
VMShadow: Optimizing The Performance of
Latency-sensitive Virtual Desktops in Distributed Clouds

Tian Guo∗, Vijay Gopalakrishnan†, K. K. Ramakrishnan†, Prashant Shenoy∗,
Arun Venkataramani∗, Seungjoon Lee†

∗University of Massachusetts Amherst †AT&T Labs - Research
{tian,shenoy, arun}@cs.umass.edu, {gvijay,kkrama,slee}@research.att.com

ABSTRACT
Distributed clouds offer a choice of data center locations to appli-
cation providers to host their applications. In this paper we con-
sider distributed clouds that host virtual desktops which are then ac-
cessed by their users through remote desktop protocols. We argue
that virtual desktops that run latency-sensitive applications such as
games or video players are particularly sensitive to the choice of
the cloud data center location. We design VMShadow, a system to
automatically optimize the location and performance of location-
sensitive virtual desktops in the cloud. VMShadow performs black-
box fingerprinting of a VM’s network traffic to infer its location-
sensitivity and employs a greedy heuristic based algorithm to move
highly location-sensitive VMs to cloud sites that are closer to their
end-users. VMShadow employs WAN-based live migration and
a new network connection migration protocol to ensure that the
VM migration and subsequent changes to the VM’s network ad-
dress are transparent to end-users. We implement a prototype of
VMShadow in a nested hypervisor and demonstrate its effective-
ness for optimizing the performance of VM-based desktops in the
cloud. Our experiments on a private and the public EC2 cloud
show that VMShadow is able to discriminate between location-
sensitive and insensitive desktop applications and judiciously move
only those VMs that will benefit the most. For desktop VMs with
video activity, VMShadow improves VNC’s refresh rate by 90%.
Further our connection migration proxy, which utilizes dynamic
rewriting of packet headers, imposes a rewriting overhead of only
13µs per packet. Trans-continental VM migrations take about 4
minutes.

1. INTRODUCTION
Cloud computing has quickly become a popular paradigm for

hosting online applications. Applications ranging from multi-tier
web applications to individuals desktops are being hosted out of
virtualized resources running in commercial cloud platforms or in
a private cloud run by enterprises. This wide range of applications
have diverse needs in terms of computation, network bandwidth
and latency. To accommodate diverse application needs and to pro-
vide geographic diversity, cloud platforms have become more dis-
tributed in recent years. Many cloud providers now offer a choice

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of several locations for hosting a cloud application: for instance,
Amazon’s EC2 cloud provides a choice of nine global locations
across four continents. Similarly, enterprise owned private clouds
are distributed across a few large data centers and many smaller
branch office sites. Such distributed clouds enable an application
provider to choose the geographic region(s) that is best suited to the
needs of their applications.

A concurrent trend is the growing popularity of virtual desktops
where the desktop PC of a user is encapsulated into a virtual ma-
chine (VM) and this VM is hosted on a remote server or the cloud;
users then access their desktop applications and their data files via
a remote desktop protocol such as VNC (and via thin clients). The
trend which is referred to as virtual desktop infrastructure (VDI) is
being adopted in the industry due to numerous benefits. First, virtu-
alizing desktops and hosting them on remote servers simplifies the
IT managements tasks such as applying security patches, perform-
ing data backups, etc. It also enables better resource management
and reduces costs, since multiple desktops VMs can be hosted on
a high-end server, which may still be more cost-effective than run-
ning each desktop on a separate PC. Virtual desktops in the cloud
are a growing trend—in addition to their use for business purposes
in enterprises, they are also beginning to be offered for consumer
use. For instance, commercial services such as Onlive Desktop [4]
even offer a “free Windows PC in the cloud” that can be accessed
from tablet computers.

The confluence of these trends—the emergence of both distributed
clouds and virtual desktops—raises new opportunities and chal-
lenges. Today a virtual desktop provider needs to manually choose
the best data center location for each end-user virtual desktop. In
the simplest case, each desktop VM can be hosted at a cloud data
center location that is nearest to the user (owner) of that desktop
VM. However such manual placement becomes increasingly chal-
lenging for several reasons. First, while this may be straightforward
in cloud platforms that offer a choice of a few locations (e.g., in
Amazon, one would host all desktop VMs for US east coast users
at the east coast data center), it becomes progressively more chal-
lenging as the number of locations continues to grow in highly dis-
tributed clouds that already offer a large number of locations. This
is because regional locations offered by a cloud platform may have
smaller hosting capacities than larger “global” locations, implying
that there may not be sufficient room to naïvely place all desktop
VMs from a region at the nearest regional site. More interestingly,
not all desktop VMs may benefit equally from being placed at the
nearest location to their users—specifically desktop VMs that run
latency-sensitive applications such as multi-player games or those
that run video playback will see disproportionately greater bene-
fit from nearby placement than those that run simple desktop ap-
plications such as mail or text editor. Further, desktop VMs will

see dynamic workloads—users may choose to run different appli-
cations at different times and this workload mix may change over
time. Further users may themselves move locations, particularly
those that may be accessing their desktop VM via mobile devices
such as tablets. These challenges imply that static manual place-
ment of desktop VMs at the nearest cloud location may not always
be enough or feasible. We argue that the cloud platform should
incorporate intelligence to automatically determine the best loca-
tion for hosting each application and transparently and seamlessly
adjust these mappings over time with changing application needs.

Towards this end, we present VMShadow, a system to transpar-
ently and dynamically manage the location and performance of vir-
tualized desktops in distributed clouds. VMShadow automates the
process of placing, monitoring and migrating cloud-based appli-
cations across the available cloud sites based on the location of
users and location-sensitivity of the applications. VMShadow per-
forms black-box fingerprinting of a VM’s network traffic to infer
its location-sensitivity. It then employs a greedy algorithm that
considers the most location-sensitive applications and uses a cost-
benefit metric to choose the VMs that will see the most benefit of
migrating to a new location at the lowest cost. VMShadow imple-
ments such moves by live migrating the disk and memory state of a
VM over a WAN and employs optimizations such as delta encoding
and content-based redundancy elimination from prior work [29] to
enhance the efficiency of such WAN migrations. Since a migra-
tion to a new data center will inevitably change VM’s IP address,
VMShadow seeks to maintain existing TCP connections between
the clients and server VMs through the use of connection proxies.
The connection proxies communicate the IP address and port num-
ber changes and rewrite the network packet (IP) headers to ensure
transparency to the applications. As a result, VMShadow allows
for the client to stay connected irrespective of whether the server or
even the client moves, whether or not the client or server is behind
a NAT, and without requiring the cooperation of network entities
such as routers and NAT devices.

Although VMShadow is designed to be a general platform, it is
employed to optimize the performance of desktop clouds (see Fig-
ure 1) in this paper. Desktop clouds offer an interesting use-case
for VMShadow since desktops run a diverse set of applications, not
all of which are location-sensitive. We implement a prototype of
VMShadow in a nested hypervisor (Xen-Blanket [28]) and exper-
imentally evaluate its efficacy on a mix of latency-sensitive multi-
media and non-latency-sensitive desktop VMs running on a Xen-
based private cloud and Amazon’s EC2 public cloud. Our results
show that VMShadow’s black-box fingerprinting approach is able
to discriminate between location-sensitive and insensitive desktop
applications and judiciously moves only those desktop VMs that
see the most benefit from being migrated, such as ones with video
activity. For example, desktop VMs with video playback activity
see up to 90% improvement in refresh rates due to VMShadow’s
automatic optimizations. We demonstrate live migrations of desk-
top VMs across Amazon EC2 data centers with trans-coastal VM
migrations taking 4 minutes and show that our connection migra-
tion proxy, which is based on dynamic rewriting of packet head-
ers, imposes an rewriting overhead of 13µs per packet. Our re-
sults show the benefits and feasibility of the VMShadow approach
for optimizing the performance of multimedia virtual desktops, and
more generally, of a diverse mix of virtual machine workloads.

