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ABSTRACT
The growth of smartphones combined with advances in mobile net-
working have revolutionized the way people consume multimedia
data. In particular, users in developing countries primarily rely on
smartphones since they often do not have access to more powerful
(and more expensive) computing devices. Unfortunately, cellular
networks in developing countries have historically had low reliabil-
ity, due to grid instability and lack of infrastructure. The situation
has led network operators to experiment with running cellular tow-
ers “off the grid" using intermittent renewable energy sources. In
parallel, network operators are also experimenting with co-locating
server caches close to cell towers to reduce access latency and back-
haul bandwidth. In this paper, we study techniques for optimiz-
ing multimedia caches for intermittent renewable energy sources.
Specifically, we examine how to apply a blinking abstraction pro-
posed in prior work, which rapidly transitions servers between an
active and inactive state, to improve the performance of a multime-
dia cache powered by renewables, called GreenCache. Our results
show that GreenCache’s staggered load-proportional blinking pol-
icy, which coordinates when servers are active over brief intervals,
results in 3X less buffering (or pause) time by the client compared
to an activation blinking policy, which simply activates and deac-
tivates servers over long periods as power fluctuates, for realistic
power variations from renewable energy sources.

Categories and Subject Descriptors
C.5.0 [Computer System Implementation]: General

General Terms
Design, Management, Performance

Keywords
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1. INTRODUCTION
The growth of smartphones combined with advances in mobile

networking have revolutionized the way people consume multime-
dia data, e.g., video and audio 1. For example, a recent study in-
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dicates that YouTube users now watch more than 20% of YouTube
videos from their smartphones [3]. The fraction of users in devel-
oping countries that rely on smartphones to access videos is even
higher, since these users often do not have access to more powerful
(and more expensive) computing devices, such as desktops, lap-
tops, and tablets. Unfortunately, cellular networks in developing
countries have historically had low reliability, since cellular towers
typically run off power from the electric grid. As the recent Indian
blackout in July 2012, which left 700 million people without power
for two days, indicates, the grid in these countries is often unstable.

In some cases, connections to an even unstable electric grid may
not be available. For example, in India, 150,000 out of 400,000
cell towers do not have reliable access to the electric grid [7]. Grid
instability and lack of infrastructure has led network operators to
run cellular towers “off the grid" [4]. Today’s “off the grid" cellu-
lar towers operate off diesel generators that are costly to maintain,
in large part, because operators must continuously refuel them with
expensive and “dirty" diesel fuel. Since i) network operators view
developing countries as a large potential market and ii) many po-
tential users in these countries reside in rural areas without access
to a reliable electric grid, there is a strong financial incentive to de-
ploy off-the-grid cell towers powered by renewable energy sources,
e.g., from either solar panels or wind turbines.

In parallel, the growth of smartphones as a primary end-point
for multimedia data has led to a significant rise in bandwidth usage
of cell towers, which requires higher backhaul bandwidth to fetch
data, as well as additional spectrum or denser tower deployments
to deliver this data. As a result, in addition to the problems above,
network operators have also sought ways to reduce the bandwidth
consumption of multimedia applications. Traditionally, network
operators have deployed caches only at centralized locations, such
as operator peering points, in part, for both simplicity and ease of
management [16]. However, researchers and startups have recently
recognized the benefit of placing caches closer to edge [16, 2]. Co-
locating server caches closer to cell towers would both reduce ac-
cess latency, by eliminating the need to route requests for cached
data through a distant peering point, and reduce backhaul band-
width usage from the cell tower to the peering point. Caches co-
located with cell towers primarily target multimedia data, since it
consumes the largest fraction of bandwidth and is latency-sensitive.

In this paper, we consider how to operate a distributed cache for
multimedia data that is co-located with a cell tower powered using
renewable energy. A key challenge in using renewable sources such
as solar and wind is that they are intermittent and the amount of
power they generate fluctuates depending on environmental condi-
tions. Consequently we assume that when renewable generation is
plentiful, e.g., on sunny or windy days, the generated power is suf-
ficient to power both the cell tower and the co-located servers that
house the multimedia cache. However during periods of scarcity,
the renewable sources (combined with a modest-sized battery) may



not generate sufficient power and the setup must reduce its total
energy footprint. In this case, we assume that the available scarce
power is used to keep the cell tower up and running (so that con-
sumers do not lose cellular service) and that there may not be
enough energy to always operate the multimedia cache.

Recently we proposed a new abstraction, called blinking, to
adapt server clusters to intermittent power. Blinking [11] dynami-
cally regulates the energy footprint of servers, to match available
power, by rapidly, e.g., once a minute, transitioning servers be-
tween a high-power active state and a low-power inactive state. We
showed that blinking improves the performance of an in-memory
cache for small objects, e.g., Memcached storing simple strings
and binary values. Caches for multimedia data differ in important
ways. First, multimedia contents are often much larger in size than
Memcached objects, which are limited to 1MB in size, and thus
require persistent storage for caching. Second, unlike Memcached
objects, multimedia data can be streamed, such that a video need
not be completely transmitted to a client before the client can dis-
play it. Instead, the client can start playing a video as soon as it
receives data for the first few seconds, as long as the client contin-
ues streaming data from the server while the video is playing. This
characteristic is well-suited to the blinking abstraction, since dif-
ferent chunks of a video can be stored on different cache servers in
a cluster. The challenge is to activate nodes in a way that segments
of the video are streamed to the client in a sequence that allows for
uninterrupted video playback.

