which is common in real deployments.

Since selecting a large number of devices for a simulated
home may be cumbersome, SmartSim also provides template
homes that are already pre-populated with a set of devices,
such as a canonical apartment with a few devices and low
background noise or a four bedroom home with many devices
and high level of background noise. After selecting the set of
devices in the home, the user next selects the usage pattern for
each device. As we discuss below, the usage pattern dictates
a specified distribution for duration, frequency, and timing
of device use that SmartSim draws from when determining
a device’s operation. Users may select standard well-known
distributions, e.g., gaussian, normal, etc., for each dimension
of use, or empirically derive usage pattern distributions from
known data. As above, SmartSim includes a library of device
usage pattern distributions for different time intervals, e.g.,
day-long, week-long, etc.

Finally, after determining the set of devices, their device
energy models and usage pattern distributions, and the back-
ground noise (contributed by unmetered devices), SmartSim
generates random device-accurate traces that conform to the
models and distributions.

A. Device Energy Modeling

We leverage an empirical modeling methodology from prior
work to generate device energy models [14]. The methodology
classifies the energy usage pattern of different devices based on
how they consume AC power. AC devices are either resistive,
inductive, capacitive, or non-linear based on how they their
current waveform aligns with the phase of the sinusoidal AC
voltage waveform. Resistive, inductive, and non-linear loads
exhibit a small set of common characteristics that can be used
to model their fine-grained energy usage over time [14]. These
characteristics are complete in that the power usage of every
load is composed of them, as described below.
• On-off Models are simple devices that exhibit one or

more fixed power states, and largely include low-power
resistive devices, such as incandescent lighting.

• On-off Growth/Decay Models exhibit a steep rise in
power when activated and a smooth growth or decay from
the initial peak to a stable state. Growth and decay are
logarithmic or exponential functions, respectively, where
the growth/decay parameter is device-specific. High-
power resistive loads and inductive loads, including AC
motors and compressors, follow an on-off growth/decay
model.

• Stable Min-Max Models exhibit a stable maximum or
minimum state with frequent large deviations, e.g., every
few seconds, from the stable state. The magnitude and
frequency of the deviations are random variables with
distributions specific to each device. Non-linear loads that
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Fig. 2. Depiction of SmartSim’s data generation pipeline from device modeling to trace generation.

are programmable, e.g., computers, or include thermo-
static controllers often follow stable min-max models.

• Random Range Models draw power randomly within
a fixed bounded range when active. These devices are
defined by a bounded range where power usage is a
random walk between the bounds. High-power non-linear
loads, such as microwaves, follow a random range model.

In addition to the basic device usage models above, Smart-
Sim also defines compound models for cyclic and composite
devices. Cyclic devices operate at regular intervals based on
a timer or a thermostat, while composite devices include
multiple sub-loads, which may each follow different basic
models above. For example, dryers include a resistive heating
element and an inductive motor with different basic models.
SmartSim includes an initial library of device energy models
where each device is a composition of one or more of the
basic models above. Each device model defines model type
and the its device-specific parameters.

In addition to the individual device energy models, Smart-
Sim also includes support for inserting sensor error into traces.
Most sensors exhibit ≥1% error, which may influence energy
data analytics. By default, SmartSim injects a 1% error in
power values uniformly distributed around the correct value,
such that the average power is equal over the trace period.
We choose 1% because this is the rated error for the sensors
we use. In addition to sensor errors, SmartSim is also capable
of inserting data dropouts to emulate the imperfect data real
systems often gather; dropouts are periods where the sensor
is offline and no data is collected. Evaluating the effect of
data dropouts on energy data analytics is important in practice,
since real systems routinely experience significant dropouts, as
discussed in prior work [3].

