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Abstract—This paper presents PRESTO, a novel two-tier sensor
data management architecture comprising proxies and sensors
that cooperate with one another for acquiring data and processing
queries. PRESTO proxies construct time-series models of observed
trends in the sensor data and transmit the parameters of the model
to sensors. Sensors check sensed data with model-predicted values
and transmit only deviations from the predictions back to the
proxy. Such a model-driven push approach is energy-efficient,
while ensuring that anomalous data trends are never missed.
In addition to supporting queries on current data, PRESTO
also supports queries on historical data using interpolation and
local archival at sensors. PRESTO can adapt model and system
parameters to data and query dynamics to further extract energy
savings. We have implemented PRESTO on a sensor testbed com-
prising Intel Stargates and Telos Motes. Our experiments show
that in a temperature monitoring application, PRESTO yields one
to two orders of magnitude reduction in energy requirements over
on-demand, proactive or model-driven pull approaches. PRESTO
also results in an order of magnitude reduction in query latency
in a 1% duty-cycled five hop sensor network over a system that
forwards all queries to remote sensor nodes.

Index Terms—Data management, model-driven push, sensor
networks, time-series models.

I. INTRODUCTION

A. Motivation

N ETWORKED data-centric sensor applications have
become popular in recent years. Sensors sample their

surrounding physical environment and produce data that is then
processed, aggregated, filtered, and queried by the application.
Sensors are often untethered, necessitating efficient use of their
energy resources to maximize application lifetime. Conse-
quently, energy-efficient data management is a key problem in
sensor applications.

Data management approaches in sensor networks have cen-
tered around two competing philosophies. Early efforts such as
Directed Diffusion [10] and Cougar [21] espoused the notion
of the sensor network as a database. The framework assumes
that intelligence is placed at the sensors and that queries are
pushed deep into the network, possibly all the way to the re-
mote sensors. Direct querying of remote sensors is energy ef-
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ficient, since query processing is handled at (or close to) the
data source, thereby reducing communication needs. However,
the approach assumes that remote sensors have sufficient pro-
cessing resources to handle query processing, an assumption
that may not hold in untethered networks of inexpensive sensors
(e.g., Berkeley Motes [18]). In contrast, efforts such as TinyDB
[12] and acquisitional query processing [3] from the database
community have adopted an alternate approach. These efforts
assume that intelligence is placed at the edge of the network,
while keeping the sensors within the core of the network simple.
In this approach, data is pulled from remote sensors by edge
elements such as base-stations, which are assumed to be less
resource- and energy-constrained than remote sensors. Sensors
within the network are assumed to be capable of performing
simple processing tasks such as in-network aggregation and fil-
tering, while complex query processing is left to base stations
(also referred to as micro-servers or sensor proxies). In acqui-
sitional query processing [3], for instance, the base-station uses
a spatio-temporal model of the data to determine when to pull
new values from individual sensors; data is refreshed from re-
mote sensors whenever the confidence intervals on the model
predictions exceed query error tolerances.

While both of these philosophies inform our present work,
existing approaches have several drawbacks:

1) Need to Capture Unusual Data Trends: Sensor applica-
tions need to be alerted when unusual trends are observed in
the sensor field; for instance, a sudden increase in temperature
may indicate a fire or a break-down in air-conditioning equip-
ment. Although rare, it is imperative for applications, particu-
larly those used for monitoring, to detect these unusual patterns
with low latency. Both TinyDB [12] and acquisitional query
processing [3] rely on a pull-based approach to acquire data
from the sensor field. A pure pull-based approach can never
guarantee that all unusual patterns will be always detected, since
the anomaly may be confined between two successive pulls. Fur-
ther, increasing the pull frequency to increase anomaly detection
probability has the harmful side-effect of increasing energy con-
sumption at the untethered sensors.

2) Support for Archival Queries: Many existing efforts focus
on querying and processing of current (live) sensor data, since
this is the data of most interest to the application. However, sup-
port for querying historical data is also important in many ap-
plications such as surveillance, where the ability to retroactively
“go back” is necessary, for instance, to determine how an in-
truder broke into a building. Similarly, archival sensor data is
often useful to conduct postmortems of unusual events to better
understand them for the future. Architectures and algorithms for
efficiently querying archival sensor data have not received much
attention in the literature.
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3) Adaptive System Design: Long-lived sensor applications
need to adapt to data and query dynamics while meeting
user performance requirements. As data trends evolve and
change over time, the system needs to adapt accordingly to
optimize sensor communication overhead. Similarly, as the
workload—query characteristics and error tolerance—changes
over time, the system needs to adapt by updating the parameters
of the models used for data acquisition. Such adaptation is key
for enhancing the longevity of the sensor application.

B. Research Contributions

This paper presents PREdictive STOrage (PRESTO), a
two-tier sensor architecture that comprises sensor proxies at
the higher tier, each controlling tens of remote sensors at the
lower tier. PRESTO proxies and sensors interact and coop-
erate for acquiring data and processing queries [4]. PRESTO
strives to achieve energy efficiency and low query latency by
exploiting resource-rich proxies, while respecting constraints
at resource-poor sensors. Like TinyDB, PRESTO puts intel-
ligence at the edge proxies while keeping the sensors inside
the network simple. A key difference though is that PRESTO
endows sensors with the ability to asynchronously push data
to proxies rather than solely relying on pulls. Our design of
PRESTO has led to the following contributions.

1) Model-Driven Push: A key novelty of PRESTO is the
use of a feedback-based model-driven push approach to support
queries in an energy-efficient, accurate and low-latency manner.
PRESTO proxies construct a model that captures correlations
in the data observed at each sensor. The remote sensors check
the sensed data against this model and push data only when the
observed data deviates from the values predicted by the model,
thereby capturing anomalous trends. Such a model-driven push
approach reduces communication overhead by only pushing de-
viations from the observed trends, while guaranteeing that un-
usual patterns in the data are never missed. An important re-
quirement of our model is that it should be very inexpensive to
check at resource-poor sensors, even though it can be expen-
sive to construct at the resource-rich proxies. PRESTO employs
seasonal ARIMA-based time series models to satisfy this asym-
metric requirement.

2) Support for Archival Queries: PRESTO also differs from
existing sensor data management approaches in its support for
queries on historical data using a novel combination of predic-
tion, interpolation, and local archival. By associating confidence
intervals with the model predictions and caching values pre-
dicted by the model in the past, a PRESTO proxy can directly
respond to such queries using cached data so long as it meets
query error tolerances. Further, PRESTO employs interpolation
methods to progressively refine past estimates whenever new
data is fetched from the sensors. PRESTO sensors also log all
observations on relatively inexpensive flash storage; the proxy
can fetch data from sensor archives to handle queries whose pre-
cision requirements can not be met using the local cache. Thus,
PRESTO exploits the proxy cache to handle archival queries lo-
cally whenever possible and resorts to communication with the
remote sensors only when absolutely necessary.