In this paper, we propose GreenCache, a distributed cache for
multimedia data co-located with cell towers that run off renewable
energy. GreenCache leverages the blinking abstraction to signifi-
cantly (i) modulate its energy footprint to match available power,
(ii) reduce bandwidth usage from the cell tower to backend servers,
and (iii) reduce access latency for clients despite fluctuations in
available power. As discussed above, minimizing bandwidth us-
age (or cost) and maximizing users’ experience, e.g., by reducing
buffering time, are two primary goals of a multimedia cache. We
analyze video traffic behavior of a large number of users for the
most popular user-generated video site, YouTube, and exploit traf-
fic characteristics and video properties to design new placement
and blinking policies for minimizing bandwidth usage and maxi-
mizing users’ experience. In achieving this goal, our work makes
the following contributions:
YouTube Trace Analysis. To motivate the design and feasibility
of GreenCache and the use of the blinking abstraction in streaming
environments, we collect YouTube video traces from the University
of Connecticut for 3 days, and analyze them to find important char-
acteristics about viewers behavior and the popularity of YouTube
videos.
GreenCache Design. We detail the design of a blink-aware dis-
tributed multimedia cache and its advantages over existing multi-
media caches when using renewable energy sources. Our design
uses an always-active proxy to receive requests, while masking
blinking, from mobile clients.
Buffering Time Reduction Techniques. We detail techniques for
reducing video buffering time at the client. Our approach combines
a load-proportional data layout with a staggered load-proportional
blinking policy to minimize per video average buffering time. Our
design also uses a popularity-aware cache eviction policy to mini-
mize bandwidth usage from cell towers to backend servers.
GreenCache Implementation and Evaluation. We implement
GreenCache on a laboratory prototype comprising a real 4G
WiMAX base-station we have deployed on the UMass campus
and a cluster of ten Mac Minis that can be powered using either
a renewable source or a programmable power supply that mimics

these renewables. We then evaluate our cache for bandwidth us-
age and buffering time at different (fixed and oscillating) power
levels using our WiMAX base-station and WiMAX clients. Our
experimental workloads are based on user requests from the real
network traces mentioned above. Our results show that a staggered
load-proportional blinking policy, which staggers when nodes are
active and varies the length of the active interval, results in 3X less
buffering (or pause) time by the client compared to an activation
blinking policy, which simply activates and deactivates nodes as
power fluctuates, for realistic power variations from renewable en-
ergy sources.

The remainder of the paper is outlined as follows. Section 2 de-
scribes the benefits of blinking for caches running on intermittent
power. Section 3 analyzes YouTube video traces from the Univer-
sity of Connecticut, while Section 4 presents design techniques for
a blinking multimedia cache. Section 5 details our implementation
of a small distributed cache prototype, and Section 6 then evaluates
our prototype for two metrics – bandwidth cost and buffering time.
Finally, Section 7 discusses related work and Section 8 concludes.

2. CACHE AND INTERMITTENT POWER
Our work assumes cellular towers that are powered using off-

the-grid sources such as solar and wind energy. We assume that
the cellular network employs in-network multimedia caches to de-
liver popular content to mobile end-users via cellular data connec-
tions. To reduce latency, backend server load, as well as back-
haul/upstream bandwidth, we assume that these caches are located
close to, or at, the cellular towers of 3G/4G base stations. As noted
in Section 1, while today’s legacy cellular networks are not able
to co-locate caches very close to cell towers due to inherent ar-
chitectural limitations, research efforts and startup companies [16,
2] are developing techniques and products to address these limita-
tions; thus we envision that future cellular networks will be able
to deploy computation and storage, e.g., server caches, near base
stations—similar to what we assume here.

The use of caches in a cellular network has many benefits. Since
the popularity distribution of videos is often heavy-tailed, i.e., a
small set of videos out of the pool of all available videos are sig-
nificantly more popular than the rest, a well-designed cache cluster
can reduce the back-end traffic, and thus the bandwidth cost on
the uplink. Our earlier work analyzed the benefits of caching for
YouTube videos through trace-based simulations, and showed that
caching can indeed reduce uplink bandwidth [17, 8]. Further, an
increase in storage capacity increases the efficiency of the cache.
i.e., the larger the cache’s storage the higher the potential that a
requested video can be served from the cache.

However, co-locating caches near cellular towers also raises
challenges. First, the presence of servers and storage near the cel-
lular tower increases the energy footprint of the tower. The prob-
lem is exacerbated in developing countries with an unreliable grid.
In off-the-grid towers with renewable sources, we must deal with
the additional problem intermittency in these energy sources. Fig-
ure 1 shows how both solar and wind energy can vary each day.
The figure shows that even on generally sunny or windy days the
output from renewables can fluctuate significantly. Even with the
use of batteries, there may not be sufficient energy to operate the
base station and the servers during periods of energy scarcity (e.g.,
on cloudy days with low solar output). We assume that the server
caches must somehow reduce their energy usage during such pe-
riods while the base station stays up—to the extent possible—to
provide cellular service to end users.

To handle energy scarcity, we assume a cache architecture that
comprises of a number of low-power servers, since a single large
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Figure 1: Solar and wind energy harvesting from our solar panel and wind turbine deployment on three consecutive days in Sep 2009.

cache is not well-suited to operating off intermittent renewable en-
ergy sources. To understand why, consider that since computing
equipment, including servers and network switches, is not energy-
proportional, it is not possible to scale down performance with
power usage to adapt to changes in available power. For exam-
ple, a 300W server may have a dynamic power range when ac-
tive between 200W and 300W; thus, if power generation drops
below 200W the server must be shutdown. To mimic energy-
proportionality, an alternative approach uses smaller, lower-power
servers, which can each be activated and deactivated to match avail-
able power [14]. The advantage of this approach is that it allows the
cache size to scale up and down based on available power. How-
ever, it introduces a new complication: if servers are inactive due
to power shortages by renewables then the data cached on them be-
comes unavailable. If data resides on an inactive server, the client
must either wait until the server is active, e.g., there is enough
power, or retrieve the already cached data again from the origin
server.