B. Device Usage Modeling

While the modeling methodology above determines how
a particular device uses energy when on, it does not define
a device’s usage pattern: that is, the frequency, timing, and
duration of a device’s use over time. In some cases, device
usage modeling is not necessary, since some devices operate
in the background without user intervention. For example, the
usage pattern of refrigerators, air conditioners, heaters, etc.,
are covered by the cyclical model above with cycles that are
relatively static due to the use of timers or vary slightly due to
the environment. However, the majority of devices in a home
are interactive such that their use is based on the pattern of
user activity in the home. Interactive devices may be used in

a variety of different ways. For example, consider the usage
pattern of a television, which users could turn on frequently for
a short period of time and then turn off, or turn on infrequently
for long periods of time before turning off.

The usage patterns of interactive devices are likely to impact
the accuracy of energy data analytics, since the more on/off
transitions that occur within a home the more stochasticity
in the data, and the likelihood that two or more power state
transitions will simultaneously occur. In addition, energy data
analytics are often able to easily identify repeated cyclical
patterns in data, e.g., by analyzing data the frequency domain.
For each interactive device, SmartSim defines a distribution for
its frequency, duration, and timing. In our initial library, we
empirically derive these distributions from the Smart* dataset.
That is, we compute histograms that specify the probability
of a specific time-of-use (within each hour), frequency of use
(number of times used in a day), and duration of use.

When generating a device’s energy usage pattern for a given
day, SmartSim first determines the number of times the device
is used in a day by drawing a number from the frequency
distribution. SmartSim then determines the duration of use by
drawing from the duration distribution. While the frequency,
duration, and time-of-use may be dependent for some devices,
we leave more sophisticated device-specific modeling of usage
patterns to future work. SmartSim is currently able to generate
day-long and week-long traces. For week-long traces, the
distributions above are distinct for each day, enabling them
to capture weekly patterns, i.e., certain devices are used
differently on specific days of the week.

IV. IMPLEMENTATION

We implement SmartSim in 845 lines-of-code (LOC) in
python and integrate it with the NILM-TK toolkit to outputs
trace in NILM-TK format, such that users can directly run
NILM-TK algorithms on the data. NILM-TK implements the
two most prominent NILM algorithms based on the Combi-
natorial Optimization (CO) algorithm proposed by Hart [15]
and an algorithm based on Factorial Hidden Markov Models
(FHMM) proposed more recently [5], [16]. Our initial library
includes 25 different devices, usage patterns, and background
noise modeled after data and usage patterns from the Smart*
dataset [8]. SmartSim also includes tools to derive and insert
new models. For example, SmartSim includes a tool that is
able to extract the histogram of frequency, duration, and time-
of-use from existing time-series power data. While our current
library enables a wide range of experiments on energy analyt-



ics, as part of recent work on automated model derivation, we
are also expanding the set of devices in our library.

V. EVALUATION

SmartSim’s goal is to generate device-accurate home energy
traces that are qualitatively and quantitatively similar to traces
of real energy data. Our qualitative comparison is primarily
visual, as depicted in Figures 3-5, and demonstrates that
SmartSim’s traces appear similar to traces of real data for
a variety of devices. Figures 3-5 demonstrates real data and
simulated data from SmartSim are qualitatively similar for a
variety of different devices. Note that the simulated data here
is generated by SmartSim dynamically from a parameterized
device model and not from pre-existing data.

Since there is no metric to quantify the realism of a
simulated energy trace, our quantitative evaluation instead
compares the results of existing NILM algorithms using both
real datasets, e.g., REDD [5] and Smart* [8], and SmartSim’s
simulated datasets to demonstrate that they yield comparable
results. In particular, we use the NILM-TK implementations
of the Combinatorial Optimization (CO) algorithm [15] from
Hart’s original work on NILM and the more recent approach
based on Factorial Hidden Markov Models (FHMM) [5], [16].

We use SmartSim to construct a house that mimics Home
A from the Smart* dataset [8] in that it uses models of the
same devices and mimics its usage patterns. Home A is 1700
square foot with four full-time occupants. The home has a
total of eight rooms including its basement. The main level
has a living room, bedroom, kitchen, and bathroom, while
the second story has two bedrooms and a bathroom. Major
appliances include an electric dryer and washing machine, heat
recovery ventilation (HRV) unit, dishwasher, refrigerator, and
freezer. Home A has 35 wall switches, which primarily control
room and closet lighting; switches also control an exhaust
fan in each bathroom and the garbage disposal. Home A can
represent the most regular residential houses.