3) Adaptation to Data and Query Dynamics: Long-term
changes in data trends are handled by periodically refining the

parameters of the model at the proxy, which improves prediction
accuracy and reduces the number of pushes. Changes in query
precision requirements are handled by varying the threshold
used at a sensor to trigger a push. If newer queries require
higher precision (accuracy), then the threshold is reduced to
ensure that small deviations from the model are reported to the
proxy, enabling it to respond to queries with higher precision.
Overall, PRESTO proxies attempt to balance the cost of pushes
and the cost of pulls for each sensor.

We have implemented PRESTO using a Stargate proxy and
Telos Mote sensors. We demonstrate the benefits of PRESTO
using an extensive experimental evaluation. Our results show
that PRESTO can scale up to one hundred Motes per proxy.
When used in a temperature monitoring application, PRESTO
imposes an energy requirements that is one to two orders of
magnitude less than existing techniques that advocate on-de-
mand, proactive, or model-driven pulls. At the same time, the
average latency for queries is within six seconds for a 1% duty-
cycled five hop sensor network, which is an order of magnitude
less than a system that forwards all queries to remote sensor
nodes, while not significantly more than a system where all
queries are answered at the proxy.

The rest of this paper is structured as follows. Section II pro-
vides an overview of PRESTO. Sections III and IV describe the
design of the PRESTO proxy and sensors, respectively, while
Section V presents the adaptation mechanisms in PRESTO.
Sections VI and VII present our implementation and our ex-
perimental evaluation. Finally, Sections Sections VIII and IX
discuss related work and our conclusions.

II. SYSTEM ARCHITECTURE

1) System Model: PRESTO envisions a two-tier data man-
agement architecture comprising a number of sensor proxies,
each controlling several tens of remote sensors (see Fig. 1).
Proxies at the upper tier are assumed to be rich in computational,
communication, and storage resources and can use them contin-
uously. The task of this tier is to gather data from the lower tier
and answer queries posed by users or the application. A typ-
ical proxy configuration may be comprised of an Intel Stargate1

node with multiple radios—an 802.11 radio that connects it to
an IP network and a low-power 802.15.4 radio that connects
it to sensors in the lower tier. Proxies are assumed to be teth-
ered or powered by a solar cell. A typical deployment will con-
sist of multiple geographically distributed proxies, each man-
aging tens of sensors in its vicinity. In contrast, PRESTO sen-
sors are assumed to be low-power nodes, such as Telos Motes
[17], equipped with one or more sensors, a micro-controller,
flash storage and a wireless radio. The task of this tier is to sense
data, transmit it to proxies when appropriate, while archiving
all data locally in flash storage. The primary constraint at this
tier is energy—sensor nodes are assumed to be untethered, and
hence battery-powered, with a limited lifetime. Sensors are as-
sumed to be deployed in a multi-hop configuration and are ag-
gressively duty-cycled; standard multi-hop routing and duty-cy-
cled MAC protocols can be used for this purpose. Since commu-
nication is generally more expensive than processing or storage

1Stargate Platform. Available online at: http://platformx.sourceforge.net/
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Fig. 1. The PRESTO data management architecture.

[5], PRESTO sensors attempt to trade communication for com-
putation or storage, whenever possible.

2) System Operation: Assuming such an environment, each
PRESTO proxy constructs a model of the data observed at each
sensor. The model uses correlations in the past observations to
predict the value likely to be seen at any future instant . The
model and its parameters are transmitted to each sensor. The
sensor then executes the model as follows: at each sampling in-
stant , the actual sensed value is compared to the value pre-
dicted by the model. If the difference between the two exceed
a threshold, the model is deemed to have “failed” to accurately
predict that value and the sensed value is pushed to the proxy.
In contrast, if the difference between the two is smaller than
a threshold, then the model is assumed to be accurate for that
time instant. In this case, the sensor archives the data locally
in flash storage and does not transmit it to the proxy. Since the
model is also known to the proxy, the proxy can compute the
predicted value and use it as an approximation of the actual ob-
servation when answering queries. Thus, so long as the model
accurately predicts observed values, no communication is nec-
essary between the sensor and the proxy; the proxy continues to
use the predictions to respond to queries. Further, any deviations
from the model are always reported to the proxy and anomalous
trends are quickly detected as a result.

Given such a model-driven push technique, a query arriving
at the proxy is processed as follows. PRESTO assumes that each
query specifies a tolerance on the error it is willing to accept. Our
models are capable of generating a confidence interval for each
predicted value. The PRESTO proxy compares the query error
tolerance with the confidence intervals and uses the model pre-
dictions so long at the query error tolerance is not violated. If the
query demands a higher precision, the proxy simply pulls the ac-
tual sensed values from the remote sensors and uses these values
to process the query. Every prediction made by the model is
cached at the proxy; the cache also contains all values that were
either pushed or pulled from the remote sensors. This cached
data is used to respond to historical queries so long as query

Fig. 2. The PRESTO proxy comprises a prediction engine, query processor and
a cache of predicted and real sensor values. The PRESTO sensor comprises a
model checker and an archive of past samples with the model predictions.

precision is not violated, otherwise the corresponding data is
pulled from the local archive at the sensors.

Since trends in sensed values may change over time, a model
constructed using historical data may no longer reflect current
trends. A novel aspect of PRESTO is that it updates the model
parameters online so that the model can continue to reflect cur-
rent observed trends. Upon receiving a certain number of up-
dates from a sensor, the proxy uses these new values to refine
the parameters of the model. These parameters are then con-
veyed back to the corresponding sensor, when then uses them
to push subsequent values. Thus, our approach incorporates ac-
tive feedback between the proxy and each sensor—the model
parameters are used to determine which data values get pushed
to the proxy, and the pushed values are used to compute the new
parameters of the model. If the precision demanded by queries
also changes over time, the thresholds used by sensors to deter-
mine which values should be pushed are also adapted accord-
ingly—higher precision results in smaller thresholds. Next, we
present the design of the PRESTO proxy and sensor in detail.

III. PRESTO PROXY

The PRESTO proxy consists of four key components (see
Fig. 2): (i) modeling and prediction engine, which is responsible
for determining the initial model parameters, periodic refine-
ment of model parameters, and prediction of data values likely
to be seen at the various sensors, (ii) query processor, which
handles queries on both current and historical data, (iii) local
cache, which is a cache of all data pushed or pulled by sensors
as well as all past values predicted by the model, and (iv) a fault
detector, which detects sensor failures. We describe each com-
ponent in detail in this section.

A. Modeling and Prediction Engine

The goal of the modeling and prediction engine is to deter-
mine a model, using a set of past sensor observations, to forecast
future values. The key premise is that the physical phenomena
observed by sensors exhibit long-term and short-term correla-
tions and past values can be used to predict the future. This is
true for weather phenomena such as temperature that exhibit
long-term seasonal variations as well as short-term time-of-day
and hourly variations. Similarly phenomena such as traffic at
an intersection exhibit correlations based on the hour of the
day (e.g., traffic peaks during “rush” hours) and day of the
week (e.g., there is less traffic on weekends). PRESTO proxies
rely on seasonal ARIMA models; ARIMA is a popular family
of time-series models that are commonly used for studying
weather and stock market data. Seasonal ARIMA models (also
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known as SARIMA) are a class of ARIMA models that are suit-
able for data exhibiting seasonal trends and are well-suited for
sensor data. Further they offer a way to deal with non-stationary
data i.e., whose statistical properties change over time [1]. Last,
as we demonstrate later, while seasonal ARIMA models are
computationally expensive to construct, they are inexpensive
to check at the remote sensors—an important property we seek
from our system. The rest of this section presents the details of
our SARIMA model and its use within PRESTO.