2. BACKGROUND
Consider a cloud computing platform that provides an infrastruc-

ture as a service (IAAS) to its customers. An IAAS cloud allows
application providers to rent servers and storage and to run any vir-

Remote
Desktop Protocol

Cloud site 1 Cloud site 2

Internet

Thin
Client

Thin
Client

Desktop
VM

Desktop
VM

Regional
Cloud Site

Figure 1: Distributed clouds and desktop clouds.

tualized application on top of these resources. We assume that our
IAAS cloud is highly distributed and offers a choice of many dif-
ferent geographic locations (“cloud sites”) for hosting each applica-
tion. For example, in Amazon’s EC2, an application provider may
choose to host their application at any of 9 different global locations
such as Virginia, Singapore, Tokyo, São Paulo, Sydney etc. We as-
sume that future cloud platforms will be even more distributed and
offer a much larger choice of locations (e.g., one in each major city
or country). Such a distributed cloud is assumed to employ a het-
erogeneous data center architecture—some locations or sites will
comprise very large (“global”) data centers, while many other re-
gional sites will comprise smaller data centers as depicted in Figure
2. Such a heterogeneous distributed cloud maps well to how pub-
lic clouds are likely to evolve—comprising of a few large global
sites that offer good economies of scale, while smaller regional
sites offer greater choice in placing location- or latency-sensitive
application. The model also maps well to distributed private clouds
run by enterprises for their own internal needs—typical enterprise
IT infrastructure consists of a few large backend data centers (to
extract economies of scale by consolidating IT applications) and
several smaller data centers at branch office locations (which host
location- or latency- sensitive applications locally).

We focus our attention on a single application class, namely
cloud-based desktops (also referred to as desktop clouds that host
a large number of desktop VMs in data centers). Each desktop
VM represents a “desktop computer” for a particular user who runs
traditional desktop applications and stores data on it. Since desktop
VMs reside in a remote cloud, users connect to their desktop from
a thin client using remote desktop protocols such as VNC or Win-
dows RDP. Cloud-based desktops are becoming popular in enter-
prises, particularly in software “test-and-dev” environments or for
users with simple applications, as they eliminate the deployment
and management of large numbers of physical machines. We treat
the VMs as black boxes and assume that we do not have direct vis-
ibility into the applications running on the desktops; however since
all network traffic to and from the VM must traverse the hypervi-

Global site
Regional site

Figure 2: A hypothetical distributed clouds consisting of 3 global
cloud sites(red rectangle boxes) and numerous smaller regional
sites(blue circles) near major population centers. Content distri-
bution networks have build their data centers in this fashion and we
expect distributed clouds to evolve similarly.

sor or its driver domain, we assume that it is possible to analyze
this network traffic and make inferences about ongoing activities
on each desktop VM. Note that this black-box assumption is nec-
essary for public clouds where the desktop VMs belong to third
party users.

To provide the best possible performance to each desktop VM,
the cloud platform should ideally host each VM at a site that is near-
est to the user of that desktop VM. Thus a naïve placement strategy
is to determine the physical location of each user (e.g., New York,
USA) and place that user’s VM at the geographically nearest cloud
site. However, since nearby regional cloud cites may have a lim-
ited server capacity, it may not always be possible to accomodate
all desktop VMs at the regional site and some subset of these desk-
tops may need to be moved or placed at alternate regional sites or at
a backend global site. Judiciously determining which desktop VMs
see the greatest benefit from nearby placement is important when
making these decisions.

Fortunately, despite significant user interactions, not all desktop
VMs are equal in terms of being latency- or location-sensitive. As
we show in Section 4, the performance of certain desktop applica-
tions is significantly impacted by the location and the latency of the
desktop VM relative to its end-user, while for other applications,
the location is not a major factor for good performance. In particu-
lar, network games require high interactivity or low latencies; video
playback or graphics-rich applications require high refresh rates or
high bandwidth while using remote desktop protocol. Such appli-
cations see the greatest benefits from nearby placement since this
yields low round-trip time between the user and her VM or ensures
higher bandwidth or less congested links. Thus identifying the sub-
set of desktops that will benefit from closer placement to users is
important for good end-user experience. Further since users can
run arbitrary applications on their desktop, we assume that VM be-
havior can change over time (in terms of its application mix) and
so can the locations of users (for instance, if a user moves to a dif-
ferent office location). The cloud platform should also be able to
adjust to these dynamics.

3. VMSHADOW DESIGN GOALS
Given a distributed cloud, our goal is to design VMShadow,

a system that optimizes the performance of cloud-based desktop
VMs via judicious placement across different cloud sites. In essence,
our system seeks to dynamically map location-agnostic VMs to
larger back-end sites for economies of scale and location-sensitive
ones to local (or nearby regional) sites for better user experience.
To do so, our system must fingerprint a VM’s traffic in order to in-
fer its degree of location-sensitivity while respecting the black-box
assumption. Our system must then periodically determine which
group of VMs need to be moved to new sites based on recent changes
in their behaviors and then transparently migrate the disk and mem-
ory state of these desktops to new locations without any interrup-
tion. Typically desktop VMs running latency-sensitive applications
such as games or multimedia applications such as video playback
tend to be best candidates for such migrations and we must infer
this information while assuming the VM is a black-box with no
visibility into the applications running inside the VM. Finally, our
system should transparently address networking issues such as IP
address change when a VM is moved to a different data center lo-
cation, even if the client or desktop are behind NATs.

VMShadow architecture: Figure 3 depicts the high-level ar-
chitecture of VMShadow. Our system achieves the above goals by
implementing four components: (i) a black-box VM fingerprinting
technique that infers location-sensitivity of VMs, (ii) a greedy al-
gorithm that uses cost-benefit metrics to judiciously move highly

Cloud Manager
Fingerprinting

Engine

Greedy Shadow
Algorithm

Proxy

Desktop Apps

OS

WAN
Live Migrator

Nested
Hypervisor

Figure 3: VMShadow Architecture.

LAN (ms) US-WEST (ms)
Avg Max Min Std Avg Max Min Std

Text Editor 0.191 0.447 0.094 0.0705 0.288 0.605 0.149 0.121
Web Browser 0.059 0.269 0.009 0.050 0.174 0.472 0.099 0.071

Table 1: VNC frame response times for latency-insensitive appli-
cations.

location-sensitive VMs at the least cost, (iii) WAN-based live mi-
gration of a VM’s disk and memory state, with WAN-specific op-
timizations, and (iv) transparent migration of active TCP connec-
tions to ensure seamless connectivity despite IP address changes.
The following sections describe the design of each of these compo-
nents in detail.

4. BLACK-BOX VM FINGERPRINTING
VMShadow uses a black-box fingerprinting technique in order

to determine the location-sensitivity of each desktop VM. The ap-
proach is based on the premise that certain applications perform
well (or see significant performance improvements) when located
close to their users. To understand why, consider desktop users
that play games; clearly the nearer the desktop VM to the user,
the smaller the round-trip time between the desktop and the user’s
thin client, and the better the perceived performance for latency-
sensitive gaming. Similarly, consider users that watch video on
their virtual desktops—either for entertainment purposes from sites
such as YouTube or Netflix, or for online education via MOOCs
or corporate training purposes. Although video playback is not a
latency-sensitive per se, it has a high refresh rate (when playing 24
frames/s video, for example) and also causes the remote desktop
protocol to consume high bandwidth. As the round-trip time be-
tween the thin client display and the remote desktop VM increases,
the performance of video playback suffers (see Figure 4). Many
VNC players, for instance, perform pull-based screen refresh and
each refresh request is sent only after the previous one completes.
Hence the RTT will determine the upper bound on the request rate.
Thus if the RTT is 100ms (typical for trans-US distances), such
a player is limited to no more than 10 refresh requests per sec-
ond, which causes problems when video playback requires 20 or
30 frames/second. In this case, locating the desktop VM closer to
the end-user yields a lower RTT and potentially larger refresh rates
and better performance. This is depicted in Figure 4 which shows
a CDF of the VNC refresh rate of a client in Massachusetts when
the desktop VM is on a LAN, or at US-East and US-West sites of
Amazon EC2. When watching youtube, we observe about 82% of
the frame requests of LAN local streaming are served in less than
41.7 ms, which is the update frequency for 24 FPS video. How-
ever, when user is watching video on the virtual desktop hosted at
US-West about 70% VNC frames are update after more than 125
ms, which indicates the potential loss of video frames. The results
are similar when watching a video stored on the local disk of the
VM. Thus, proper placement of desktops with video applications

Response Time in msec

Fr
ac

tio
n

of
 R

es
po

ns
e

Ti
m

e
Normal Video Refresh Rate(41.7ms)

Figure 4: The CDF of VNC frame response times for latency-
sensitive applications.

significantly impacts user-perceived performance;similar observa-
tions hold for other application classes such as network games or
graphics-rich applications.

In contrast, applications such as simple web browsing and word
processing as shown in Table 1 are not very location-sensitive. Al-
though these are interactive applications, even larger RTT does not
impact user-perceived performance since they are within human
tolerance for interactivity (as may be seen by growing popularity
of cloud-based office applications such as Google docs and Office
360).
Result: Different VMs have different degrees of location- and latency-
sensitivity depending on the applications they run.