With a distributed cache, there are two ways to reduce energy
use during shortfall periods. First, some or all caches can be tem-
porarily powered down, but doing so implies that users will not see
any benefits of caching in these periods. A better approach is to
use blinking [11] where each node rapidly transitions (duty cycles)
between sleep and awake modes. Blinking allows caches to pro-
vide service, albeit at degraded performance, during shortfall peri-
ods. Our earlier work demonstrated the feasibility of implementing
blinking on commodity hardware—the rate and duration of blink-
ing can be adjusted to match the energy availability. Longer sleeps
can be used, for instance, during very low energy supply periods.

In essence, blinking provides a cache with new options in its de-
sign space. Rather than having a small cache composed of the num-
ber of always-on servers the available power can sustain, blinking
provides the option of having a much larger cache composed of
servers that are active for only a fraction of time each blink inter-
val, e.g., active for 10 seconds during each minute interval. The use
of blinking raises new challenges in multimedia cache design. The
main challenge is to ensure smooth uninterrupted video playback
even while blinking. Doing so implies that caches have to stream
additional data during their active periods to compensate for lack of
network streaming during sleep periods. Further, end-clients will
need to employ additional client-side buffers and might see higher
startup latencies.

Since multimedia applications are very sensitive to fluctuation
in network bandwidth that might cause delayed data delivery at
the client, most applications like video players employ a buffer to
smooth out such fluctuations and provide an uninterrupted, error
free play out of the data. This buffer, which already exists for most
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Figure 2: The top part of the figure shows a potential stream-
ing schedule for a blinking node while the bottom half shows the
smooth play out with is achieved with the aid of a client-side buffer.

multimedia applications on the client side, integrates well into the
blinking approach since it also allows the cache to bridge outage
times in individual cache servers, as shown in Figure 2. A blink-
ing cache will stream additional chunks when active, which are
buffered at the client. As shown in this figure, the player is then
able to play the video smoothly and masks interruptions from the
viewer as long as it gets the next chunk of data before the previous
chunk has finished playing.

Finally, in a typical cell tower or 3G/4G/WiMAX scenario the
downstream bandwidth (∼30-40 Mbps) is much less than the band-
width a cache server can provide, which is generally limited by its
network card and disk I/O. So, the cache server can potentially re-
duce its energy consumption by sending data at its full capacity
for a fraction of a time interval (usually few seconds) and going
to a low-power state for the remaining period of the time inter-
val, as shown in Figure 2. In essence, the server could employ the
blinking abstraction to reduce its energy footprint while still satis-
fying the downstream bandwidth requirement of the cell tower or
WiMAX station. Moreover, blinking facilitates a cache to employ
more servers than it can keep active with the available power, and
thus provides an opportunity to reduce server load and bandwidth
usage.

The primary drawback of a blinking cache is that it stalls a re-
quest if the requested video is not currently available on an active
server. If a client requests a video that is present on an inactive
server, the cache can either get the video from the back-end server
or the client pauses play out until the inactive server becomes ac-
tive. While getting the video from the back-end server, instead of
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Figure 3: Video Popularity (100 out of 105339)

waiting for the inactive server to become active, reduces the buffer-
ing time, it increases the bandwidth cost. As described in Section 4,
GreenCache uses a low-power always-on proxy and staggered load-
proportional blinking policy to reduce buffering time while send-
ing requests to back-end servers only if data is not available in the
cache.

3. GREENCACHE FEASIBILITY: TRACE
ANALYSIS

To inform the design of GreenCache based on the characteristics
of multimedia traffic and viewer behavior, we analyze a network
trace that was obtained by monitoring YouTube traffic entering and
leaving a campus network at the University of Connecticut. We
believe that such a trace can be seen as a first order approximation
for a community that is served by a WiMAX or 3G/4G base station.
(One can easily imagine that a University campus or a substantial
part of the campus could be served by such a base station.) Indeed,
some Universities have started installing WiMAX base stations on
their campuses as part of their network infrastructure [9].

The network trace is collected with the aid of a monitoring device
consisting of PC with a Data Acquisition and Generation (DAG)
card [1], which can capture Ethernet frames. The device is located
at a campus network gateway, which allows it to capture all traffic
to and from the campus network. It was configured to capture a
fixed length header of all HTTP packets going to and coming from
the YouTube domain. The monitoring period for this trace was 72
hours. This trace contains a total of 105,339 requests for YouTube
videos out of which∼ 80% of the video requests are single requests
which leaves about 20% of the multiple requests to take advantage
of caching of the requested videos. We would like to point out that
a similar caching potential (24% in this case) has been reported in
a more global study of 3G networks traffic analysis by Erman et
al. [6].

Figure 3 shows the popularity distribution of the 100 most pop-
ular videos, which is obtained based on the user requests recorded
in the trace. This figure only shows the 100 most popular videos
since the trace contains many videos with a very low popularity (<
10 requests) and we wanted to depict the distribution of the most
popular videos in more detail. The data obtained from the analysis
of the trace shows that, despite the very long tail popularity distri-
bution, caching can have an impact on the performance of such a
video distribution system.