Importantly, note that the device-accurate traces SmartSim
generates differ from the real data, since they are randomly
generated based on the frequency, duration, and time-of-use
distributions for each device. Thus, we expect the results
of the NILM algorithms to differ somewhat. Intuitively, if
SmartSim’s models are too simple, then the NILM algorithms
should be able to perform better, i.e., have higher accuracy,
on the simulated data. In contrast, if the results are similar
in magnitude on SmartSim, Smart*, and REDD, then the
simulated data has similar complexity.

Before presenting our results, we first discuss NILM eval-
uation metrics. While there are many evaluation metrics used
in prior work (see [3], [2] for a survey), we focus on the
Normalized Error in Assigned Power (NEP), the F1-score, and
the Matthews Correlation Coefficient (MCC). The NEP metric
is the error between the device’s actual and inferred power
usage, normalized by its total energy usage. If p̃i(t) denotes
device pi’s actual power usage at time t and pi(t) denotes its
inferred power usage, then we define NEP as shown below.

Dataset Name F1 NEP MCC Traning Time Disaggregate Time

REDD (CO) 0.38 1.66 0.110 3.27 3.18

REDD (FHMM) 0.38 1.51 0.077 385.17 2.07

Smart* (CO) 0.80 3.81 0.083 9.84 2.86

Smart* (FHMM) 0.89 1.79 0.021 814.71 1.63

SmartSim (CO) 0.76 0.87 0.281 9.34 3.58

SmartSim (FHMM) 0.79 0.74 0.303 776.19 2.82

SmartSim+Noise(CO) 0.54 1.99 0.033 10.01 3.05

SmartSim+Noise (FHMM) 0.63 1.01 0.042 934.93 2.36

TABLE I
CO AND FHMM RESULT COMPARISON ON REDD, SMART* AND

SIMULATOR.

δ =

∑T
t=1 |p̃i(t)− pi(t)|∑T

t=1 p̃i(t)
(1)

NEP is a measure of the reading-to-reading error in a
NILM algorithm’s inference for a given device. NEP may be
computed for each device, or over an entire home by summing
all device’s inferred power usage and comparing it with the
home’s actual power usage. While there is no upper bound
on NEP, a value of one indicates that errors are equal to the
device’s energy usage. In general, a NEP near one is not good,
since simply inferring a device’s energy usage to be zero at
each time t results a value of one.

The F1-score and MCC metrics apply only to binary clas-
sifiers and thus assume each device is either on or off at
any time t. Thus, at any time t, the state of an inferred
device may be either a True Positive (TP), a True Negative
(TN), a False Positive (FP), or a False Negative (FN). The
fraction of time each state occurs defines a confusion matrix.
The F1-score is then the harmonic mean of precision (or
TP/(TP+FP)) and recall (or TP/(TP+FN)), where values range
from 1.0 to 0.0 with 1.0 being the best. However, precision and
recall only quantify the benefit of returning positive results,
and not the benefit of correctly inferring negative results
(or true negatives). A more balanced single measure of a
binary classifier’s overall performance is the MCC, as shown
below, which considers all possible outcomes of a binary
classifier. MCC values are in the range −1.0 to 1.0, with 1.0 is
perfect inference, 0.0 is random inference, and −1.0 indicates
detection is always wrong.

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2)

Table I shows the results of running the CO and FHMM
NILM algorithms on the REDD dataset, Smart* dataset, and
data generated from SmartSim (both with and without back-
ground noise). For CO, we disaggregate every device, while
for FHMM we disaggregate only the top five devices in terms
of aggregate energy usage, as is typical when using the FHMM
approach [3]. FHMM is memory-intensive with running time
that is exponential in the number of devices, which makes
disaggregating a large number of devices intractable.