1) Prediction Model: A discrete time series can be rep-
resented by a set of time-ordered data ,
resulting from observation of some temporal physical phenom-
enon such as temperature or humidity. Samples are assumed
to be taken at discrete time instants . The goal of
time-series analysis is to obtain the parameters of the under-
lying physical process that governs the observed time-series
and use this model to forecast future values.

PRESTO models the time series of observations at a sensor as
an Autoregressive Integrated Moving Average (ARIMA) process.
In particular, the data is assumed to conform to the Box-Jenkins
SARIMA model [1]. While a detailed discussion of SARIMA
models is outside the scope of this paper, we provide the in-
tuition behind these models for the benefit of the reader. An
SARIMA process has four components: auto-regressive (AR),
moving-average (MA), one-step differencing, and seasonal dif-
ferencing. The AR component estimates the current sample as a
linear weighted sum of previous samples; the MA component
captures relationship between prediction errors; the one-step
differencing component captures relationship between adjacent
samples; and the seasonal differencing component captures the
diurnal, monthly, or yearly patterns in the data. In SARIMA,
the MA component is modeled as a zero-mean, uncorrelated
Gaussian random variable (also referred to as white noise). The
AR component captures the temporal correlation in the time se-
ries by modeling a future value as a function of a number of past
values.

In its most general form, the Box-Jenkins seasonal model is
said to have an order ; the order of the
model captures the dependence of the predicted value on prior
values. In SARIMA, and are the orders of the auto-regres-
sive (AR) and moving average (MA) processes, and are
orders of the seasonal AR and MA components, is the order
of differencing, is the order of seasonal differencing, and
is the seasonal period of the series. Thus, SARIMA is family of
models depending on the integral values of . 2

2) Model Identification and Parameter Estimation: Given
the general SARIMA model, the proxy needs to determine
the order of the model, including the order of differential and
the order of auto-regression and moving average. That is, the
values of , , , , and need to be determined. This step
is called model identification and is typically performed once

2While not essential for our discussion, we present the general Box-Jenkins
seasonal model for sake of completeness. The general model of order ��� �� ���
������� is given by the equation

� �� � � 	 ��� � ����� ���� � 
 � � ���� �� �� (1)

where � is the backward operator such that � 
 � 
 , 
 is the seasonal
period, �, � are parameters of the model, and � is the prediction error.

during system initialization. Model identification is well docu-
mented in most time series textbooks [1] and we only provide
a high level overview here. Intuitively, since the general model
is actually a family of models, depending on the values of ,
, etc., this phase identifies a particular model from the family

that best captures the variations exhibited by the underlying
data. It is somewhat analogous to fitting a curve on a set of
data values. Model identification involves collecting a sample
time series from the field and computing its auto-correlation
function (ACF) and partial auto-correlation function (PACF).
A series of tests are then performed on the ACF and the PACF
to determine the order of the model [1].

Our analysis of temperature traces has shown that the best
model for temperature data is a Seasonal ARIMA of order

. The general model in (1) reduces to

(2)

where and are parameters of this
SARIMA model and capture the variations shown by dif-
ferent temperature traces. is the backward operator and is
short-hand for . is the seasonal period of the
time series and is the prediction error.

When employed for a temperature monitoring application,
PRESTO proxies are seeded with a
SARIMA model. The seasonal period is also seeded. The
parameters and are then computed by the proxy during the
initial training phase before the system becomes operational.
The training phase involves gathering a data set from each
sensor and using the least squares method to estimate the
values of parameters and on a per-sensor basis (see [1]
for the detailed procedure for estimating these parameters).
The order of the model and the values of and are then
conveyed to each sensor. Section V explains how and can
be periodically refined to adapt to any long-term changes in the
sensed data that occurs after the initial training phase.

3) Model-Based Predictions: Once the model order and its
parameters have been determined, using it for predicting future
values is a simple task. The predicted value for time is
simply given as

(3)

where and are known parameters of the model, de-
notes the previous observation, and denotes the
values seen at this time instant and the previous time instant
in the previous season. For temperature monitoring, we use a
seasonal period of one day, and hence, and
represent the values seen yesterday at this time instant and the
previous time instant, respectively. denotes the prediction
error at time (the prediction error is simply the difference
between the predicted and observed value for that instant).

Since PRESTO sensors push a value to the proxy only when
it deviates from the prediction by more than a threshold, the
actual values of , and seen at the sensor
may not be known to the proxy. However, since the lack of a
push indicates that the model predictions are accurate, the proxy
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can simply use the corresponding model predictions as an ap-
proximation for the actual values in (3). In this case, the corre-
sponding prediction error is set to zero. In the event ,

or were either pushed by the sensor or pulled by
the proxy, the actual values and the actual prediction errors can
used in (3).

Both the proxy and the sensors use (3) to predict each sampled
value. At the proxy, the predictions serve as a substitute for the
actual values seen by the sensor and are used to answer queries
that might request the data. At the sensor, the prediction is used
to determine whether to push—the sensed value is pushed only
if the prediction error exceeds a threshold .

Finally, we note the asymmetric property of our model. The
initial model identification and parameter estimation is a com-
pute-intensive task performed by the proxy. Once determined,
predicting a value using the model involves no more than eight
floating point operations (three multiplications and five addi-
tions/subtractions, as shown in (3)). This is inexpensive even on
resource-poor sensor nodes such as Motes and can be approxi-
mated using fixed point arithmetic.

B. Query Processing at a Proxy

In addition to forecasting future values, the prediction engine
at the proxy also provides a confidence interval for each pre-
dicted value. The confidence interval represents a bound on the
error in the predicted value and is crucial for query processing
at the proxy. Since each query arrives with an error tolerance,
the proxy compares the error tolerance of a query with the confi-
dence interval of the predictions, and the current push threshold,
. If the confidence interval is tighter than the error tolerance,

then the predicted values are sufficiently accurate to respond to
the query. Otherwise the actual value is fetched from the re-
mote sensor to answer the query. Thus, many queries can be
processed locally even if the requested data was never reported
by the sensor. As a result, PRESTO can ensure low latencies for
such queries without compromising their error tolerance. The
processing of queries in this fashion is similar to that proposed
in the BBQ data acquisition system [3], although there are sig-
nificant differences in the techniques.

For a Seasonal ARIMA model, the con-
fidence interval of step ahead forecast, is

(4)

where is value of the unit Normal distribution at , is
the variance of 1 step ahead prediction error.