In earlier work [8], we have shown that, not only caching but also
the prefetching of prefixes of videos that are shown on the related
video list of a YouTube video page can improve the viewers expe-
rience of watching videos. Further analysis of the trace revealed
that 47,986 request out of the 105,339 had the tag related_video
(∼ 45%), which indicates that these videos have been chosen by
viewers from the related video list that is shown on each YouTube
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Figure 5: Video Switching Time Analysis

video’s web page. In addition to identifying videos that are selected
from the related list, we also determine the position on the related
list the video was selected from and show the result in Figure 4. It
shows that users tend to request from the top 10 videos shown on
the related list of a video, which accounts for 80% of the related
video requests in the trace. This data shows that, prefetching the
prefixes of the top 10 videos shown on the related list of a currently
watched video can significantly increase viewer’s experience, since
the initial part can be streamed immediately from a location close
to the client. Based on these results, we decided to evaluate a blink-
ing multimedia cache that performs both, traditional caching, and
prefix prefetching for the top 10 videos on the related video list.

We also analyze the trace to investigate if viewers switch to a new
video before they completely finish watching the current video. In
order to analyze this behaviour, we look into the timestamps of
a user requesting two consecutive videos. We calculate the differ-
ence of these timestamps and compare it with the total length of the
first video requested to determine if the user has switched between
videos before the previous video is completely viewed.

Figure 5 shows the number of occurrences (in percent out of the
total number of videos watched) a video is watched for x% of its
total length. This result shows that only in 45% of the cases videos
are watched completely (also this number is similar to the global
study performed by Erman et al. [6]). In all other cases only part
of the video is watched, with the majority of these cases (∼ 40%)
falling in the 0 - 20% viewing session length. This result let us
to the decision to divide a video into equal-sized chunks, which
allows for the storage of different chunks that belong to a single
video on different nodes of the cache cluster. In Section 4.1, we
describe how the chunk size is determined and how chunking a
video can reduce the uplink bandwidth usage if used on a blinking
multimedia cache cluster.

4. GREENCACHE DESIGN
Figure 6 depicts GreenCache’s architecture, which consists

of a proxy and several cache servers. The proxy maintains a
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Figure 7: Staggered load-proportional blinking.

video→chunk mapping and a chunk→node mapping, while also
controlling chunk server placement and eviction. Clients, e.g.,
web browsers on smartphones, connect to video servers through
the proxy, which fetches the requisite data from one or more of its
cache servers, if the data is resident in the cache. If the data is
not resident, the proxy forwards the request to the host, i.e., back-
end server. The proxy stores metadata to access the cache in its
own memory, while video chunks reside on stable storage on each
cache server.

GreenCache also includes a power manager, that monitors avail-
able power and energy stored in a battery using hardware sensors,
e.g., a voltage logger and current transducer. The power manager
implements various blinking policies to control nodes’ active and
inactive intervals to match the cache’s power usage to the available
power. The power manager communicates with a power client run-
ning on each cache server to set the start time and active period
every blink interval. The power client activates the node at the start
time and deactivates the node after the active period every blink
interval, and thus controls node-level power usage by transitioning
the node between active and inactive states.

As discussed earlier, the primary objective of multimedia cache
is to reduce buffering (or pause) time at the client and the band-
width usage between the cache and the origin server. Next, we
describe GreenCache’s techniques to both reduce bandwidth usage
to the backend origin server, while also minimizing buffering (or
pause) time at the client.

4.1 Minimizing Bandwidth Cost
As Figure 3 indicates, all videos are not equally popular. Instead,

a small number of videos exhibit a significantly higher popularity
than others. Similar to other multimedia caches, GreenCache has
limited storage capacity, requiring it to evict older videos to cache
new videos. An eviction strategy that minimizes the bandwidth
usage each interval will evict the least popular videos during the
next interval. However, such a strategy is only possible if the cache
knows the popularity of each video in advance. To approximate a
video’s future popularity, GreenCache maintains each video’s pop-
ularity as an exponentially-weighted moving average of a video’s
accesses, updated every blink interval. The cache then evicts the
least popular videos if it requires space to store new videos.

As shown in Figure 5, most videos are not watched completely
most of the time. In fact, the figure shows that users of YouTube
watch less than 45% of the videos to completion. In addition, users
might watch the last half of a popular video less often than the first
half of an unpopular video. To account for discrepancies in the
popularity of different segments of a video, GreenCache divides a
video into multiple chunks, where each chunk’s playtime is equal
in length to the blink interval. Similar to entire videos, GreenCache
tracks chunk-level popularity as an exponentially weighted moving
average of a chunk’s accesses. Formally, we can express the popu-
larity of the ith chunk after the tth interval as:

Popularityi
t = αAi

t + (1− α)Popularityit−1 (1)

Ai
t represents the total number of accesses of the ith chunk in

the tth interval, and α is a configurable parameter that weights the
impact of past accesses. Further, GreenCache manages videos at
the chunk level, and evicts least popular chunks, from potentially
different videos, to store a new chunk. As a result, GreenCache
does not need to request chunks from the backend origin servers if
the chunk is cached at one or more cache servers.

4.2 Reducing Buffering Time
As discussed earlier, blinking increases buffering time up to a

blink interval, if the requested chunk is not present on an active
server. The proxy could mask the buffering time from a client if
the client receives a chunk before it has finished playing the previ-
ous chunk. Assuming sufficient energy and bandwidth, the proxy
can get a cached chunk from a cache server within a blink interval,
since all servers become active for a period during each blink in-
terval. As a result, a user will not experience pauses or buffering
while watching a video in sequence, since the proxy has enough
time to send subsequent chunks (after the first chunk) either from
the cache or the origin server before the previous chunk finishes
playing, e.g., within a blink interval. However, the initial buffering
time for the first chunk could be as long as an entire blink inter-
val, since a request could arrive just after the cache server storing
the first chunk becomes inactive. Thus, to reduce the initial buffer-
ing time for a video, the proxy replicates the first chunk of cached
videos on all cache servers. However, replication alone does not
reduce the buffering time if all servers blink synchronously, i.e.,
become active at the same time every blink interval. As a result, as
discussed next, GreenCache employs a staggered load-proportional
blinking policy to maximize the probability of at least one cache
server being active at any power level.

