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ABSTRACT
Steerable sensors, such as pan-tilt-zoom video cameras, expose
programmable actuators to applications, which steer them in dif-
ferent directions based on their goals. Despite being expensive to
deploy and maintain, existing steerable sensor networks allow only
a single application to control them due to the slow speed of their
mechanical actuators. To address the problem, we design Multi-
Sense to enable fine-grained multiplexing by (i) exposing a virtual
sensor to each application and (ii) optimizing the time to context-
switch between virtual sensors and satisfy requests.

We implement MultiSense in Xen and explore how well propor-
tional share scheduling, along with extensions for state restoration
and request batching, satisfies the unique requirements of steerable
sensors in the form of pan-tilt-zoom video cameras. We present
experiments that show MultiSense efficiently isolates the perfor-
mance of virtual cameras, allowing concurrent applications to sat-
isfy conflicting goals. As one example, we enable a tracking ap-
plication to photograph an object moving at nearly 3 mph every 23
ft along its trajectory at a distance of 300 ft, while supporting a
security application that photographs a fixed point every 3 seconds.

Categories and Subject Descriptors
C.5.0 [Computer System Implementation]: General

General Terms
Design, Experimentation, Performance

Keywords
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1. INTRODUCTION
Steerable sensor networks allow applications to adjust actuators

that control the type, quality, and quantity of data they collect. 1

Steerable pan-tilt-zoom (PTZ) camera networks are an important
example of this type of steerable system that are being deployed in
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a diverse range of settings. For instance, the U.S. Border Patrol is
deploying networks of PTZ cameras to continuously monitor the
northern border for smugglers [17], and as part of a “virtual fence"
on the southern border [8]. Further, networks of traffic cameras
that monitor urban environments are now commonplace. Another
example of this type of system is steerable radar networks, which
are able to improve the accuracy of weather forecasts [20]. While
this type of networked cyber-physical system is emerging as a criti-
cal piece of society’s infrastructure, the deployments are expensive:
the hardware cost for the 20-mile prototype of the Border Patrol’s
“virtual fence" is over $20 million. Further, a key limitation of
these systems is that they are not designed for multiplexing. De-
spite their expense, only a single user, or application, is able to
control them.

Supporting concurrent users via fine-grained multiplexing is an
important step in providing broader access to these expensive sys-
tems. As a simple example, consider using a PTZ camera for both
monitoring and surveillance. The monitoring application contin-
uously scans each road at an intersection in a fixed pattern, while
the surveillance application intermittently steers the camera to track
suspicious vehicles moving through its field of view. Each appli-
cation alters the setting of three distinct actuators—pan, tilt, and
zoom—to satisfy its goals. Conflicts such as these have been cited
as one reason multiple government agencies are unable to coor-
dinate control of border cameras for different purposes, including
both smuggling and search-and-rescue operations [17]. While sim-
ple multiplexing approaches, which schedule control in a coarse-
grained batch fashion, are possible [4], they prevent the fine-grained
multitasking required for these examples, and, in the camera ex-
ample, force a choice between either monitoring the intersection
or tracking the suspicious vehicle during each coarse-grained time
period.

Although many approaches to time-sharing, including propor-
tional share scheduling, have been well-studied for CPUs and other
peripheral devices, such as disks and NICs, steerable sensors, such
as video cameras, present new challenges because they differ in
both their physical attributes and application requirements.
Physical Attributes. Mechanically steerable sensors are both slow
and stateful. Since steering latencies are on the order of seconds,
the most contentious resource is control of the sensor, and not the
aggregate bandwidth of sensed data or the total number of I/Os.
Further, since each actuation changes the sensor’s physical state,
its current state determines the time to transition to a new state,
which results in long, highly variable context-switch times.
Application Requirements. Applications control a sensor’s ac-
tuators directly to drive data collection—often based on past ob-
servations. Since real-world events dictate steering behavior, ap-
plications may have timeliness constraints, either to sense data at



specific locations, e.g., to track a moving object, or to coordinate
steering among multiple cameras, e.g., to sense a fixed point from
multiple angles.

In general, fine-grained multiplexing benefits any application that
values continuous access to data and is willing to tolerate a lower
resolution than possible with a dedicated sensor. While the deploy-
ment cost of steerable sensors limits their number, it also magnifies
the potential benefits of fine-grained sharing. To realize this poten-
tial, we design MultiSense, a system for fine-grained multiplexing—
at the level of individual actuations—of steerable sensor networks.
MultiSense employs a proportional-share scheduler to multiplex
multiple virtual sensors on a single physical sensor. While Mul-
tiSense is designed to work with a broad range of steerable sensors,
we demonstrate its efficacy using pan-tilt-zoom camera sensors that
are multiplexed across different applications.