C. Proxy Cache

Each proxy maintains a cache of previously fetched or pre-
dicted data values for each sensor. Since storage is plentiful
at the proxy—microdrives or hard-drives can be used to hold
the cache—the cache is assumed to be infinite and all previ-
ously predicted or fetched values are assumed to be stored at the
proxy. The cache is used to handle queries on historical data—if
requested values have already been fetched or if the error bounds
of cached predictions are smaller than the query error tolerance,
then the query can be handled locally, otherwise the requested

data is pulled from the archive at the sensor. After responding to
the query, the newly fetched values are inserted into the cache
for future use.

A newly fetched value, upon insertion, is also used to im-
prove the accuracy of the neighboring predictions using interpo-
lation. The intuition for using interpolation is as follows. Upon
receiving a new value from the sensor, suppose that the proxy
finds a certain prediction error. Then it is very likely that the
predictions immediately preceding and following that value in-
curred a similar error, and interpolation can be used to scale
those cached values by the prediction error, thereby improving
their estimates. PRESTO proxies currently use two types of in-
terpolation heuristics: forward and backward.

Forward interpolation is simple. The proxy uses (3) to predict
the values and (4) to re-estimate the confidence intervals for all
samples between the newly inserted value and the next pulled or
pushed value. In backward interpolation, the proxy scans back-
wards from the newly inserted value and modifies all cached
predictions between the newly inserted value and the previous
pushed or pulled value. To do so, it makes a simplifying assump-
tion that the prediction error grows linearly at each step, and the
corresponding prediction error is subtracted from each predic-
tion.

(5)

where is the original prediction, is the updated prediction,
denotes the observation instant of the newly inserted value,

is time of the nearest pushed or pulled value before .

D. Failure Detection

Sensors are notoriously unreliable and can fail due hardware/
software glitches, harsh deployment conditions or battery deple-
tion. Our predictive techniques limit message exchange between
a proxy and a sensor, thereby reducing communication over-
head. However, reducing message frequency also affects the la-
tency to detect sensor failures and to recover from them. In this
work, we discuss mechanisms used by the PRESTO proxy to de-
tect sensor failures. Failure recovery can use techniques such as
spatial interpolation, which are outside the scope of this paper.

The PRESTO proxy flags a failure if pulls or feedback mes-
sages are not acknowledged by a sensor. This use of implicit
heartbeats has low communication energy overhead, but pro-
vides an interesting benefit. A pull is initiated by the proxy de-
pending on the confidence bounds, which in turn depends on
the variability observed in the sensor data. Consequently, failure
detection latency will be lower for sensors that exhibit higher
data variability (resulting in more pushes or pulls). For sensors
that are queried infrequently or exhibit low data variability, the
proxy relies on the less-frequent model feedback messages for
implicit heartbeats; the lack of an acknowledgment signals a
failure. Thus, proxy-initiated control or pull messages can be
exploited for failure detection at no additional cost; the failure
detection latency depends on the observed variability and confi-
dence requirements of incoming queries. Explicit heartbeats can
be employed for applications with more stringent needs. There
are other techniques [3] that infer the readings of the failed
sensor based on the spatial correlation. We will consider this
in our future work.
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IV. PRESTO SENSOR

PRESTO sensors perform three tasks: (i) use the model pre-
dictions to determine which observations to push, (ii) maintain
a local archive of all observations, and (iii) respond to pull re-
quests from the proxy.

The PRESTO sensor acts as a mirror for the prediction model
at the proxy—both the proxy and the sensor execute the model
in a completely identical fashion. Consequently, at each sam-
pling instant, the sensor knows the exact estimate of the sampled
value at the proxy and can determine whether the estimate is
accurate. Only those samples that deviate significantly from the
prediction are pushed. As explained earlier, the proxy transmits
all the parameters of the model to each sensor during system
initialization. In addition, the proxy also specifies a threshold

that defines the worst-case deviation in the model prediction
that the proxy can tolerate. Let denote the actual observation
at time and let denote the predicted value computed using
(3). Then,

(6)

As indicated earlier, computation of using (3) involves
reading of a few past values such as from the archive
in flash storage and a few floating point multiplications and
additions, all of which are inexpensive.

PRESTO sensors archive all sensed values into an energy-
efficient NAND flash store; the flash archive is a log of tuples of
the form: . A simple index is maintained to permit
random access to any entry in the log. A pull request from a
proxy involves the use of this index to locate the requested data
in the archive, followed by a read and a transmit.

V. ADAPTATION IN PRESTO

PRESTO is designed to adapt to long-term changes in data
and query dynamics that occur in any long-lived sensor appli-
cation. To enable system operation at the most energy-efficient
point, PRESTO employs active feedback from proxies to sen-
sors; this feedback takes two forms—adaptation to data and
query dynamics.

A. Adaptation to Data Dynamics

Since trends in sensor observation may change over time, a
model constructed using historical data may no longer reflect
current trends—the model parameters become stale and need to
be updated to regain energy-efficiency. PRESTO proxies peri-
odically retrain the model in order to refine its parameters. The
retraining phase is similar to the initial training—all data since
the previous retraining phase is gathered and the least squares
method is used to recompute the model parameters and [1].
The key difference between the initial training and the retraining
lies in the data set used to compute model parameters.

For the initial training, an actual time series of sensor obser-
vations is used to compute model parameters. However, once
the system is operational, sensors only report observations
when they significantly deviate from the predicted values.
Consequently, the proxy only has access to a small subset of
the observations made at each sensor. Thus, the model must
be retrained with incomplete information. The time series used

during the retraining phase contains all values that were either
pushed or pulled from a sensor; all missing values in the time
series are substituted by the corresponding model predictions.
Note that these prior predictions are readily available in the
proxy cache; furthermore, they are guaranteed to be a good
approximation of the actual observations (since these are pre-
cisely the values for which the sensor did not push the actual
observations). This approximate time series is used to retrain
the model and recompute the new parameters.

For the temperature monitoring application that we imple-
mented, the models are retrained at the end of each day.3 The
new parameters and are then pushed to each sensor for fu-
ture predictions. In practice, the parameters need to be pushed
only if they deviate from the previously computed parameters
by a non-trivial amount (i.e., only if the model has actually
changed).

B. Adaptation to Query Dynamics

Just as sensor data exhibits time-varying behavior, query pat-
terns can also change over time. In particular, the query tol-
erance demanded by queries may change over time, resulting
in more or fewer data pulls. The proxy can adapt the value of
the threshold parameter in (6) to directly influence the frac-
tion of queries that trigger data pulls from remote sensors. If
the threshold is large relative to the mean error tolerance of
queries, then the number of pushes from the sensor is small and
the number of pulls triggered by queries is larger. If is small
relative to the query error tolerance, then there will be many
wasteful pushes and fewer pulls (since the cached data is more
precise than is necessary to answer the majority of queries). A
careful selection of the threshold parameter allows a proxy to
balance the number of pushes and the number of pulls for each
sensor.

To handle such query dynamics, the PRESTO proxy uses a
moving window average to track the mean error tolerance of
queries posed on the sensor data. If the error tolerance changes
by more than a pre-defined threshold, the proxy computes a new

and transmits it to the sensor so that it can adapt to the new
query pattern.