4.2.1 Staggered Load-Proportional Blinking
As discussed above, we replicate the first chunk of each cached

video on all cache servers in order to reduce initial buffering time.
To minimize the overlap in node active intervals and maximize the
probability of at least one active node at all power levels, Green-



Cache staggers start times of all nodes across each blink interval.
Thus, every blink interval, e.g., 60 seconds, each server is active for
a different period of time, as well as a different duration (discussed
below). At any instant, a different set of servers (and their cached
data) is available for clients. Since at low power the proxy might
not be able to buffer all subsequent chunks from blinking nodes,
clients might face delays or buffering while watching videos (after
initially starting them).

To reduce the intermediate buffering for popular videos, Green-
Cache also groups popular chunks together and assigns more power
to nodes storing popular chunks than nodes storing unpopular
chunks. Thus, nodes storing popular chunks are active for a longer
duration each blink interval. GreenCache ranks all servers from
1...N, with 1 being the most popular and N being the least popular
node. The proxy monitors chunk popularity and migrates chunks to
servers in rank order. Furthermore, the proxy distributes the avail-
able power to nodes in proportion to the aggregate popularity of
their chunks. Formally, active period for the ith node, assuming
negligible power for inactive state, could be expressed as

Activei =
BI ∗ P ∗ Popularityi

MP ∗
n∑

k=1

Popularityi

(2)

BI represents the length of a blink interval, Popularityi rep-
resents the aggregate popularity of all chunks mapped on the ith
node, P denotes the available power, and MP is the maximum
power required by an active node. Additionally, start times of
nodes are staggered in a way that minimizes the unavailability of
first chunks, i.e., minimizes the period when none of the nodes are
active, every blink interval. Figure 7 depicts an example of stag-
gered load-proportional blinking for five nodes. Note that since the
staggered load-proportional policy assigns active intervals in pro-
portion to servers’ popularity, it does not create an unbalanced load
on the cache servers.

4.2.2 Prefetching Recommended Videos
Most popular video sites display a recommended list of videos to

users. For instance, YouTube recommends a list of twenty videos
which generally depends on the current video being watched, the
user’s location, and other factors including past viewing history.
From the trace analysis provided in Section 3, we can infer that,
users tend to select the next video from recommended videos
∼45% of the time. In addition, a user selects a video at the top
more often than a video further down in the recommended list. In
fact, Figure 4 shows that nearly 55% of the time a user selects the
next video from top five videos in the recommended list. To further
reduce initial buffering time the proxy prefetches the first chunk of
top five videos in the recommended list, if these chunks are not al-
ready present in the cache. The proxy fetches subsequent chunks
of the video when the user requests the video next.

5. GREENCACHE IMPLEMENTATION
We implement a GreenCache prototype in Java, including a

proxy (∼1500 LOC), cache server (∼500 LOC), power manager
(∼200 LOC), and power client (∼150 LOC). Mobile clients con-
nect to the Internet through a wireless base station, such as a cell
tower or WiMAX base station, which is configured to route all mul-
timedia requests to the proxy. While the power manager and proxy
are functionally separate and communicate via well-defined APIs,
our prototype run both modules on the same node. The power man-
ager exposes APIs to access the available energy, blink interval, and
node’s blink state – start time and active period. Our prototype does
not require any modification in the base station or mobile clients.
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Figure 8: Hardware Prototype.

Both cache server and power client run together on each blinking
node.

Our prototype includes a full implementation of GreenCache,
including the staggered load-proportional blinking policy, load-
proportional chunk layout, prefetching, video chunking, chunk
eviction and chunk migration. The proxy uses a Java Hashtable to
map videos to chunks and their locations, e.g., via their IP address,
and maintains their status, e.g., present or evicted. Since our proto-
type has a modular implementation, we are able to experiment with
other blinking policies and chunk layouts. We implement the acti-
vation and proportional policies from the original Blink work [11]
to compare with GreenCache’s staggered load-proportional policy.
The original work applied blinking only to a more general dis-
tributed memory cache for small objects (Memcached), and thus
had no need for replicating objects based on their popularity. We
also implement a randomized chunk layout and the Least Recently
Used (LRU) cache eviction policy to compare with the proposed
load-proportional layout and popularity based eviction policy, re-
spectively.
Hardware Prototype. We construct a small-scale hardware proto-
type that uses intermittent power to experiment with GreenCache
in a realistic setting. Our current prototype builds off our proto-
type from Blink [11]. However, unlike that prototype, which uses
OLPC nodes, our GreenCache prototype uses more powerful, but
energy-efficient, Mac minis. We use a small cluster of ten Mac
minis running Linux kernel 2.6.38 with 2.4 GHz Intel Core 2 Duo
processors and 2GB of RAM connected together using an energy-
efficient switch (Netgear GS116) that consumes 15W. Each Mac
mini uses a flash-based SSD with a 40GB capacity. We use one
Mac mini to run the proxy and power manager, whereas we run a
cache server and power client on other Mac minis. The proxy con-
nects to a WiMAX base station (NEC Rel.1 802.16eBS) through
the switch. We use a Linux laptop with a Teletonika USB WiMAX
modem to run as a client. We also use a separate server to emulate
multiple WiMAX clients. Our emulator limits the wireless band-
width, in the same way as observed by the WiMAX card, and plays
the YouTube trace described below. The WiMAX base station is
operational and located on the roof of a tall building on the UMass
campus. However, the station is currently dedicated for research
purposes and is not open to the general public.