VMShadow’s black-box fingerprinting involves analyzing a VM’s
network traffic (e.g., port numbers, traffic characteristics, server
addresses) to determine the degree of location sensitivity of each
VM. Black-box fingerprinting implies this must be done from the
outside—by observing packet headers of a VM’s incoming and out-
going traffic from the driver domain of the hypervisor (e.g., Xen’s
dom0). Assume the administrator specifies a list of well-known
ports numbers for applications that are deemed location-sensitive,
Then, VMShadow periodically samples the VM’s network traffic in
the hypervisor, aggregates this information at a central fingerprint-
ing engine, and computes a location-sensitive rank for each VM.

The location sensitive rank is computed using three metrics: (i)
the fraction of active ports that are flagged to be location-sensitive—
the more the number of location-sensitive applications within the
VM, the greater its rank; (ii) the fraction of location-sensitive traf-
fic relative to the total network traffic generated by the VM—the
greater this fraction, the higher the rank; and (iii) the bandwidth
consumed by the remote desktop protocol between the desktop VM
and the thin client (higher bandwidth implies a higher rank). Cur-
rently the ranking function computes the rank as a weighted com-
bination of the above factors; the rank is updated periodically as
an exponential moving average of the current value and recent his-
torical values. Desktops with consistently high rank become can-
didates for location optimization—in cases where they are not al-
ready in the best possible data center location—as described next.

5. VMSHADOW ALGORITHM
In this section, we describe the algorithm employed by VMShadow

to enable virtual desktop deployments to “shadow” (i.e., follow)
their users through intelligent placement. Given a distributed cloud
with L locations and N desktop VMs with their current placements

and their location-sensitive ranks, the shadowing algorithm em-
ploys the following steps:

Step 1. Identify potential candidates to move: First, VMShadow
determines which VMs are good candidates for migration to a dif-
ferent location. Given the location sensitive ranks of all VMs, any
VMs with a rank above a pre-defined high threshold Th become a
candidate for relocation. Similarly any VM that is placed at a re-
gional site and is ranked below a low threshold Tl (indicating it is
no longer very location sensitive) becomes a candidate for eviction
(i.e., moved back to a larger/global site, since resources at the re-
gional site may be limited). As an example, a desktop VM with
consistent new video or gaming activities will become a candidate
for optimization and those that have not seen such activities for
long periods will become candidates for eviction.

Step 2. Determine new locations for each potential candi-
date: For each VM that is flagged as a candidate for potential mi-
gration, VMShadow next identifies potential new cloud locations
for that VM. To do so, it first determines the location of the user
for that desktop VM (by performing IP geo-location of the VNC
thin client’s IP address [21]). It then identifies the k closest cloud
sites by geographic distance and then computes the network dis-
tance (latency) of the user to each of these k sites. These sites are
then rank-ordered by their network distance as potential locations
to move the VM. Candidate VMs that are already resident at the
“best” cloud site are removed from further consideration.

Step 3. Analyze VMs’ cost-benefit for placement decision:
For each candidate VM, VMShadow performs a cost-benefit anal-
ysis of the possible move. The cost of a move to a new location is
the overhead of copying the memory and disk state of the VM from
one location to another over the WAN. The benefit of such a move
is the potential improvement in user-perceived performance (e.g.,
latency reduction). In general, the benefit of a move is magnified if
the VM has a relatively small disk and memory footprint (cost) and
has a high latency-sensitive rank. Since regional/local cloud sites
may have smaller capacities, VMShadow must perform the cost-
benefit analysis to identify VMs that yield the most benefit (at the
least cost); low-ranked can be evicted when necessary to free up
resources.

In our case, this cost-benefit tradeoff can be achieved by formu-
lating the problem as an Integer Linear Program (ILP) optimization
and using the output of the solution as a basis of placement deci-
sions. Since an ILP can have exponential running costs, we also de-
vise an efficient greedy heuristic that incorporates this cost-benefit
tradeoff. Our greedy algorithm is described in Section 5.1 and we
refer the reader to [15] for details of our ILP.

Step 4. Trigger VMShadow Migrations: The final step in-
volves triggering migrations of the disk and memory state of VMs
to their newly chosen locations. Our approach adapts the migration
optimizations proposed in CloudNet [29] to enable efficient migra-
tion of VMs over the WAN. We implement this approach in a nested
hypervisor [28] to enable VMShadow to run in public clouds (such
as EC2) as well as private clouds. Further, we integrate a connec-
tion migration protocol into the VM migration to ensure transparent
migrations of active socket connections. Our VM and connection
migration techniques are detailed in Section 6.

5.1 The VMShadow Greedy Heuristic
The simplest greedy approach is rank-ordered greedy. In this ap-

proach, we consider all desktop VMs whose location-sensitive rank
exceeds a certain threshold and consider them for relocation in rank
order. Thus the highest ranked desktop VM is considered first for
optimization. If the closest regional cloud site to this VM has insuf-
ficient resources, the greedy heuristic attempts to free up resources

by evicting VMs that have been flagged for reclamation. If no VMs
can be reclaimed or freed-up resources are insufficient to house the
candidate VM, the greedy approach then considers the next closest
cloud site as a possible home for the VM. This process continues
until a new location is chosen (or it decides that the present location
is still the best choice). The greedy heuristic then considers the next
highest ranked desktop VM and so on. While rank-ordered greedy
always moves the most needy (location-sensitive) VM first, it is ag-
nostic about the benefits of these potential moves—it will move a
highly ranked VM from one data center location to another even
if the VM is relatively well-placed and the move yields a small,
insignificant performance improvement.

An alternate greedy approach is to consider candidates in the
order of relative benefit rather than rank. This approach, which
we call cost-oblivious greedy, considers all VMs that are ranked
above a threshold and orders them by the relative benefit of a move.
We define the benefit metric as the weighted sum of the absolute
decrease in latency and the percentage decrease: If l1 and l2 denote
the latency from the current and the new (closest) data center to the
end-user, respectively, then benefit B is computed as

B = w1 · (l1− l2)+w2 ·
(l1− l2)∗100

l1
(1)

where w1 and w2 are weights, l1− l2 denotes the absolute latency
decrease seen by the VM due to a move and the second term is the
percentage latency decrease. We do not consider the percentage
decrease alone, since that may result in moving VMs with very low
existing latency. For example, one VM may see a decrease from
100ms to 60ms, yielding a 40% reduction, while another may see
a decrease from 2ms to 1ms, yielding a 50% reduction. Although
the latter VM sees a greater percentage reduction, its actual perfor-
mance improvement as perceived by the user will be small. Conse-
quently the benefit metric considers both the percentage reduction
and the absolute decrease. The weights w1 and w2 control the con-
tribution of each part—we currently use w1 = 0.6 and w2 = 0.4 to
favor the absolute latency decrease since it has more direct impact
on improving performance.

Once candidate VMs are ordered by their benefit, the cost-oblivious
greedy heuristic considers the VM with the highest benefit first and
considers moving it using a process similar to rank-ordered greedy
approach. The one difference is that if the VM cannot be relocated
to the best location, this approach recomputes the benefit metric
to the next best site and re-inserts the VM into the list of VMs in
benefit order, and picks the VM with most benefit. Ties are broken
by rank (if two candidates have the same benefit metric, the greedy
considers the higher ranked VM first).

Cost-oblivious greedy only considers the benefit of potential moves
but ignores the cost of such migrations. Since the disk and memory
state of VMs will need to be migrated over a WAN, and this may
involve copying large amounts (maybe gigabytes) of data, the costs
can be substantial. Consequently, the final variant of greedy, known
as cost-aware greedy heuristic, also considers the cost of moving a
VM as

C = (Sdisk +Smem) ·
1

1− r
(2)

where Sdisk and Smem denote the size of the disk and memory state
of the virtual machine and parameter r captures the dirtying rate of
the VM relative to the network bandwidth.1

1Live migration of a VM takes place in rounds, where the whole
disk and memory state is migrated in the first round. Since the VM
is executing in this period, it dirties a fraction of the disk and mem-
ory, and in the next round, we must move (Sdisk +Smem) · r, where

The cost-aware greedy approach then orders all candidate VMs
using B

C (i.e., the benefit weighted by the cost). A candidate with
a higher B

C offers a higher performance improvement benefit at a
potentially lower migration cost. The VM with the highest B

C is
considered first for possible movement to the closest cloud site.
Like before, if this site has insufficient server resources, then VMs
marked for reclamation are considered for eviction from this site to
make room for the incoming VM. Here, for simplicity, we ignore
the cost of evicting such low-ranked VMs. If no such reclamation
candidates are available, the VM is considered for movement to the
next closest site. The benefit metric to this next site is recomputed
and so is the B

C metric and the VM is reinserted in the list of candi-
date VM as per its new B

C metric. The greedy heuristic then moves
on to the next VM in this ordered list and repeats. Ties are broken
using the VMs’ rank.