VI. PRESTO IMPLEMENTATION

We have implemented a prototype of PRESTO on a multi-tier
sensor network testbed. The proxy tier employs Crossbow Star-
gate nodes with a 400 MHz Intel XScale processor and 64 MB
RAM. The Stargate runs the Linux 2.4.19 kernel and EmStar
release 2.1 and is equipped with two wireless radios, a Cisco
Aironet 340-based 802.11b radio and a hostmote bridge to the
Telos mote sensor nodes using the EmStar transceiver. The
sensor tier uses Telos Mote sensor nodes, each consisting of
a MSP430 processor, a 2.4 GHz CC2420 radio, and 1 MB
external flash memory. The sensor nodes run TinyOS 1.1.14.
Since sensor nodes may be several hops away from the nearest
proxy, the sensor tier employs MultiHopLEPSM multi-hop
routing protocol from the TinyOS distribution to communicate
with the proxy tier.

3Since the seasonal period is set to one day, this amounts to a retraining after
each season.
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1) Sensor Implementation: Our PRESTO implementation on
the Telos Mote involves three major tasks: (i) model checking,
(ii) flash archival, and (ii) data pull. A simple data gathering
task periodically obtains sensor readings and sends the sample
to the model checker. The model checking task uses the most
recent model parameters ( and ) and push delta ( ) obtained
from the proxy to determine if a sample should be pushed to
the proxy as per (6). Each push message to the proxy contains
the id of the mote, the sampled data, and a timestamp recording
the time of the sampling. Upon a pull from the proxy, the model
checking task performs the forward and backward updates to en-
sure consistency between the proxy and sensor view. For each
sample, the archival task stores a record to the local flash that
has three fields: (i) the timestamp when the data was sampled,
(ii) the sample itself, and (iii) the predicted value from the model
checker. The final component of our sensor implementation is
a pull task that, upon receiving a pull request, reads the cor-
responding data from the flash using a temporal index-based
search, and responds to the proxy.

2) Proxy Implementation: At the core of the proxy imple-
mentation is the prediction engine. The prediction engine in-
cludes a full implementation of ARIMA parameter estimation,
prediction and update. The engine uses two components, a cache
of real and predicted samples, and a protocol suite that enables
interactions with each sensor. The proxy cache is a time-series
stream of records, each of which includes a timestamp, the pre-
dicted sensor value, and the prediction error. The proxy uses
one stream per node that it is responsible for, and models each
node’s data separately. The prediction engine communicates
with each sensor using a protocol suite that enables it to provide
feedback and change the operating parameters at each sensor.

Queries on our system are assumed to be posed at the ap-
propriate proxy using either indexing [5] or routing [11] tech-
niques. A query processing task at the proxy accepts queries
from users, checks whether it can be answered by the predic-
tion engine based on the local cache. If not, a pull message is
sent to the corresponding sensor. PRESTO can tolerate time
drift between the proxy and the sensors as long as the drift is
within a sampling period. As the sampling rates increase, more
precise time synchronization would be necessary. However, we
note that in many sensor networks, the data needs to be times-
tamped for later use, so assuming that such a time synchroniza-
tion service is available is reasonable. Furthermore, we note that
recent time synchronization protocols (e.g., [26]) show that pre-
cise timesync can be achieved with very few packets, hence it is
energy-efficient as well

Our proxy implementation includes two enhancements to the
hostmote transceiver that comes with the EmStar distribution.
4First, we implemented a priority-based 64-length FIFO out-
going message queue in the transceiver to buffer pull requests
to the sensors. There are two priority levels—the higher pri-
ority corresponds to parameter feedback messages to the sensor
nodes, and the lower priority corresponds to data pull messages.
Prioritizing messages ensures that parameter messages are not
dropped even if the queue is full as a result of excess pulls. Our

4Emstar: Software for Wireless Sensor Networks. Available online at: http://
cvs.cens.ucla.edu/emstar/

second enhancement involves emulating the latency character-
istics of a duty-cycling MAC layer. Many MAC-layer proto-
cols have been proposed for sensor networks such as BMAC
[16] and SMAC [22]. However, not all these MAC layers are
supported on all platforms — for instance, neither BMAC nor
SMAC is currently supported on the Telos Motes that we use.
We address this issue by benchmarking the latency introduced
by BMAC on Mica2 sensor nodes, and using these measure-
ments to drive our experiments. Thus, the proxy implementation
includes a MAC-layer emulator that adds duty-cycling latency
corresponding to the chosen MAC duty-cycling parameters.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of PRESTO
using our prototype and simulations. The testbed for our
experiments comprises one Stargate proxy and twenty Telos
Mote sensor nodes. One of the Telos motes is connected to a
Stargate node running a sensor network emulator in Emstar [7].
This emulator enables us to introduce additional virtual sensor
nodes in our large-scale experiments that share a single Telos
mote radio as the transceiver to send and receive messages. The
testbed is deployed in the second floor of the computer science
building in UMass. We also conducted some live experiments
on a outdoor testbed with one proxy and four sensors deployed
in UMass campus. In addition to the testbeds, we use numerical
simulations in Matlab to evaluate the performance of the data
processing algorithms in PRESTO.

Our experiments involve both replays of previously gathered
sensor data as well as a live deployment. The first set of experi-
ments are trace-driven and use a seven day temperature dataset
from James reserve [20]. The first two days of this trace are used
to train the model. In our experiments, sensors use the values
from the remainder of these traces—which are stored in flash
memory—as a substitute for live data gathering. This setup en-
sures repeatable experiments and comparison of results across
experiments (which were conducted over a period of several
weeks). We also experiment with a live, four day outdoor de-
ployment of PRESTO at UMass to demonstrate that our results
are representative of the “real world”.

In order to evaluate the query processing performance of
PRESTO, we generate queries as a Poisson arrival process.
Each query requests the value of the temperature at a particular
time that is picked in a uniform random manner from the start
of the experiment to the current time. The confidence interval
requested by the query is chosen from a normal distribution.

A. Microbenchmarks

Our first experiment involves a series of microbenchmarks
of the energy consumption of communication, processing and
storage to evaluate individual components of the PRESTO
proxy and sensors. These microbenchmarks are based on mea-
surements of two sensor platforms—a Telos mote, and a Mica2
mote augmented with a NAND flash storage board fabricated
at UMass. The board is attached to the Mica2 mote through the
standard 51-pin connector, and provides a considerably more
energy-efficient storage option than the AT45DB041B NOR
flash that is loaded by default on the Mica2 mote [14]. The
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TABLE I
ENERGY MICRO-BENCHMARKS FOR SENSOR NODES

NAND flash board enables the PRESTO sensor to archive a
large amount of historical data at extremely low energy cost.

1) Energy Consumption: We measure the energy con-
sumption of three components—computation per sample at
the sensor, communication for a push or pull, and storage for
reads, writes and erases. Table I shows that the results depend
significantly on the choice of platform. On the Mica2 mote
with external NAND flash, storage of a sample in flash is an
order of magnitude more efficient than the ARIMA prediction
computation, and three orders of magnitude more efficient than
communicating a sample over the CC1000 radio. The Telos
mote uses a more energy-efficient radio (CC2420) and pro-
cessor (TI MSP 430), but a less efficient flash than the modified
Mica2 mote. On the Telos mote, the prediction computation
is the most energy-efficient operation, and is 80 times more
efficient than storage, and 122 times more efficient than com-
munication. The high cost of storage on the Telos mote makes
it a bad fit for a storage-centric architecture such as PRESTO.