While we could implement sensor multiplexing in numerous ways,
MultiSense uses a virtualization-based approach to expose a virtual
sensor (vsensor) to each application; a vsensor looks no different
from the underlying physical sensor in terms of its interface and can
be manipulated by an application independently of other vsensors
(and applications) that are manipulating the same physical device.
Our goal is to extend the benefits of virtual machine performance
isolation to include steerable sensor devices. Our hypothesis is that
steerable sensors, such as PTZ cameras, are capable of simulta-
neously tracking multiple real-world events with different sensing
modalities, such as a person walking and a building’s entry point,
and hence, can be shared across concurrent applications. In design-
ing MultiSense, this paper makes the following contributions.
Multiplexing Steerable Sensors. MultiSense employs a finite state
machine to track each vsensor’s state as it actuates, and uses a re-
quest emulation mechanism to buffer actuations until a sense re-
quest arrives—similar to a disk that buffers write requests until a
read request arrives. We show how MultiSense uses these mecha-
nisms to reduce the significant state restoration overheads incurred
from context-switching between vsensors.
Proportional-share Adaptation and Extensions. We introduce
Actuator Fair Queuing (AFQ), a proportional share scheduler that
can allocate shares of a steerable sensor’s time to vsensors, and
evaluate a range of extensions and their effect on performance. Our
experiments quantify the level of AFQ’s isolation and the benefit of
each extension.
Implementation and Experimentation. We implement Multi-
Sense in Xen and use it to study multiplexing PTZ video cam-
eras. We present a case study for PTZ video cameras using multiple
modalities, including continuous scanning, object tracking, single
fixed-point sensing, and multi-sensor fixed-point sensing. Our case
studies show that MultiSense is able to satisfy concurrent applica-
tions using these sensors. As one example, we enable a tracking
application to photograph an object moving at nearly 3 mph every
23 ft along its trajectory at a distance of 300 ft, while supporting a
security application that photographs a fixed point every 3 seconds.

In Section 2, we motivate our use of vsensors and present back-
ground on multiplexing sensors. Section 3 then discusses Multi-
Sense’s basic design, while Section 4 outlines our adaptation of
proportional-share and its extensions. Section 5 and Section 6 present
MultiSense’s implementation and evaluation using pan-tilt-zoom
video cameras. Finally, Section 7 puts MultiSense in context with
related work, and Section 8 concludes.

2. BACKGROUND
The primary problem addressed in this paper is how to multi-

plex (“time-share”) a steerable sensor, such as a PTZ camera, at
a fine time scale across multiple concurrent users with diverse re-

quirements. We chose a virtualization approach for MultiSense to
take advantage of the performance isolation capabilities present in
modern virtualization platforms. We assume that each sensor node
executes a hypervisor (also known as a virtual machine monitor)
that hosts multiple virtual machines, one for each user. Each vir-
tual machine exposes a virtual sensor device that appears to be an
identical, but slower, version of the physical sensor to the user. A
user application can manipulate the virtual sensor independently
of other concurrent users; the virtualization layer ensures trans-
parency by hiding the actions of one user from another, thereby
providing the appearance of a dedicated sensor to each user. Multi-
ple virtual sensors, one from each virtual machine, are mapped on
to the underlying physical sensor and it is the task of the hypervi-
sor to multiplex the virtual sensors onto the physical sensor, akin to
time-sharing. Since concurrent requests from multiple users must
be serviced by the physical sensor, and since mechanical actuation
on steerable sensors is slow, each virtual sensor in MultiSense will
appear to be a slower version of the physical sensor. Although Mul-
tiSense is capable of supporting a broad range of steerable sensors,
in this paper, we focus on Pan-Tilt-Zoom (PTZ) cameras as a rep-
resentative example of steerable sensors.

2.1 System Model
We assume each steerable sensor exposes one or more programmable

actuators that applications control to steer it, and attaches to a node
with local processing, storage and communication capabilities that
is capable of running modern hypervisors. MultiSense multiplexes
requests to steer the sensor across multiple applications, each ex-
ecuting in their own VM on each node. We assume that each ap-
plication issues a stream of actuation requests to steer the sensor,
followed by one or more sense requests to collect data. Thus, an
application’s request pattern takes the form:

[A1A2 . . . AnS1S2 . . . Sm]+, n ≥ 0, m > 0, where
Ai and Si denote an individual actuation and sensing
request, respectively.

The request pattern matches low-level sensing device interfaces,
where each actuation request Ai alters the setting of only a single
actuator. Each actuation Ai takes time ti to steer the sensor to the
specified setting, where ti is dependent on the actuator’s speed and
its current setting.