Our VMShadow prototype employs this cost-aware greedy heuris-
tic. It is straightforward to make the cost-aware greedy implemen-
tation to behave like the cost-oblivious or the rank-ordered greedy
variants by setting the cost (for cost-oblivious) and benefit (for
rank-ordered greedy) computation procedures to return unit values.

Avoiding Oscillations: To avoid frequent moves or oscillatory
behavior, we add “hysteresis” to the greedy algorithm—once a can-
didate VM has been moved to a new location, it is not considered
for further optimization for a certain hysteresis duration T . Sim-
ilarly, any VM which drops in its location-sensitivity rank is not
evicted from a local site unless it exhibits consistently low rank for
a hysteresis duration T ′. Moreover, the cost-benefit metrics avoid
moving VMs that see small performance improvements or those
that have a very high data copying cost during migration.

6. TRANSPARENT VM AND CONNECTION
MIGRATION

While VMShadow attempts to optimize the performance of location-
sensitive VMs by moving them closer to their users, it is critical that
such moves be transparent to their users. The desktop VM should
not incur downtime when being moved from one cloud site to an-
other or encounter disruptions due to a change of the VM’s network
address. VMShadow uses two key mechanisms to achieve this
transparency: live migration of desktop virtual machines over the
WAN, and transparent migration of existing network connection to
the VM’s new network (IP) address. We describe both mechanisms
in this section.

6.1 Live WAN Migration Over WAN
When VMShadow decides to move a desktop VM from one

cloud site to another, it triggers live migration of the VM over the
WAN. While most virtualization platforms support live VM migra-
tion within a data center’s LAN [10], there is limited support, if any,
for a migration over the wide area. Hence, we build on the WAN-
based VM migration approach that we proposed previously [29],
but with suitable modifications for VMShadow’s needs.

The WAN-based VM migration that we use in VMShadow re-
quires changes to the hypervisor to support efficient WAN migra-
tion. It is possible to implement these modifications of the hyper-
visor in private clouds where an enterpise has control over the hy-
pervisor. Similar modifications are also possible in public clouds
where the cloud provider itself offers a desktop cloud service to

r is the dirtied fraction. The next round will need an additional
(Sdisk + Smem) · r2. Thus we obtain an expression: (Sdisk + Smem) ·
(1+ r+ r2 + . . .). This expression can be further refined by using
different disk and memory dirtying rates for the VM.

users. However, the desktop cloud service may also be imple-
mented by a third-party that leases servers and storage from a pub-
lic IAAS cloud provider (e.g., if Onlive’s Desktop service were im-
plemented on top of Amazon’s EC2). In such scenarios, the third
party should not expect modifications to the hypervisor.

To support such scenarios also, we employ a nested hypervisor
to implement VMShadow’s migration techniques. A nested hyper-
visor runs a hypervisor h′ inside a normal virtual machine that itself
runs on a typical hypervisor h; actual user VMs run on top of hy-
pervisor h′. Since the nested hypervisor is fully controlled by the
desktop cloud provider (without requiring control of the underlying
hypervisor), it enables hypervisor-level optimizations. Note that
using a nested hypervisor trades flexibility for performance due to
the additional overhead of running a second hypervisor; however,
Xen-Blanket [28], which we use in our prototype has shown that
this overhead is minimal. As a result, VMShadow can run over
unmodified public cloud instances, such as Amazon EC2, and live
migrate desktop VMs from one data center to another. In addition,
VMShadow’s WAN migration needs to transfer both the disk and
memory state of the desktop virtual machine (unlike LAN-based
live migration which only moves the memory state since disks are
assumed to be shared). VMShadow uses a four step migration al-
gorithm, summarized in Fig. 5.

Step 1: VMShadow uses Linux’s DRBD module to create an
empty disk replica at the target data center location. It then begins
to asynchronously transfer the disk state of the VM from the source
data center to the target data center using DRBD’s asynchronous
replication mode. The rate of data transfer can be controlled, if
needed, using Linux’ traffic control (tc) mechanisms to avoid any
performance degradation for the user during this phase. The ap-
plication and VM continue to execute during this period and any
writes to data that has already been sent must be re-sent.

Step 2: Once of the disk state has been copied to the target data
center, VMShadow switches the two disk replicas to DRBD’s syn-
chronous replication mode. From this point, both disk replicas re-
main in lock step—any disk writes are broadcast to both and must
finish at both replicas before the write returns from the disk driver.
Note that disk writes will incur a performance degradation at this
point since synchronous replication to a remote WAN site increases
disk write latency.

Step 3: Concurrent with Step 2, VMShadow also begins trans-
ferring the memory state of the VM from the source location to
the target location. Like LAN-based live migration approaches,
VMShadow uses a pre-copy approach which transfers memory pages
in rounds [10]. The first round sequentially transfers each mem-
ory page from the source to the destination. As with the disk,
VMShadow can control the rate of data transfer to mitigate any
performance impact on front-end user tasks. Since the application
is running, it continues to modify pages during this phase. Hence,
each subsequent round transfers the only pages that have been mod-
ified since the previous round. Once the number of pages to transfer
falls below a threshold, the VM is paused for a brief period and the
remaining pages are transferred, after which the VM resumes exe-
cution at the destination.

Since substantial amounts of disk and memory data need to be
transferred over the WANs, VMShadow borrows two optimizations
from our prior work [29] to speed up such transfers. First, block
and page deltas [12] are used to transfer only the portion of the
disk block or memory page that was modified since it was previ-
ously sent. Second, caches are employed at both ends to imple-
ment content based redundancy(CBR) [5, 29]—duplicate blocks or
pages that have been sent once need not be resent; instead a pointer
to the cached data is sent and the data is picked up from the receiver

�Disk

�Net
�Mem

Asynch Copy

�Setup Spawn Xen-Blanket

Synchronous

Live Mem Transfer

�Time (not to scale)

Run Connection
Migration Protocol

Pause VM

Figure 5: The phases of a migration for non-shared disk, memory
and the network in VMShadow.

cache. Both optimizations have been shown to reduce the amount
of data sent over the WAN by 50% [29].

Step 4: Once the desktop VM moves to a new data center, it
typically aquires a new IP address using DHCP. Changing the IP
address of the network interface will cause all existing network
connections to break and disrupt user activity. To eliminate such
disruptions, VMShadow employs a connection migration protocol
to “migrate” all current TCP connections transparently to the new
IP address without any disruptions (TCP connections see a short
pause during this transfer phase but resume normal activity once the
migration completes). Once both the VM and connection migration
phases complete, the desktop VM begins executing normally at the
new cloud location. We describe VMShadow’s connection migra-
tion protocol next.

6.2 Connection Migration Protocol
Different cloud locations are typically assigned different blocks

of IP addresses for efficient routing. As a result, when a VM moves
from one cloud location to another, it is typically assigned an IP
address from the new location’s IP block and will not retain its
original IP address. This will cause TCP connections to be dropped
and result in disruptions to end users’ sessions. To prevent such
disruptions, VMShadow employs a connection migration protocol
that “migrates” these connections to the new IP address.

The issue of mobility, and having to change the IP address as a
result, is a well known problem. There have been several propos-
als including HIP [1], LISP [3], ILNP [2] and Serval [24] that try
to address this problem by separating the host identifier from the
network address. With these approaches, the application connects
at the TCP layer using the host identifier, while the packets are
routed using the network address. When the user (i.e., host) moves,
the network address changes, but the host identifier stays the same.
As a result, TCP connections are not disrupted. Unfortunately, all
these approaches require modifications to the application to take
advantage of seamless mobility.

Instead, here we take a more pragmatic approach so that VMShadow
works seamlessly with existing applications as they are. VMShadow
makes use of a local proxy to implement a network connection mi-
gration protocol. VMShadow assumes that both end-points for ev-
ery active connection on the migrated VM run this proxy (thus,
both the thin client and the desktop VM need to run the proxy,
as do other servers elsewhere with active TCP connections to the
desktop VM). The proxy is in the data path for the TCP connection
between end points and masks any address changes by dynamically
re-writing the IP headers of the packets.

To ensure transparency, the desktop VM uses two logical net-
work interfaces: an internal interface with a fixed, private IP ad-
dress and an external interface with the “real”, but potentially chang-
ing, IP address. All socket connections are bound to the internal in-
terface as the local source address; as a result, active socket connec-
tions never directly see the changes to the external IP address. The
proxy acts as a bridge between the internal and external network
interfaces for all packets as shown in Fig. 6. Internally generated
packets have a destination address that is the external IP address of
the remote end host.