In order to fully exploit state-of-art in computation, commu-
nication and storage, a new platform is required that combines
the best features of the two platforms that we have measured.
This platform would use the TI MSP 430 microcontroller and
CC2420 radio on the Telos mote together with NAND flash
storage. Assuming that the component-level microbenchmarks
in Table I hold for the new platform, storage and computation
would be roughly equal cost, whereas communication would
be two to three orders of magnitude more expensive than both
storage and communication. We note that the energy require-
ments for communication in all the above benchmarks would be
even greater if one were to include the overhead due to duty-cy-
cling, packet headers and multi-hop routing. These comparisons
validate our key premise that in future platforms, storage will
offer a more energy-efficient option than communication and
should be exploited to achieve energy-efficiency.

2) Communication Latency: Our second microbenchmark
evaluates the latency of directly querying a sensor node. Sensor
nodes are often highly duty-cycled to save energy, i.e., their ra-
dios are turned off to reduce energy use. However, as shown in
Table II, better duty-cycling corresponds to increased duration
between successive wakeups and worse latency for the CC1000
radio on the Mica2 node. For typical sensor network duty-cy-
cles of 1% or less, the latency is of the order of many sec-
onds even under ideal 100% packet delivery conditions. Under
greater packet-loss rates that are typical of wireless sensor net-
works [23], this latency would increase even further. We are

TABLE II
ROUND TRIP LATENCIES USING B-MAC

TABLE III
ASYMMETRY: MODEL ESTIMATION VERSUS MODEL CHECKING

unable to provide numbers for the CC2420 radio on the Telos
mote since there is no available TinyOS implementation of an
energy-efficient MAC layer with duty-cycling support for this
radio.

Our measurements validate our claim that directly querying
a sensor network incurs high latency, and this approach may be
unsuitable for interactive querying. To reduce querying latency,
the proxy should handle as many of the queries as possible.

3) Asymmetric Resource Usage: Table III demonstrates how
PRESTO exploits computational resources at the proxy and the
sensor. Determining the parameters of the ARIMA model at the
proxy is feasible for a Stargate-class device, and requires only
21.75 ms per sensor. This operation would be very expensive,
if not infeasible, on a Telos Mote due to resource limitations.
In contrast, checking if the model is correct at the Mote con-
sumes considerably less energy since it consists of only three
floating point multiplications (approximated using fixed point
arithmetic) and five additions/subtractions corresponding to (3).
This validates the design choice in PRESTO to separate model-
building from model-checking and to exploit proxy resources
for the former and resources at the sensor for the latter.

4) Summary: Our microbenchmarks validate three design
choices made by PRESTO—the need for a storage-centric ar-
chitecture that exploits energy-efficient NAND flash storage,
the need for proxy-centric querying to deal with high latency
of duty-cycled radios, and exploiting proxy resources to con-
struct models while performing only simple model-checking at
the sensors.

B. Performance of Model-Driven Push

In this section, we validate our claim that intelligently ex-
ploiting both proxy and sensor resources offers greater energy
benefit than placing intelligence only at the proxy or only at the
sensor. We compare the performance of model-driven push used
in PRESTO against two other data-acquisition algorithms. The
first algorithm, model-driven pull, is representative of the class
of techniques where intelligence is placed solely at the proxy.
This algorithm is motivated by the approach proposed in BBQ
[3]. In this algorithm, the proxy uses a model of sensor data
to predict future data and estimate the confidence interval in
the prediction. If the confidence interval exceeds a pre-defined
threshold ( ), the proxy will pull data from the sensor nodes,
thus keeping the confidence interval bounded. The sensor node
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Fig. 3. Comparison of PRESTO SARIMA models with model-driven pull and
value-driven push.

is simple in this case, and performs neither local storage nor
model processing. While BBQ uses multi-variate Gaussians and
dynamic Kalman Filters in their model-driven pull, our model-
driven pull uses ARIMA predictions to ensure that the results
capture the essential difference between the techniques and not
the difference between the models used. The second algorithm
that we compare against is a relatively naive value-driven push.
Here, the sensor node pushes the data to the proxy when the dif-
ference between current data and last pushed data is larger than a
threshold ( ). The proxy assumes that the sensor value does not
change until the next push from the sensor. In general, a pull re-
quires two messages, a request from the proxy to the sensor and
a response, whereas push requires only a single message from
the sensor to the proxy.

We compared the three techniques using Matlab simulations
that use real data traces from James Reserve. Each experiment
uses 5 days worth of data and each data point is the average of
10 runs. Fig. 3 compares these three techniques in terms of the
number of messages transmitted and mean-square error of pre-
dictions. In communication cost, PRESTO out-performs both
the other schemes irrespective of the choice of . When is 100,
the communication cost of PRESTO is half that of model-driven
pull, and 25% that of value-driven push. At the same time, the
mean square error in PRESTO is 30% that of model-driven pull,
and 60% that of value driven push. As decreases, the commu-
nication cost increases for all three algorithms. However, the
increase in communication cost for model-driven pull is higher
than that for the other two algorithms. When is 50, value driven
push begins to out perform model-driven pull. When reaches
10, the number of messages in model-driven pull is 20 times
more than that of PRESTO, and 8 times more than that of value
driven push. This is because in the case of model-driven pull,
the proxy pulls samples from the sensor whenever the predic-
tion error exceeds . However, since the prediction error is often
an overestimate and since each pull is twice as expensive as a
push, this results in a larger number of pull messages compared
to PRESTO and value-driven push. The accuracies of the three
algorithms become close to each other when decreases. When

is smaller than 40, model-driven pull has slightly lower mean
square error than PRESTO but incurs 4 times the number of
messages.

1) Summary: These performance numbers demonstrate that
model-driven push combines the benefits of both proxy-centric
as well as sensor-centric approaches. It is 2–20 times more en-
ergy-efficient and upto 3 times more accurate than proxy-cen-
tric model-driven pull. In addition, PRESTO is upto 4 times

Fig. 4. Scalability of PRESTO: Impact of network size.

more energy-efficient than a sensor-centric value-driven push
approach.

C. PRESTO Scalability

Scalability is an important criteria for sensor algorithm
design. In this section, we evaluate scalability along two
axes—network size and the number of queries posed on a
sensor network. Network size can vary depending on the appli-
cation (e.g: the Extreme Scaling deployment [6] used 10,000
nodes, whereas the Great Duck Island deployment [13] used
100 nodes). The querying rate depends on the popularity of
sensor data, for instance, during an event such as an earthquake,
seismic sensors might be heavily queried while under normal
circumstances, the query load can be expected to be light.