Similar to [11], we use ACPI’s S3 suspend-to-ram state as the in-
active state. We boot each Mac mini in text mode and unload all un-
necessary drivers in order to minimize the time it takes to transition



Buffering time (s) Power (%)
⇓ 20 40 60 80 100

Blink interval = 30 sec
Std Dev 7.88 5.33 3 0.52 0.03
90thper 21.25 15.25 9.25 2.25 0.23

Avg. 10.99 6.12 3.88 2.35 0.25
Blink interval = 60 sec

Std Dev 14.59 10.01 6.79 2.55 0.03
90thper 41.25 28.25 19.25 7.45 0.23

Avg. 20.58 10.19 6.94 3.36 0.25
Blink interval = 90 sec

Std Dev 24.79 16.69 10.06 3.16 0.03
90thper 66.25 43.25 25.65 4.25 0.23

Avg. 29.44 15.12 8.50 3.22 0.25
Blink interval = 120 sec

Std Dev 30.52 22.21 13.13 5.29 0.03
90thper 78.25 59.45 31.45 14.45 0.23

Avg. 32.73 21.58 9.81 4.58 0.25

Table 1: Standard deviation, 90th percentile, and average buffering
time at different power levels and blink intervals.

into S3. With the optimizations, the time to transition to and from
ACPI’s S3 state on the Mac mini is one second. Note that much
faster sleep transition times, as low as a few milliseconds, are pos-
sible, and would further improve GreenCache’s performance. We
select a blink interval of 60 secs, resulting in a transition overhead
of 1/60 = 1.66% every blink interval. With the optimizations
above, the power consumption of the Mac mini in S3 and S0 is 1W
and 25W respectively. Since GreenCache requires one node, run-
ning the proxy and power manager, the switch, and WiMAX base
station to be active all the time, its minimum power consumption is
46 W, or 17% of its maximum power consumption.

We power the cluster from a battery that connects to four ExTech
382280 programmable power supplies, each capable of producing
80W, that replay the variable power traces described below. To
prevent the batteries from over and under-charging we connect the
energy source to the battery using a TriStar T-60 charge controller.
We also use hardware sensors to measure the current flowing in and
out of the battery and the battery voltage. Our experiments use the
battery as a short-term buffer of five minutes.
Client Emulator. To experiment with a wide range of video traffic,
we wrote a mobile client emulator in Java, which replays YouTube
traces. For each video request in the trace file, the emulator cre-
ates a new thread at the specified time to play the video as per the
specified duration. In addition, the emulator also generates syn-
thetic video requests based on various configurable settings, such
as available bandwidth, popularity distribution of videos, e.g., a
Zipf parameter, viewing length distribution, and recommended list
distribution.
Power Signal. We program our power supplies to replay solar and
wind traces from our field deployment of solar panels and wind
turbines. We also experiment with both multiple steady and os-
cillating power levels as a percentage, where 0% oscillation holds
power steady throughout the experiment and N% oscillation varies
power between (45 + 0.45N )% and (45 – 0.45N )% every five min-
utes. We combine traces from our solar/wind deployment, and set
a minimum power level equal to the power necessary to operate
GreenCache’s always-active components (46W). We compress our
renewable power signal to execute three days in three hours, and
scale the average power to 50% of the cluster’s maximum power.

6. EXPERIMENTAL EVALUATION
We first benchmark GreenCache’s proxy and chunking overhead

for our prototype. We then evaluate GreenCache’s performance for
real-world YouTube traces at multiple power levels with varying

levels of oscillation. We then demonstrate the performance using
realistic power traces from our energy harvesting deployment that
have varying power and oscillation levels.

We use two metrics to measure the performance: (1) bandwidth
usage between the cache and YouTube servers and (2) average
buffering or pause time at the clients. Bandwidth usage denotes
the total data received from backend servers over a given time in-
terval; it also represents bandwidth cost that mobile operators must
pay to Internet service providers. One primary objective of Green-
Cache is to reduce this bandwidth usage. Another key objective of
GreenCache is to improve user’s viewing experiences. Therefore,
we consider average buffering time per video as our second metric
to measure the performance. Note that our implementation tries to
optimize both metrics independent of each other. However, note
that optimizing for bandwidth usage does not depend on the power
level, but on the total cache size, while optimizing for buffering
time depends on both the cache size and the power level.

6.1 Benchmarks
To measure the proxy’s overhead, our client emulator creates a

single thread and sends multiple video requests in succession. The
breakdown of the latency overhead at each component for a sample
1 MB video chunk of 1 minute play length, assuming a 135 Kbps
bit rate, is 30 ms at the proxy, 20 ms at the cache server, 50 ms in
the network between the proxy and cache server, and 100 ms in the
network between the proxy and client. The result demonstrates that
the proxy’s latency overhead is low. We also benchmark average
buffering time for different blink intervals at various power levels.
Table 1 shows the standard deviation, 90th percentile, and average
buffering time for video requests, as the blink interval and power
levels change. As expected, the buffering time increases with the
blink interval at low to moderate power levels. We also benchmark
the standard deviation, 90th percentile, and average buffering time
for requests going to YouTube servers, which are as 150ms, 570ms,
and 620ms, respectively.