Apps

Internal Logical NIC
(Fixed IP)

External Logical NIC
(Public IP)

ProxyPkts Pkts

Figure 6: Inside each VM, the proxy bridges an internal logical NIC
with the external one, masking the potential IP address changes
from the higher-level applications.

The proxy employs dynamic rewriting of packet headers (anal-
ogous to what is done in NAT devices) to bridge the two inter-
faces. For all outgoing packets, the default rewriting rule replaces
the source IP of the internal interface with that of the external in-
terface: (IPint ,∗)→ (IPext ,∗). Thus when the external IP address
changes after a WAN migration, the rewrite rule causes any subse-
quent packet to have the new external IP address rather than the old
one. Incoming packets headers are rewritten with the reverse rule,
where the current external IP address is replaced with the fixed in-
ternal IP.

After an IP address change of a desktop VM, other end-points
with connections to the desktop VM will begin seeing packets ar-
riving from the new external IP address. However connections on
these machines expect packets from the old external IP address of
the desktop VM. To ensure transparent operation, the local proxies
in other end-points intercept packets with the desktop VM and ap-
ply new rewrite rules beside the default one. For example, with new
rewrite rules, incoming packets arriving from the desktop VM are
rewritten as (IPnew,∗)→ (IPold ,∗) while outgoing packets to the
desktop VM see rewrites to the destination IP address as (∗, IPold)→
(∗, IPnew). These two rules ensures that outgoing packets go to the
new address of the desktop VM (and thus are not lost), while in-
coming packets from the new IP address are rewritten with the old
address before delivery to applications (that are still given the illu-
sion of communicating with the old IP address). We illustrate this
in Fig. 7.

To achieve this transparent migration, the proxies at both end
points use control messages to signal each other about the change
in IP address. This is done by having the desktop VM send a cryp-
tographically signed message to the corresponding proxy informing
it of the IP address change. The cryptographic signing avoids mali-
cious third-parties from sending bogus IP address change messages
and causing a denial of service. A typical IP address change con-
trol message will include the old IP address and request subsequent
packets to be sent to the new address.

Note that the connection migration protocol is symmetric — it
assumes an fixed internal interface and an external interface on all
machines. Thus, the protocol can also handle IP address changes
of the thin client or other machines that the desktop VM communi-
cates with. Further, the extra rewrite rules are generated on a per-
socket basis rather than a per-machine basis to support dynamic
connection setup. In particular, connections established before the
IP address change requires rewriting based on both default and ex-
tra rules to maintain connectivity. Connections opened after the ad-
dress change talk to the new address and only need default packet
rewriting. However, for incoming packets, we use the port infor-
mation of the connections to distinguish between ones that need a
re-write (connections opened prior to the change) versus those that
do not (those opened after the change). A general rewrite rule of
an outgoing packet is of the form: (IPint ,srcPort, IPold ,dstPort)→
(IPext ,srcPort, IPnew,dstPort).

6.2.1 Handling NAT Devices

P(Int IP, SP
 Old IP, DP)

P (Ext IP, SP
 New IP, DP)

(Ext IP, SP
 New IP, DP)

(Ext IP, SP
 Priv IP, DP) WAN

P(Int IP, SP
 Pub IP, DP)

P (Ext IP, SP
 Pub IP, DP)

(Ext IP, SP
 Pub IP, DP)

(Ext IP, SP
 Priv IP, DP) WAN

P

(Int IP, SP
 Old IP, DP)

P (NAT IP, SP
 New IP, DP)

(Pub IP, NP
 New IP, DP)

(Pub IP, OP
 Priv IP, DP)

WANNAT (Pub IP, NP
 New IP, DP)

Blue: Default Rewrite Rule Red: New Rewrite RuleP : Proxy

(a)

(b)

(c)

Figure 7: Dynamic packet headers’ rewriting sequences. (a) De-
fault rewrite rule is applied when both end points have public IPs.
(b) A new rewrite rule is employed when the destination IP address
changes. (c) A behind-NAT end point tries to communicate to an
entity with new public IP address.

Our discussion thus far assumes that all end points have a publicly-
routable IP address. However in many scenarios, one or both end-
points may be behind NAT devices. We first consider the scenario
where the thin client is behind a NAT (e.g., in a home) while the
desktop VM resides in a public cloud and has a public IP address.
In this case, when the desktop VM is moved from one location
to another, it will no longer be able to communicate with the thin
client since the NAT will drop all packets from the new IP address
of the desktop. In fact, the desktop VM will not even be able to
notify the proxy on the thin client of its new IP address (since a
“strict NAT” device drops all packets from any IP address it has not
encountered thus far). To address this issue, we resort to NAT hole
punching [13], a method that opens ports on the NAT to enable the
desktop VM to communicate with the thin client.

VMShadow’s NAT hole punching is part of the connection mi-
gration process. It works by notifying the client proxy of the IP ad-
dress change from the old IP address of the desktop VM. In some
scenarios, the desktop VM may be able to determine its new IP ad-
dress at the destination before it migrates. This may be possible in
enterprise private clouds where an IP address is pre-allocated to the
VM, or even in public clouds where one can request allocation of
an elastic IP address independent of VM instances. In such cases,
the proxy on the desktop VM notifies the proxy on the thin client
of its future IP address and requests hole punching for this new IP
address. In scenarios where the IP address cannot be determined a
priori, we assume that the newly migrated VM will notify the driver
domain of the nested hypervisor at the old location of its new ad-
dress. The driver domain can use the old IP address to notify the
proxy at the thin client of the IP address change and request hole
punching.

Once the new IP address has been communicated to the client
proxy, it proceeds to punch holes for each active socket port with
the desktop VM. This is achieved by sending a specially marked
packet from each active source port to each active destination port
but with the new IP address as the destination IP of these specially
marked packets. These packets causes the NAT device to open up
these ports for accepting packets from the new IP address of the
desktop VM. NAT devices typically rewrite the source port number
with a specially allocated port number and create a forwarding rule;
packets arriving on this NAT port are forwarded to the source port
at the thin client device. Thus, a regular outgoing packet from the
client to the desktop VM will see the following rewrites: the source
proxy peforms the first rewrite (IPint , srcPort, IPold , dstPort) →
(IPNAT , srcPort, IPnew, dstPort). The NAT device then further
rewrites this packet as (IPNATExt , natPort , IPnew, destPort).

When the first specially marked packet of this form is received
at the desktop VM, it creates a mapping of the old natPort of the

source to the new natPort. Then port numbers of any outgoing
packets are rewritten by replacing the old natPort with the new nat-
Port created by the hole punching. Note that the specially marked
hole punching packet is only processed by the proxy and then dropped
and never delivered to the application. In our implementation, we
simply assign a TCP sequence number of 1 and have an iptables
rule for dropping potential RST packet. This extension enables
the connection migration protocol to work even when one of the
end-points is behind a NAT device. The protocol can be similarly
extended with hole punching packets in both directions when both
end-points are behind NAT devices. Note in this scenario, the entity
that moved from one NAT to another will need to find out the IP ad-
dress of the new NAT device first before proceeding hole punching.
We omit the details here due to space constraints.

7. VMSHADOW IMPLEMENTATION
We have implemented a prototype of VMShadow using Linux,

Xen 4.1.1 and Xen-Blanket [28]. Our prototype is written in C and
Python and consists of several interacting components as shown in
Fig. 3. The VM fingerprinting component of VMShadow is im-
plemented in Xen-Blanket’s driver domain (dom0). It uses python
interfaces to the Linux net f ilter library, more specifically
libnet f ilter_queue [17] to copy packets queued by the kernel packet
filter into user-space for analysis; it periodically samples the traffic
to compute a list of active ports that are location-sensitive (from a
pre-configured list of such ports) as well as the volume of traffic
on such ports and sends this information to the VMShadow’s cloud
manager. The WAN migration component is implemented inside
the nested hypervisor, i.e., the Xen related code in Xen-Blanket,
—it modifies the live migration code in Xen to include (i) DRBD-
based disk state migration, (ii) rate control mechanisms to control
the rate of state transfer over WAN links and (iii) optimizations
such as block and page deltas, and content-based redundancy elim-
ination [29] to optimize the data transfers over the WAN.

The connection migration proxy is implemented as a python pro-
cess inside the guest VM running the user desktop as well as on the
thin clients and servers interacting with the desktop VM. The proxy
listens on a well-known port to receive (and send) cryptographi-
cally signed messages for announcing IP address changes. It uses
the libnet f ilter_queue library to intercept outgoing and incoming
packets and rewrites the source and destination IP addresses and
ports as specified by the current rewrite rules. Packets are rein-
serted into the queue once the headers have been rewritten. We
implemented the packet header rewriting in user-space mostly as a
convenience; the next section measures the overhead of our user-
space implementation. A kernel implementation would be more ef-
ficient and desirable for production use. Finally, we use the python
scapy library to generate packets for NAT hole punching.