In this case, the F1, MCC, and NEP are the average over
all the devices for CO and the average over only the top five
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Fig. 3. Examples of real and simulated device data.
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Fig. 4. Examples of real and simulated device data.
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Fig. 5. Examples of real and simulated device data. Note that the characteristics of SmartSim’s generated data, including running time, usage pattern, etc.,
are not fixed, but randomly generated based on device models.

devices for FHMM. The magnitude of the results on the REDD
and Smart* datasets are similar as in prior work [3], including
the training and disaggregation times. The results also indicate
the need for better understanding NILM algorithms, as there is
little consistency when using the F1, NEP, and MCC metrics.
For example, REDD using CO has a much worse F1-score
than Smart* using CO, but a much better NEP, while the
MCCs are similar. The accuracy results from SmartSim are
similar in magnitude to those from Smart* in terms of the
F1-score and MCC, although the NEP is slightly better using
the simulated data. In particular, the MCC for Smart* using
both CO and FHMM is near that of SmartSim with background
noise added. Interestingly, while both NILM algorithms on the
Smart* and SmartSim datasets report good F1-scores above
0.5 and nearly 0.9 in one case, their MCCs are near zero,
which indicates random detection. This result indicates the
F1-score, while common, may not be an adequate metric
for evaluating NILM accuracy, as it does not consider the
algorithms’ high inaccuracy in predicting negative results, i.e.,
true negatives.

Of course, averaging the F1-score and MCC over many
devices may mask large discrepancies between devices that

Device Name Smart* (FHMM) SmartSim (FHMM)

Dryer 0 0

LivingRoomOutlets 0 0

FurnaceHRV -0.006 0.063

BedroomOutlets -0.146 0

DiningRoomOutlets -0.159 0

TABLE II
DEVICE-LEVEL FHMM RESULT COMPARISON ON SMART* AND

SIMULATOR USING MCC.

influence the average. As a result, we also break down the
MCC and F1-score for the top five devices using the FHMM
algorithm from recent work [5], [16], [3]. Tables II and III
shows the results, which demonstrate that the MCC and F1-
score for both Smart* and SmartSim’s data are similar in
magnitude for most of the devices.

VI. RELATED WORK

There is significant prior work on energy data analytics,
including NILM [2]. In many cases, the authors do not even
evaluate their algorithms on real data due to the difficulty in
collecting ground truth data from many devices in a home.
In cases where prior work does evaluate the techniques on



Device Name Smart* (FHMM) SmartSim (FHMM)

Dryer 0.418 0.118

LivingRoomOutlets 0.999 0.971

FurnaceHRV 0.674 0.490

BedroomOutlets 0.963 0.304

DiningRoomOutlets 0.999 0.284

TABLE III
DEVICE-LEVEL FHMM RESULT COMPARISON ON SMART* AND

SIMULATOR USING F1-SCORE.

real data, the authors do not study what characteristics of the
data affect performance and accuracy, but rather simply report
the results. Recent work has shown widely disparate results
for different algorithms on different homes using different
metrics. SmartSim’s goal is to address these problems by
enabling researchers to study energy data analytic performance
by precisely controlling the data characteristics. To the best of
our knowledge, SmartSim is the first device-accurate energy
data simulator intended to support the development and study
of new energy data analytics. While there has been some prior
work on energy data modeling, it has been in the context of
grid modeling for demand-response [18] and home modeling
for distributed battery deployments [19].

VII. CONCLUSION

Research on energy data analytics is a highly active area
due to the proliferation of smart meters. However, researchers
currently do not have the tools to rigorously evaluate their
techniques. Publicly-available datasets, of which there are few,
are incomplete and do not enable researchers to control the
energy usage characteristics of a home to understand its effect
on performance. SmartSim addresses the problem by enabling
researchers to generate device-accurate energy data traces for
simulated homes. In this paper, we integrate SmartSim with
NILM-TK, a publicly-available NILM toolkit, and compare its
synthetically generated traces with those from a real home to
show they yield similar results for representative analytics.
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