The testbed used in the scalability experiments comprises
one Stargate proxy, twenty Telos mote sensor nodes, and an
EmStar emulator that enables us to introduce additional virtual
sensor nodes and perform larger scale experiments. Messages
are exchanged between each sensor and the proxy through a
multihop routing tree rooted at the proxy. Each sensor node
is assumed to be operating at 1% duty-cycling. Since MAC
layers that have been developed for the Telos mote do not cur-
rently support duty-cycling, we emulate a duty-cycling enabled
MAC-layer. This emulator adds appropriate duty-cycling la-
tency to each packet based on the microbenchmarks that we pre-
sented in Table II.

1) Impact of Network Size: A good data management archi-
tecture should achieve energy-efficiency and low-latency per-
formance even in large scale networks. Our first set of scala-
bility experiments test PRESTO at different system scales on
five days of data collected from the James Reserve deployment.
Queries arrive at the proxy as as a Poisson process at the rate of
one query/minute per sensor. The confidence interval of queries
is chosen from a normal distribution, whose expectation is equal
to the push threshold, .

Fig. 4 shows the query latency and query drop rate at system
sizes ranging from 40 to 120. For system sizes of less than 100,
the average latency is always below five seconds and has little
variation. When the system size reaches 120, the average latency
increases five-fold to 30 seconds. This is because the radio trans-
ceiver on the proxy gets congested and the queue overflows.

The effect of duty-cycling on latency is seen in Fig. 4,
which shows that the maximum latency increases with system
scale. The maximum latency corresponds to the worst case of
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Fig. 5. Scalability of PRESTO: Impact of query rates.

PRESTO when a sequence of query misses occur and result
in pulls from sensors. This results in queuing of queries at
the proxy, and hence greater latency. An in-network querying
mechanism such as Directed Diffusion [10] that forwards every
query into the network would incur even greater latency than the
worst case in PRESTO since every query would result in a pull.
These experiments demonstrate the benefits of model-driven
pushes for user queries. By the use of caching and models,
PRESTO results in low average-case latency by providing quick
responses at the proxy for a majority of queries. We note that
the use of a tiered architecture makes it easy to expand system
scale to many hundreds of nodes by adding more PRESTO
proxies.

2) Impact of Query Rate: Our second scalability experi-
ment stresses the query handling ability of PRESTO. We test
PRESTO in a network comprising one Stargate proxy and
twenty Telos mote sensor nodes under different query rates
ranging from one query every four minutes to 64 queries/minute
for each sensor. Each experiment is averaged over one hour.
We measure scalability using three metrics: the query latency,
query miss rate, and query drop rate. A query miss corresponds
to the case when it cannot be answered at the proxy and results
in a pull, and a query drop results from an overflow at the proxy
queue.

Fig. 5 shows the result of the interplay between model accu-
racy, network congestion, and queuing at the proxy. To better
understand this interplay, we analyze the graphs in three parts,
i.e., 0.25–4 queries/minute, 4–16 queries/minute and beyond 16
queries/minute.

3) Region 1: Between 0.25 and 4 queries/minute, the query
rate is low, and neither queuing at the proxy nor network conges-
tion is a bottleneck. As the query rate increases, greater number
of queries are posed on the system and result in a few more pulls
from the sensors. As a consequence, the accuracy of the model
at the proxy improves to the point where it is able to answer
most queries. This results in a reduction in the average latency.
This behavior is also reflected in Fig. 5(c), where the query miss
rate reduces as the rate of queries grows.

4) Region 2: Between 4 and 16 queries/minute, the query
rate is higher than the rate at which queries can be transmitted
into the network. The queue at the proxy starts building, thereby
increasing latency for query responses. This results in a sharp
increase in average latency and maximum latency, as shown in
Fig. 5(a). This increase is also accompanied by an increase in
query drop rate beyond eight queries/minute, as more queries
are dropped due to queue overflow. We estimate that eight

queries/minute is the breakdown threshold for our system for
the parameters chosen.

5) Region 3: Beyond sixteen queries/minute, the system
drops a significant fraction of queries due to queue overflow
as shown in Fig. 5(b). Strangely, for the queries that do not get
dropped, both the average latency [Fig. 5(a)], and the query
miss rate [Fig. 5(c)] drop! This is because with each pull, the
model precision improves and it is able to answer a greater
fraction of the queries accurately.

The performance of PRESTO under high query rate demon-
strates one of its key benefits— the ability to use the model to
alleviate network congestion and queuing delays. This feature
is particularly important since sensor networks can only sustain
a much lower query rate than tethered systems due to limited
wireless bandwidth.

6) Summary: We show that PRESTO scales to around hun-
dred nodes per proxy, and can handle eight queries per minute
with query drop rates of less than 5% and average latency of 3–4
seconds per query.

D. PRESTO Adaptation

Having demonstrated the scalability and energy efficiency of
PRESTO, we next evaluate its adaptation to query and data dy-
namics. In general, adaptation only changes what the sensor
does for future data and not for past data. Our experiments eval-
uate adaptation for queries that request data from the recent past
(one hour). We use the same testbed and data sets as in the pre-
vious section.

In our first experiment, we run PRESTO for 12 hours. Every
two hours, we vary the mean of the distribution of query preci-
sion requirements thereby varying the query error tolerance. The
proxy tracks the mean of the query distribution and notifies the
sensor if the mean changes by more than a pre-defined threshold,
in our case, 10. Fig. 6(a) shows the adaptation to the query distri-
bution changes. Explicit feedback from the proxy to each sensor
enables the system to vary the corresponding to the changes
in query precision requirements. From the figure, we can see
that there is a spike in average query latency and the energy cost
every time the query confidence requirements become tighter.
This results in greater query miss rate and hence more pulls as
shown in Fig. 6(a). However, after a short period, the proxy pro-
vides feedback to the sensor to change the pushing threshold,
which decreases the query miss rate and consequently, the av-
erage latency. The opposite effect is seen when the query pre-
cision requirements reduce, such as at the 360 minute mark in
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Fig. 6. Adaptation in PRESTO to data and query dynamics.

Fig. 6(a). As can be seen, the query miss rate reduces dramati-
cally since the model at the proxy is too precise. After a while,
the proxy provides feedback to the sensors to increase the push
threshold and to lower the push rate. A few queries result in
pulls as a consequence, but the overall energy requirements of
the system remains low. In comparison with a non-adaptive ver-
sion of PRESTO that kept a fixed , our adaptive version reduces
latency by more than 50%.

In our second experiment, we demonstrate the benefits of
adaptation to data dynamics. PRESTO adapts to data dynamics
by model retraining, as described in Section V. We use a four
day dataset, and at the end of each day, the proxy retrains the
model based on the pushes from the sensor for the previous
day, and provides feedback of the new model parameters to the
sensor. Our result is shown in Fig. 6(b). For instance, on day
three, the data pattern changes considerably and the communi-
cation cost increases since the model does not follow the old pat-
terns. However, at the end of the third day, the PRESTO proxy
retrains the model and send the new parameters to the sensors.
As a result, the model accuracy improves on the second day and
reduces communication. The figure also shows that the model
retraining reduces pushes by as much as 30% as compared to no
retraining.