The Cloud Manager is a centralized component, also written in
python, that (i) computes the location-sensitivity of each desktop
VM using the traffic statistics sent by each VM, (ii) implements the
greedy algorithm to determine where to move which desktop VMs,
and (iii) triggers the necessary VM and connection migrations. The
Cloud Manager can also limit the number of concurrent live migra-
tions [8] as well as rate control the bandwidth used by each VM
migration to limit the impact on foreground traffic and end-users.

8. EXPERIMENTAL EVALUATION
In this section, we describe our experimental setup and then

present our experimental results.
Experimental Setup: The testbed for our evaluation consists

of a combination of a private cloud in Massachusetts and Amazon

VA

OR
MA

4036.2 KiloMeters, RTT = 96.15 ms

 3633.9 KiloMeters, RTT = 84.03 ms

 5
58

.4
 K

ilo
M

et
er

s,
 R

TT
 =

 1
4.

37
 m

s

Figure 8: Three cloud sides used for our experiments: a private
cloud side in Massachusetts, and EC2 sites in Virginia and Oregon.
EC2 public clouds across different locations as shown in Fig 8. The
private cloud consists of 2.4GHz quad-core Dell servers running
Centos 6.2 and GNU/Linux kernel 2.6.32. On Amazon EC2, we
use extra-large instances (m3.xlarge), each with 4 VCPUs, at two
sites: US-West in Oregon and US-East in Virginia. All machines
run Xen 4.1.1 and Xen-Blanket 4.1.1.

Our desktop cloud consists of Ubuntu 12.04 LTS desktops that
run a variety of desktop applications, including OpenOffice for
editing documents, Firefox browser for web-browsing and watch-
ing Youtube video clips, Thunderbird email client and local video
playback. Each desktop VM is assigned 1GB memory, 1 VCPU
and has a 2GB disk of which 1.32GB is used and runs inside Xen-
Blanket dom0. We use VNC as the remote desktop protocol and
connect to each desktop using a modified python VNC viewer [27]
from laptop-based thin client machines.

8.1 VMShadow Microbenchmarks
Connection Migration Proxy Performance: First we evaluate

the overhead of running our proxy at each desktop VM, specifically
the overheads of processing each packet and rewriting their head-
ers. To conduct this micro-benchmark, we have the desktop VM
connect to a server machine and establish an increasing number of
TCP socket connections. The desktop VM then sends or receives
10,000 packets over each socket connection and record the over-
heads incurred by the proxy as we increase the number of concur-
rent socket connections from 8 to 64. For each measurement data,
We repeat this experiment for 10 times to gather all the measure-
ment data for results in Table 2 and Fig 9.

total time copy time rewrite time
Average (ms) 3.375 3.36 0.0133
Std. Dev. 0.022 0.034 0.0042

Table 2: Per-packet proxy overhead of data copying and header
rewriting.

The proxy overhead includes (i) data copying overhead incurred
by libnetfilter Queue [17] in copying packets from kernel-space to
user-space and copying back to re-insert packets, (ii) matching a
packet to rewrite rules, and (iii) rewriting packet headers. Table 2
depicts the per-packet overhead incurred by the proxy across all
runs. As shown in the table, our user-space proxy adds a 3.37ms
processing latency to each outgoing and incoming packet, and 13.2
µs packet header rewriting-related latency. This means that 98.5%
of the additional latency is due to the overhead of copying pack-
ets between kernel and user space; the table shows a mean 3.36ms
overhead of data copying. This overhead can be eliminated by mov-
ing the proxy implementation into kernel space. Figure 9 depicts
the total processing time and copying overheads as the number of
connections varies from 8 to 64. As expected, the per-packet copy-
ing overhead is independent of the number of connections. So is the
overhead of rewriting headers for a given packet. As the number of

8 16 32 64
Num of Connections

0

1

2

3

4

P
e
r

P
a
ck

e
t

P
ro

ce
ss

 T
im

e
 (

m
s)

Total Time

Copy Time

Figure 9: Proxy overhead with varying number of active TCP con-
nections.

connections grows, the number of rewrite rules grow in proportion,
so the overhead of matching a packet to a rule grows slightly, as
shown by the slight increase in the total processing overhead; this
total overhead grows from 3.485ms to 3.976ms. Note that our im-
plementation uses a naïve linear rule matching algorithm and this
overhead can be reduced substantially by using more efficient tech-
niques such as those used in routers to match ACLs.

Result: The dominant overhead of our proxy is due to data copy-
ing between kernel and user-space, with relatively efficient per-
packet header rewrites and rule matching.

VM Fingerprinting: Our next set of micro-benchmarks focuses
on VMShadow’s fingerprinting technique. We run a set of appli-
cations in different desktop VMs to capture different types of user
activities. In each case, we sample the traffic generated by the VM
after a warmup period and then fingerprint the VM based on the ob-
served traffic. The sampling of the traffic for fingerprinting is done
in the driver domain (dom0) of Xen-Blanket in all cases. Table 3
depicts the behavior of desktop VMs for web-browsing, document
editing, watching Youtube and local video playback over 3 mins
(a common length of Youtube video clips). As expected, Youtube
viewing consumes higher network bandwidth both from Youtube
servers and for the remote desktop protocol display; video play-
back from a local file does not consume network bandwidth, but the
data transfer for VNC is still high due to the video playback. Web
browsing and text editing consume very little bandwidth. Based
on this data, and a list of location sensitive port numbers, Youtube
playback is flagged as location-sensitive due to the high bandwidth
usage and high network traffic percentage. Local video playback
also gets a high rank due to higher VNC bandwidth usage (despite
not using network traffic). Web browsing and text editing get low
ranks as they do not use location-sensitive ports and due to the low
bandwidth usage in those scenarios.

Result: By fingerprinting realistic traffic data of desktop VMs
running different applications, we are able to evaluate the ranks of
Youtube, local video playback, web browsing and text editing. And
such ranks match our hypothesis.

Live Migration and Virtual Desktop Performance: Next, we
micro-benchmark the overheads and benefits of WAN-based live
migrations implemented by VMShadow. We use the two Amazon
sites in Oregon (US-West) and Virginia (US-East) for this experi-
ment. The thin client is located in the Massachusetts private cloud.
We run two desktop VMs in US-West. The first desktop represents
a user running a word editing application and watching a YouTube
video, while the second desktop represents a user only performing
word editing. We perform live migration of each VM from US-
West to US-East, which is a site closer to the Massachusetts-based
thin client, with the help of VMShadow’s WAN migration compo-
nent. For each live migration, we measure the total amount of data
transferred and the time taken for the live migration as well as the

US-EAST

Watching Youtube Word Editing

Start Live Migration

(a) After migration, online streaming achieves higher VNC frame
update frequency due to lower RTT, directly improving user experi-
ence.

US-EAST

Start Live Migration

(b) Word editing application does not see a obvious improvement
after migration.

Figure 10: Impact of WAN migration on latency-sensitive and
latency-insensitive applications.

Word+YouTube Word
Mem (GB) 0.56 0.54
Disk (GB) 1.36 1.34
Total Time(s) 265 249
Pause Time(s) 2.48 2.8

Table 4: The desktop VM WAN migration from OR to VA: data
movement and time with VMShadow, including delta-based and
CBR optimizations.
time intervals between every VNC frame request and update.