To study the performance of our prototype cache for different
cache sizes and power levels we take a 3 hour trace (from 7 PM to
10 PM on February 7th, 2012) from our 3 day YouTube trace. The
trace contains a total of 8815 requests, for 6952 unique videos, over
the 3 hour interval. Our trace reports the URL, video ID, client IP
address, and request time for each video. In addition, we pull the
recommended list for each video in the trace from the YouTube
servers. Based on the video ID, its recommended list, client IP
address, and the next requested video ID, we calculate the view-
ing length for each video. We assume the average video length as 5
minutes and the streaming rate as 135 Kbps. Also, we fix the down-
link bandwidth from backend YouTube servers to the WiMAX sta-
tion to 1 Mbps, and the storage capacity of each cache server as
1 GB. Further, we fix the blink interval as 60 seconds. We use a
weighing factor of 0.6 for the proposed popularity-aware eviction
policy.

First, we study the performance—bandwidth usage and buffering
or pause time for clients—for different number of cache servers at
full power for the real world 3 hour YouTube trace, as well as a syn-
thetic trace of 8815 requests where each request is for a randomly
chosen video from the aforementioned 6952 unique videos. In ad-
dition, we choose least-recently-used (LRU) cache eviction policy
for this experiment; further, videos are not chunked. Figure 9 plots
the total bandwidth usage and average buffering time for both ran-
dom and real traces. We also plot the optimal performance for real
traces assuming we know all requests in advance. The optimal pol-
icy always keeps most popular videos in the cache, and never evicts
a popular video to store a less popular video (over a given interval).
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Figure 9: Both bandwidth usage and buffering time reduce with increasing cache size.
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Figure 10: Video chunking reduces both bandwidth usage and buffering time.
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Figure 12: Buffering time decreases as the number of prefetched
videos (first chunk only) from related lists increases.

As expected, the total bandwidth usage and average buffering time
over the 3 hour interval decreases as the size or number of servers
increases.

Next, to study the benefits of video chunking we measure
the performance of three different cache eviction policies—LRU,
popularity-aware, and optimal—for the 3 hour real trace at full
power and 9 cache servers. Figure 10 shows that the performance
of GreenCache’s popularity-aware eviction policy is better (∼ 7%)
than that of LRU. Further, video chunking improves (> 15%) the
performance of all policies as it avoids storing unpopular chunks
of popular videos. In all cases, LRU performs worse than others,
which motivates our use of a popularity-aware cache eviction pol-
icy and video chunking for all further experiments.

6.2 Staggered load-proportional blinking
As discussed earlier, the total bandwidth usage over a fixed in-

terval, as long as a request does not go to backend servers for an
already cached video, does not depend on the available power level
or blinking and layout policies; it only depends on the cache size
and eviction policies. However, buffering time and users’ experi-

ences do depend on the available power, blinking and layout poli-
cies. In this section, we study the effects of the power level on
the average buffering time, and various optimizations designed to
reduce the buffering time. We use the same 3 hour real YouTube
trace, as discussed above, and 9 cache servers for all further exper-
iments. Further, we use video chunking and the popularity-aware
eviction policy for all experiments.

To compare the proposed staggered load-proportional policy
with the activation and load-proportional policies from Blink [11],
we also implement an activation policy and a load-proportional
policy for GreenCache, and integrate them with GreenCache’s
popularity-aware eviction policy, video chunking, and popularity-
aware migration policy. The activation policy activates or deacti-
vates servers as power varies, whereas the load-proportional pol-
icy distributes the power to servers in proportion to their popular-
ity. Similar to the load-proportional policy, the activation policy
also migrates popular chunks to active servers while deactivating
servers due to the drop in the power level. Unlike the proposed stag-
gered load-proportional policy, the load-proportional policy from
Blink [11] does not replicate video chunks because it does not ben-
efit from replication as it activates all servers at the same time every
blink interval.

Figure 11(a) shows the average buffering time at different steady
power levels. As expected, the activation policy performs better
than the load-proportional policy at low power levels since, unlike
the load-proportional policy, the activation policy does not incur the
blinking overhead, which becomes significant in comparison to the
active interval at low power levels. However, at moderate to high
steady power levels, the benefit of a larger cache size, albeit blink-
ing, dominates the blinking overhead for real-world traces. Fur-
thermore, the buffering time decreases significantly if first chunks
are replicated on all servers. Even at low power levels, replication
of initial chunks significantly reduces the buffering time, while still
leveraging the benefits of a larger cache size. Moreover, the perfor-
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Figure 11: Buffering time at various steady and oscillating power levels.

mance of the staggered load-proportional policy remains almost the
same at all power levels. As video popularity changes infrequently,
migration overheads in our experiments are modest (∼ 2%).

Figure 11(b) compares the average buffering time for the above
policies at different oscillating power levels. We oscillate available
power every five minutes. Since migration overhead of the stag-
gered proportional policy is independent of power level, its perfor-
mance remains almost the same at all oscillation levels. However,
the activation policy incurs migration overhead whenever the num-
ber of active servers decreases. Consequently, the activation policy
performs poorly at high oscillation levels, as indicated in the figure.
Though replication of initial chunks reduces the buffering time at
all power levels, it is primarily required at low power levels.

Next, we evaluate the benefits of prefetching initial chunks of
related videos. As Figure 12 indicates, prefetching initial chunks of
the top five videos reduces the buffering time by 10% as compared
to no prefetching. Further, since prefetching more videos doesn’t
improve the buffering time, we limit the cache to prefetching only
first chunks of top few videos from the related list. We choose to
prefetch top five videos only in order to strike a balance between
the performance gain and prefetching overhead.

6.3 Case study
To experiment with our WiMAX base station using a real

WiMAX client, we use a Linux Desktop with Intel Atom CPU
N270 processor and 1 GB RAM connected to Teltonika USB
WiMAX Modem. We disable all network interfaces except the
WiMAX interface. The desktop connects to the WiMAX base sta-
tion (NEC Rel.1 802.16eBS), which we configure to route all video
requests from the desktop to the proxy. We replay the same 3 hour
YouTube trace on the WiMAX client, but we use real power traces
from our solar/wind deployment, as described in the previous sec-
tion, to power the GreenCache cluster.