While most of our experiments involved the use of temper-
ature traces as a substitute of live temperature sampling, we
conducted a number of experiments with a live outdoor de-
ployment of PRESTO using one proxy and four sensors. These
experiments corroborate our findings from the trace-driven
testbed experiments. Fig. 7 shows the results from one of the
outdoor experiments. In the first three days of the experiment
the system collected all the data from the sensors to train the
ARIMA models. After the training phase, the system updated
the models in the end of each day. In the experiment, the query

Fig. 7. Adaptation in an outdoor deployment.

arrives as a Possion process with arrival rate at one query per
minute. As shown in Fig. 7(a), the predicted data series is very
close to the ground truth most of the time. Fig. 7(b) shows the
push and pull rates. The figure shows that, over a period of
three days, as the model adapts via retraining, the frequency of
pulls as well as the total frequency of pushes and pulls falls.

1) Summary: Feedback from the proxy enables PRESTO to
adapt to both data as well as query dynamics. We demonstrate
that the query-adaptive version of PRESTO reduces latency by
50%, and the data-adaptive version reduces the number of mes-
sages by as much as 30% compared to their non-adaptive coun-
terparts.

E. Failure Detection

Detecting sensor failure is critical in PRESTO since the ab-
sence of pushes is assumed to indicate an accurate model. Thus,
failures are detected only when the proxy sends a pull request
or a feedback message to the sensor, and obtains no response
or acknowledgment. We evaluate the performance of failure de-
tection using the same testbed and data sets as in the previous
section.

Fig. 8(a) shows the detection latency using implicit heartbeats
and random node failures. The detection latency depends on the
query rate, the model precision and the precision requirements
of queries. The dependence on query rate is straightforward—an
increased query rate increases the number of queries triggering a
pull and reduces failure detection latency. The figure also shows
the relationship between failure detection and the model accu-
racy. Model accuracy depends on two factors—the time since
the last push from the sensor, and model uncertainty that cap-
tures inaccuracies in the model. As the time period between
pushes grows longer, the model can only provide progressively
looser confidence bounds to queries. In addition, for highly dy-
namic data, model precision degrades more rapidly over time
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Fig. 8. Evaluation of fault tolerance.

triggering a pull sooner. Hence, even queries with low preci-
sion needs may trigger a pull from the sensor. The failure detec-
tion time also reduces with increase in precision requirements
of queries. The worst-case time taken for failure detection is
one day since this is the frequency with which a feedback mes-
sage is transmitted from the proxy to each sensor. However, this
worst-case detection time occurs only if a sensor is very rarely
queried.

We also test the impact of message losses on the query accu-
racy of PRESTO. In PRESTO, messages pushed from sensors
can be lost, in which case the proxy assumes that the prediction
is accurate and provides inaccurate responses to user queries.
PRESTO employs a simple mechanism to detect loss of mes-
sages pushed from sensors. Before sending a message to the
proxy, the sensor attaches the timestamp of the previous mes-
sage that it pushed to the proxy. If the proxy finds an inconsis-
tency between the attached timestamp and the timestamp of the
latest cached message, the proxy will pull the lost message from
the sensor. We evaluate this fault tolerance mechanism on our
sensor testbed. In the experiments, sensors drop messages with
a given probability to emulate message losses. Fig. 8(b) shows
the query error rate under different message loss rates. From the
figure, we can see that even under heavy packet loss the response
from the proxy does not have significant query error.

1) Summary: Our results show that sensor failure detection
in PRESTO is adaptive to data dynamics and query precision
needs. The PRESTO proxy can detect sensor failures within two
hours in the typical case, and within a day in the worst case.

VIII. RELATED WORK

In this section, we review prior work on distributed sensor
data management and time-series prediction.

Sensor data management has received considerable attention
in recent years. As we described in Section I, approaches include
in-network querying techniques such as Directed Diffusion [10]
and Cougar [21], stream-based querying in TinyDB [12], acqui-
sitional query processing in BBQ [3], and distributed indexing
techniques such as DCS [19]. Our work differs from all these
in that we intelligently split the complexity of data management
between the sensor and proxy, thereby achieving longer lifetime
together with low-latency query responses.

The problem of sensor data archival has also been consid-
ered in prior work. ELF [2] is a log-structured file system for
local storage on flash memory that provides load leveling and
Matchbox is a simple file system that is packaged with the
TinyOS distribution [9]. Our prior work, TSAR [5] addressed
the problem of constructing a two-tier hierarchical storage
architecture. Any of these techniques can be employed as the
archival framework for the techniques that we propose in this
paper.

A key component of our work is the use of ARIMA predic-
tion models. Most relevant to our work on prediction models
is the approach proposed in PAQ [25] that also employs time
series models. Our work differs in that a) we use seasonal
ARIMA model that captures periodic data trends better than
the non-seasonal ARMA models, b) unlike PAQ that builds
ARMA model on the sensor side we build ARIMA model
on the resource-rich proxy side, therefore we can use more
sophisticate models. Another model-driven push approach is
Ken [24], in which replicated dynamic probabilistic models
were used in addressing temporal correlation. Our work differs
in that we use the ARIMA models that impose much lower
computation load on the sensor side compared to the dynamic
probabilistic models. BBQ [3] proposed a model-driven pull
approach, in which multi-variate Gaussian models were used
in addressing spatial correlations, and dynamic Kalman filters
in addressing temporal correlations. Our work differs in that
we propose model-driven push instead of pull, and we split
modeling complexity between proxy and sensor tiers rather
than using only the proxy tier. ARIMA models for time-series
analysis has also been studied extensively in other contexts
such as Internet workloads, for instance in [8].

IX. CONCLUSIONS AND FUTURE WORK

This paper described PRESTO, a model-driven predictive
data management architecture for hierarchical sensor networks.
In contrast to existing techniques, our work makes intelligent
use of proxy and sensor resources to balance the needs for
low-latency, interactive querying from users with the energy
optimization needs of the resource-constrained sensors. A
novel aspect of our work is the extensive use of an asymmetric
prediction technique, Seasonal ARIMA [1], that uses proxy
resources for complex model parameter estimation, but requires
only limited resources at the sensor for model checking. Our
experiments showed that PRESTO yields an order of magni-
tude improvement in the energy required for data and query
management, simultaneously building a more accurate model
than other existing techniques. Also, PRESTO keeps the query
latency within 3–5 seconds, even at high query rates, by intelli-
gently exploiting the use of anticipatory pushes from sensors to
build models, and explicit pulls from sensors. Finally, PRESTO
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adapts to changing query and data requirements by modeling
query and data parameters, and providing periodic feedback to
sensors. On the other hand, the ARIMA model has fundamental
limitations in the case of datasets that do not have periodic
pattern associated with it, for example, acoustic and vibration.
For these data sets, taking into account frequency domain infor-
mation might be preferable rather than time-series modeling.
As part of future work, we plan to (i) extend our current models
to other weather phenomena beyond temperature and to other
domains such as traffic and activity monitoring, (ii) design
spatio-temporal models that exploit both spatial and temporal
correlations between sensors to further reduce communication
costs, and (iii) design frequency models that handle data sets
without periodic pattern.
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