As shown in Table 4, the delta-based and CBR optimizations
used by VMShadow allow WAN migrations to be efficient; VMShadow
can migrate a desktop VM with 1 GB memory coast-to-coast in
about 250 to 265 seconds, depending on the workload. It is useful
to note that the pause time (i.e., the time when a user may per-
ceive any unresponsiveness) for the applications as a result of the
migration is relatively small, between 2.5 and 2.8 seconds. Fig-
ure 10 shows the response time before and after the migration for
both desktop VMs. We define the response time to be the time in-
terval between sending a refresh request and receiving a response.
Therefore, the lower the response time, the higher the refresh rate.
Note also that the VNC player only sends a refresh request after re-
ceiving a response to its previous request. Thus the response time
for such players is upper bounded by the network round-trip time.
As shown in the Figure 10(a), initially the refresh rate is low since
word editing does not require frequent refresh. The refresh rate
increases when the user begins watching YouTube, but the refresh
rate is bounded by approximately 100ms RTT between Oregon and
Massachusetts, which limits VNC to no more than 10 refreshes per
second (which is not adequate for 20FPS Youtube video). Once the
VM has migrated from US-West to US-East, the RTT from the thin
client to the desktop VM drops significantly (and below the dotted
line indicating the minimum refresh rate for good video playback),
allowing VNC to refresh the screen at an adequate rate. Figure
10(b) depicts the performance of the Word editing desktop before

To client & other servers From client & other servers
Youtube Video Browsing Text Edit Youtube Video Browsing Text Edit

Non-VNC Traffic (%) 37.7 0 0.67 0 53.7 0 0.62 0
Non-VNC Bandwidth (KB/s) 1.85 0 0.0083 0 63.6 0 0.0059 0
Total Bandwidth (KB/s) 74.6 54.5 17.94 17.14 65.8 1.54 0.454 0.86

Table 3: Fingerprinting Desktop VMs running different applications.

and after the live migration. As shown, word editing involves key
- and mouse-clicks and do not require frequent refreshes due to the
relatively slow user activities. Thus, the refresh rate is once every
few hundred milliseconds; further a 100ms delay between a key-
press and a refresh is still tolerable by users for interactive word
editing. Even after the migration completes, the lower RTT does
not yield a direct benefit since the slow refresh rate, which is ad-
equate to capture screen activities, is the dominant contribution to
the response time.

Results: Migrating a desktop VM trans-continentally takes about
4 mins depending on the workload while incurring 2.5 to 2.8 secs
pausing time. Further, not all desktop applications see benefits
from migrating to a closer cloud site, demonstrating our premise
that not all desktop applications are location-sensitive.

Greedy Shadow Algorithm: Finally, we micro-benchmark the
VMShadow Cloud Manager that implements the greedy shadow
algorithm for optimizing the location of desktop VMs. We also
implemented the integer linear program (ILP) version which pro-
vides optimal results but with higher execution time. Our micro-
benchmarks compare the greedy algorithm with the ILP approach
in terms of scalability, i.e., execution time, and effectiveness, i.e.,
latency decrease percentage of desktop VMs. To stress test both
algorithms, we create synthetic scenarios with increasing numbers
of desktop VMs and cloud locations and measure the execution
time and effectiveness of both algorithms. In one case, we fix the
number of desktop VMs to 2000 and vary the number of available
cloud locations from 2 to 40. In another case, we fix the num-
ber of cloud locations to 40 and vary the number of desktop VMs
in the cloud from 100 to 1200. Figure 11(a) compares the execu-
tion time of these two algorithms in these two cases separately. As
expected, the execution time of the ILP approach increases signif-
icantly with both increasing location choices(upper plot) and in-
creasing VMs(lower plot); the execution time of the greedy ap-
proach, in comparison, remains flat for both scenarios. Also as
shown in Figure 11(c), increasing the cloud locations beyond 30 or
the number of VMs beyond 800 causes an exponential growth in
execution times of the ILP. Figure 11(b) evaluates the effectiveness
of the two algorithms in reducing the latency of desktop VMs via
migrations. The figure shows that the greedy approach is within
51-56% of the “optimal” ILP approach across various runs. Our
results show that the ILP approach is a better choice for smaller
settings (where it remains tractable), while greedy is the only feasi-
ble choice for larger settings. Note also that our experiments stress
test the algorithms by presenting a very large number of migration
candidates in each run. In practice, the number of candidate VMs
for migration is likely to be a small fraction of the total desktop
VMs at any given time; consequently the greedy approach will bet-
ter match the choices made by the ILP in these cases.

Results: VMShadow’s greedy algorithm is able to achieve 51-
56% effectiveness with marginal execution time compared to “op-
timal" ILP approach, even presented with a large number of migra-
tion candidates and potential cloud locations.

8.2 VMShadow Case Study

VM1
VM2
VM3

VM4
VM1
VM2 VM4

VM5

VM5

VM3VM41

VM1

VM2

U
S-
W
ES
T

U
S-
EA
ST

VM5

VM3

VM4

VM1

VM2

VM7

VM7

T1 T2 T3 T4

1 2
2

4
5

VM6

VM6

3
VM6

Video Editing Streaming

VM3

Figure 12: A series of migrations to improve the performance of
Desktop VMs.

While our microbechmarks demonstrate the overheads and ben-
efits of our approach for simple scenarios, we now evaluate the
VMShadow prototype for more complex scenarios. We experiment
with multiple live migrations between the US-East (Virginia) and
US-West (Oregon) locations of Amazon EC2. All thin clients are
residing at the Massachusetts’ cloud location. The series of migra-
tions for improving the desktop VMs’ performance is depicted in
Figure 12.

We consider three different types of applications, i.e., local video,
text editing and online streaming running inside four identical VMs.
For experimental purpose, we constrain US-East and US-West sites
to both have a capacity of hosting 4 VMs each. Initially only the
word editing VM is located at US-East, while the other three are lo-
cated in US-West. At time T1, the VMs with local video and online
streaming are ranked high as location-sensitive and VMShadow
triggers their migrations to US-East. At time T2, two new desktop
VMs again running video applications are requested and started in
US-West. Since both of these VMs are also flagged as location-
sensitive, they are candidates for migration. To accommodate these
VMs, VMShadow first reclaims space by moving the lower ranked
desktop running text editing from US-East to US-West and then
migrates the newly started VMs to US-East. At time T3, we repeat
the event of requesting a new virtual desktop for the user to watch
a video streamed from YouTube. This leads to another swap be-
tween the newly requested online streaming VM in US-West and
the video VM in US-East (since the video activity in that VM sub-
sides, lowering its rank). Eventually at time T4, we end up having
all the highly ranked desktop VMs running close to their end-users
on the east coast, with low ranked VMs running in US-West.

Figure 13 depicts the VNC response time for the three desktop
VMs running different applications, before, during and after their
migrations in the above scenario. As shown, the first two VMs
have location-sensitive video activities, and the VNC performance
improves significantly after a migration to the US east coast (from
300ms to 41.7ms). The third VM has document editing activity,
which does not suffer noticeably despite a reclamation and a mi-
gration to west coast, which is further away to its user.

Results: In this case study, we demonstrate VMShadow’s ability
to discriminate between location sensitive and insensitive desktop
VMs and to trigger appropriate WAN migrations to improve VNC
response time in an artificially constrained cloud environments.

Number of Data Center Locations Number of Data Center Locations Number of Data Center Locations

Number of Virtual MachinesNumber of Virtual MachinesNumber of Virtual Machines

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Fr
ac

tio
n

of
 L

at
en

cy
 D

ec
re

as
e

ILP

(a) Execution time of ILP and Greedy (b) Latency decrease of ILP and Greedy (c) Execution time increasing trend

Greedy Greedy ILP

Figure 11: The execution time and difference in accuracy between ILP and greedy algorithms

Time (Sec)

VN
C

 R
es

po
ns

e
Ti

m
e

in
 S

ec

VM1: Watching Internet Streaming

US-WEST

US-EAST

Start Migration Finish Migration

Start Migration Finish Migration

Start Migration Finish Migration

VM3: Using Local Word Editor

VM2: Watching Local Video

Figure 13: Decisions are made to migrate VM1 and VM2 to
US-EAST, to be closer to user. When US-EAST is resource-
constrained, low-ranked VM3’s resources are reclaimed by migrat-
ing it back to US-WEST, after which VM1 and VM2 are migrated
to US-East.

9. RELATED WORK
The problem of placing VMs in data centers has been extensively

studied. However, much of the focus has been, and continues to
be, on placing VMs within a given data center. Approaches include
devising heuristic algorithms [7, 14] or even formulating placement
as a multi-resource bin packing problem [11]. Others [25] have
even proposed placement and migration approaches that minimize
data transfer time within a data center.

Placement of VMs in a distributed cloud is complicated by addi-
tional constraints such as the inter-data center communication cost.
For example, Steiner et al. [26] demonstrate the challenges of dis-
tributing VMs in a distributed cloud using virtual desktop as an
example application. There have been a few recent efforts aimed at
addressing placement in the distributed cloud. These approaches
aim to optimize placement using approximation algorithms that
minimize costs and latency [6], or through greedy algorithms that
minimize costs and migration time [16]. In this work, we dynam-
ically place desktop VMs according to their location-sensitivities.
We seek to balance the performance benefit with the migration cost
by taking multiple dimensions into account, including the virtual

desktop user behavior, traffic profiles, data center locations and re-
source availabilities.

The location-sensitivity of an application is crucial in determin-
ing its placement. There has been prior work that evaluated the
efficiency of thin-client computing over the WAN and showed that
network latency is a dominating factor affecting performance [22].
More recently, Hiltunen [19] et al. proposed per-user models that
capture the usage profiles of users to determine placement of the
front- and back-ends of a desktop cloud.