Figure 13 plots average buffering time, calculated every five min-
utes, for three blinking policies: activation, load proportional, and
staggered load proportional with first chunks replicated. As ex-
pected, the performance of all three policies goes down (buffering
time goes up) when the available power drops down, and vice versa.
However, the performance of activation degrades more than that of
load-proportional when the available power drops down, since the
activation policy incurs migration overhead when the number of ac-
tive servers decreases. Further, replicating first chunks significantly
reduces the buffering time for the staggered load-proportional pol-
icy at all power levels. Since the migration overhead of the stag-
gered load-proportional policy is independent of power levels, its
performance does not vary much, not even when the available
power changes significantly, if first chunks are replicated.
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Figure 13: Buffering time at various power levels for our combined
solar/wind power trace.

7. RELATED WORK
Blink [11] enables clusters to regulate their energy footprint to

match available power without deactivating servers for long periods
of time or incurring costly data migrations. Further, blinking poli-
cies provide several avenues to coordinate blinking among servers
to maximize applications’ performance at different power levels.
In our previous work [11], we have presented a simple proof-of-
concept example to show how a real-world, albeit simple and state-
less, application could leverage blinking to perform well on in-
termittent power. Whether or not blinking is applicable to more
complex, e.g., distributed and stateful applications, requiring real
time performance guarantees remains an open research problem. In
this paper, we propose a staggered load-proportional blinking pol-
icy with replication to maximize the performance of a distributed
multimedia cache cluster running on intermittent power. We also
use several video and traffic characteristics to design multimedia-
specific optimization techniques for intermittent power.

As shown in Figure 10, knowing video requests in advance sig-
nificantly improves the performance. Similarly, a better and more
accurate energy-harvesting prediction technique would allow bet-
ter cache management and could further improve the performance.
For example, if we know that the available power is going to drop
significantly in the next hour, we could perform costly popular-
ity aware migration and replication before the power drops. In our
previous work [12], we have proposed an energy-harvesting predic-
tion technique that uses weather forecast to predict future energy,
and shown that the forecast-based prediction performs better than
existing prediction techniques based on past observed data. We
plan to use our energy-harvesting prediction technique in combina-
tion with a network traffic forecast technique to further improve the
performance of GreenCache as part of future work.



The use of caches to improve the performance of multimedia
distribution systems has been studied extensively in the past two
decades. [13] gives a general overview on existing multimedia
caching techniques. Due to the vast amount of exiting work in this
area, we only focus on the work closely related to our approach,
although, to the best of our knowledge, there is no existing work
that directly addresses multimedia caches for intermittent power.

Wu et al. [15] were among the first to propose the caching of
chunks (segments) of a video. In contrast to our approach chunks
are not equal in size and increase exponentially with the distance
from the start of the video. The intention of this approach is to
combine the number of consecutive chunks that are cached with the
popularity of the video. E.g., for a very popular video all chunks
would be stored on the cache while for less popular chunks only a
certain number of the initial chunks of the video would be cached.
Letting the chunk size grow exponentially has the advantage that
the initial chunks of many videos can be stored without occupying
too much of the caches storage space. Having only one or several
initial chunks of a video stored on the cache bears the advantage
that a requested video can be streamed to the client and played out
without significant delay. Missing chunks can be streamed from
the server immediately after the initial client request to allow for a
smooth play out. In contrast to the approach presented by Wu et al.,
we decided for a scheme that splits all videos in equal sized chunks
(except for the very last chunk) where the complete chunk can be
transmitted to the client in a period that is equal or smaller than the
blink interval, assuming a minimum transmission rate.

A more restrictive version of the caching of video chunks is the
caching of the first chunk (prefix) only, which was introduced by
Sen et al. [10]. The sole goal of this approach is to reduce the
buffer time at the client, since the first chunk can be streamed from
the cache much faster than from a remote server. Our initial work
on prefix prefetching of videos listed on YouTube’s related video
list [8] is based on this approach, but proactively prefetches prefixes
instead of caching them. As we have shown in [8], prefix prefetch-
ing can significantly improve the viewer’s experience of watching
videos and this motivated us to investigate how the prefetching ap-
proach performs on a multimedia cache for intermittent power. The
results presented above show that prefix prefetching can improve
the experience of a viewer also in the case of a blinking multimedia
cache.

As in our current work, trace-based driven simulations are also
used in [5] and [17] to investigate the effectiveness of caching
for YouTube videos. Both investigations show that caching of
YouTube video can both, on a global and regional level, reduce
server and network load significantly. In contrast to the work pre-
sented in this paper, both studies do not consider scenarios in which
power for the caches is intermittent.

8. CONCLUSION
This paper presents techniques for optimizing multimedia caches

running off intermittent renewable energy sources. These caches
are important in improving the performance of “off the grid" cel-
lular towers and base stations, which are increasingly common in
developing countries that have both a lack of infrastructure and an
unstable grid. We show how combining a blinking abstraction,
which rapidly transitions cache servers between an active and in-
active state, with techniques for chunking (or segmenting) videos,
replicating popular chunks, and staggering server active intervals
improves the performance of these caches when compared to stan-
dard techniques for powering servers on and off based on available
power. Our work demonstrates that running multimedia caches off
intermittent power from renewables poses interesting new research

problems. Our results show that GreenCache’s blinking techniques
decrease both backhaul bandwidth and client access latency com-
pared to existing approaches that simply activate and deactivate
servers. In the latter case, resulting in 3X less buffering (or pause)
time by the client watching a video.
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