The ability to migrate VMs between locations is the primitive
that allows us to adapt to changing location sensitivity of VMs.
Virtualization platforms provide mechanisms and implementations
to achieve LAN live migration with minimal disruption [10, 23].
Multiple efforts have also sought to improve efficiency by either
minimizing the amount of data transferred [20] or optimizing the
number of times data was iteratively transferred [9].

Disruption-free WAN live migration is challenging due to lower
wide area bandwidths, larger latencies, and changing IP addresses.
Moreover the different cloud locations can run different virtualiza-
tion platforms. Xen-Blanket [28] provides a thin layer on top of
Xen to homogenize diverse cloud infrastructures. CloudNet [29]
proposed multiple optimization techniques to dramatically reduce
the live migration downtime over the WAN. It also tried to solve
the problem of changing IP addresses by advocating “network vir-
tualization” that involved network routers. Others [18] have sug-
gested using Mobile IPv6 to reroute packets to the new destina-
tion. There have also been several proposals [1, 3, 2, 24] that at-
tempt to address the general problem of seamless handover of TCP
connections across IP address changes. In general all these ap-
proaches require changes; either to the applications, the network,
or both. In our work, we implement a prototype of VMShadow
in Xen by reusing some ideas from CloudNet [29] and XenBlan-
ket [28] and use a light-weight connection migration proxy that
rewrites packet headers to cope with IP address changes and also
to penetrate NATs.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we presented VMShadow, a system that automat-

ically optimizes the location and performance of VM-based desk-
tops, with dynamic changing needs, running different types of ap-
plications. VMShadow performs black-box fingerprinting of a desk-
top VM’s network traffic to infer location-sensitivity and employs a
greedy heuristic based algorithm to move highly location-sensitive
desktop VMs to cloud sites that are closer to their end-users. We
empirically showed that desktop VMs with multimedia applica-
tions are likely to see the greatest benefits from such location-based

optimizations in the distributed cloud infrastracture. VMShadow
employs WAN-based live migration and a new network connec-
tion migration protocol to ensure that the desktop VM migration
and subsequent changes to the VM’s network address are transpar-
ent to end-users. We implemented a prototype of VMShadow in a
nested hypervisor and demonstrated its effectiveness for optimizing
the performance of VM-based desktops in our Massachusetts-based
private cloud and Amazon’s EC2 cloud. Our experiments showed
the benefits of our approach for location sensitive desktops VMs,
e.g. those that are running multimedia applications. In future work,
we plan to study the efficacy of using VMShadow for various vir-
tual desktop applications and for other cloud applications beyond
virtual desktops.

11. REFERENCES
[1] Host Identity Protocol (HIP).

http://tools.ietf.org/html/rfc5201.
[2] Identifier-Locator Network Protocol (ILNP).

http://tools.ietf.org/html/rfc6740.txt.
[3] Locator/ID Separation Protocol (LISP).

http://www.lisp4.net/.
[4] Onlive Desktop: Access a Powerful PC from Anywhere.

http://desktop.onlive.com/.
[5] AGGARWAL, B., AKELLA, A., ANAND, A.,

BALACHANDRAN, A., CHITNIS, P., MUTHUKRISHNAN,
C., RAMJEE, R., AND VARGHESE, G. Endre: an
end-system redundancy elimination service for enterprises.
In Proceedings of USENIX NSDI (2010).

[6] ALICHERRY, M., AND LAKSHMAN, T. V. Network aware
resource allocation in distributed clouds. In INFOCOM
(2012).

[7] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND
ROWSTRON, A. Towards predictable datacenter networks. In
Proceedings of the ACM SIGCOMM (2011).

[8] BARKER, S., CHI, Y., MOON, H. J., HACIGÜMÜŞ, H.,
AND SHENOY, P. "Cut me some slack": latency-aware live
migration for databases. In Proceedings of Conference on
Extending Database Technology (2012).

[9] BREITGAND, D., KUTIEL, G., AND RAZ, D. Cost-aware
live migration of services in the cloud. In Proceedings of
Annual Haifa Experimental Systems Conference (2010).

[10] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL,
E., LIMPACH, C., PRATT, I., AND WARFIELD, A. Live
migration of virtual machines. In Proceedings of USENIX
NSDI (2005).

[11] COFFMANN, E. G., GARY, M. R., AND JOHNSON, D. S.
Approximation algorithms for bin-packing-an updated
survey. Algorithm Design for Computer System Design
(1984), 49–106.

[12] CULLY, B., LEFEBVRE, G., MEYER, D., FEELEY, M.,
HUTCHINSON, N., AND WARFIELD, A. Remus: high
availability via asynchronous virtual machine replication. In
Proceedings of USENIX NSDI (2008).

[13] FORD, B., SRISURESH, P., AND KEGEL, D. Peer-to-peer
communication across network address translators. In
Proceedings of USENIX Annual Technical Conference
(2005).

[14] GUO, C., LU, G., WANG, H. J., YANG, S., KONG, C.,
SUN, P., WU, W., AND ZHANG, Y. Secondnet: a data center
network virtualization architecture with bandwidth
guarantees. In Proceedings of ACM CoNEXT (2010).

[15] GUO, T., GOPALAKRISHNAN, V., RAMAKRISHNAN, K.,
SHENOY, P., VENKATARAMANI, A., AND LEE, S.
Vmshadow: Optimizing the performance of virtual desktops
in distributed clouds. Tech. rep., 2013.

[16] GUO, T., SHARMA, U., WOOD, T., SAHU, S., AND
SHENOY, P. Seagull: intelligent cloud bursting for enterprise
applications. In Proceedings of USENIX Annual Technical
Conference (2012).

[17] HARALD, W. Libnetfilter queue library. http://www.
netfilter.org/projects/libnetfilter_queue/.

[18] HARNEY, E., GOASGUEN, S., MARTIN, J., MURPHY, M.,
AND WESTALL, M. The efficacy of live virtual machine
migrations over the internet. In Proceedings of VTDC (2007).

[19] HILTUNEN, M., JOSHI, K., SCHLICHTING, R., YAMADA,
N., AND MORITSU, T. CloudTops: Latency aware
placement of Virtual Desktops institution Distributed Cloud
Infrastructures.

[20] JIN, H., DENG, L., WU, S., SHI, X., AND PAN, X. Live
virtual machine migration with adaptive, memory
compression. In CLUSTER’09 (2009), pp. 1–10.

[21] KATZ-BASSETT, E., JOHN, J. P., KRISHNAMURTHY, A.,
WETHERALL, D., ANDERSON, T., AND CHAWATHE, Y.
Towards ip geolocation using delay and topology
measurements. In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement (New York, NY, USA,
2006), IMC ’06, ACM, pp. 71–84.

[22] LAI, A. M., AND NIEH, J. On the performance of wide-area
thin-client computing. ACM Trans. Comput. Syst. 24, 2 (May
2006), 175–209.

[23] NELSON, M., LIM, B.-H., AND HUTCHINS, G. Fast
transparent migration for virtual machines. In Proceedings of
the annual conference on USENIX Annual Technical
Conference (2005).

[24] NORDSTRÖM, E., SHUE, D., GOPALAN, P., KIEFER, R.,
ARYE, M., KO, S. Y., REXFORD, J., AND FREEDMAN,
M. J. Serval: an end-host stack for service-centric
networking. In Proceedings of USENIX NSDI (2012).

[25] PIAO, J. T., AND YAN, J. A network-aware virtual machine
placement and migration approach in cloud computing. In
Proceedings of Grid and Cooperative Computing (GCC
2010) (2010), pp. 87–92.

[26] STEINER, M., GAGLIANELLO, B. G., GURBANI, V., HILT,
V., ROOME, W., SCHARF, M., AND VOITH, T.
Network-aware service placement in a distributed cloud
environment. In Proceedings of the ACM SIGCOMM (2012).

[27] TECHTONIK, A. Python vnc viewer: A simple vnc viewer.
[28] WILLIAMS, D., JAMJOOM, H., AND WEATHERSPOON, H.

The xen-blanket: virtualize once, run everywhere. In
Proceedings of ACM EuroSys (2012).

[29] WOOD, T., RAMAKRISHNAN, K. K., SHENOY, P., AND
VAN DER MERWE, J. CloudNet : Dynamic Pooling of Cloud
Resources by Live WAN Migration of Virtual Machines. In
Proceedings of ACM SIGPLAN/SIGOPS conference on
Virtual Execution Environments (VEE) (Mar. 2011).