We assume a constant actuator speed, although there may be
some mechanical jitter. Sense requests Si either capture data by
collecting it using the current setting of the actuators, or scan data
by collecting it while changing the setting of the actuators. For in-
stance, a monitoring application for a PTZ camera might issue a
repeating pattern of pan and tilt requests, followed by one or more
image capture requests to retrieve images. We assume that actua-
tion and sense requests from different applications are independent
of one another, although a scheduler may take advantage of partial
overlaps in requests. To enable fine-grained multiplexing, Multi-
Sense interleaves requests from concurrent applications on the un-
derlying physical sensor.

2.2 Design Challenges
A simple approach for multiplexing multiple users onto a physi-

cal sensor is to employ time-sharing and allocate a fixed time slice
to each concurrent user in round-robin fashion. However, steerable
sensors have actuators that are stateful (e.g, the pan and tilt actu-
ators in a PTZ camera determine where the camera is pointing).
Since each user can modify the state of these actuators via actu-
ation commands, naive time sharing can be problematic for such
stateful sensor devices.
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Figure 1: Examples showing why request interleaving is challenging for steerable sensors.

We highlight the challenges in multiplexing stateful steerable
sensors using a simple example.

Example 1: Consider two users—Alice and Bob—sharing con-
trol of a single PTZ camera. Assume that Alice first issues a pan,
followed by a capture, denoted by PaCa while Bob issues a similar
sequence PbCb, where the subscripts a and b denote Alice and Bob,
respectively. Consider naïve time-sharing that interleaves these re-
quests in the following order on the camera: PaPbCaCb. In this
case, the camera pans to position θa, as requested by Alice, and
then pans to a position θb, as requested by Bob (see Figure 1(a)).

As a result of the ordering, executing Alice’s capture request Ca

next results in an inconsistent picture, since the camera’s lens is at
pan position θb when Alice expects the camera’s lens to be at pan
position θa. Since the camera is stateful, Bob’s actuation leaves the
camera in a different state than Alice left it. As a result, naïve
time-slicing using time quanta is inappropriate, since Alice and
Bob would have no guarantee of the camera’s state at the begin-
ning of any time-slice.

Example 2: A straightforward solution is to restore Alice’s state
before context-switching back to her, similar to a CPU scheduler
that restores the state of a thread’s program counter and registers
prior to scheduling it for execution. However, unlike CPUs and
other peripheral devices, state restoration for mechanically steer-
able sensors is slow, and can be more expensive than the execution
time of actuation requests.

For instance, the PTZ camera we use for our experiments takes
nearly 9 seconds to pan from 0◦ to 340◦, nearly 4 seconds to tilt
from 0◦ to 115◦, and over 2 seconds to zoom from 1x to 25x. Naïve
state restoration can also exacerbate a sensor’s slowness by execut-
ing wasteful actuations. In our example, restoring Alice’s state to
position θa is wasteful, since it requires re-executing the Pa pan re-
quest (Figure 1(b)). Better interleavings, such as PaCaPbCb, still
pose a problem for a naïve strategy, since it is often more efficient
to steer the sensor directly from θb to the position of Alice’s next
request P 2

a , rather than directly restoring her previous state (Figure
1(c)).

These simple examples motivate two basic elements of our ap-
proach. First, we maintain the correct vsensor state for each user to
ensure their sensing requests are consistent. Second, we automati-
cally group together requests of the form A∗

i Si to prevent wasteful
actuations, since interleaving actuation requests from other vsen-
sors within a group results in unnecessary state restoration. Despite
these elements, context-switches between groups inevitably require
some state restoration, making them inherently slow. Since Multi-
Sense does not know each user’s request pattern in advance, these
context-switch times are also unpredictable.

Users will notice unpredictable context-switch times if they have

strict timeliness requirements, and will perceive them as changes
in vsensor actuation speed. For example, rather than maintaining a
stable vsensor speed of v degrees/second, an application may ob-
serve a speed of v

2
degrees per second for one sensing request, and

then a speed of 2v for the subsequent one. One option for reducing
this variability is to require all applications to reveal their desired
request pattern and timeliness requirements at allocation time, and
then decide whether to insert the request pattern into a fixed, repeat-
ing schedule of actuator movements, similar to Rialto’s approach to
hard real-time CPU scheduling [13]. This type of scheduling is dif-
ficult even on a dedicated sensor since, similar to a disk head, the
mechanical steering mechanism has inherent jitter.

Real-time scheduling similar to Rialto also requires strict admis-
sion control policies that limit the number of simultaneous users a
system supports, and is problematic because sensing applications
generally do not know their request patterns or requirements in
advance, since real-world events may occur anywhere at anytime.
Ultimately, some uncertainty is inherent if we allow each applica-
tion the freedom to determine what actuation requests to issue and
when to issue them. As a result, in our design of MultiSense, we
explore how well proportional-share scheduling and its extensions
isolate vsensor performance and meet the practical timeliness re-
quirements of representative applications. Share-based scheduling
is appropriate for allocating a resource whose supply varies over
time. Since the time the physical sensor spends context-switching
is dependent on the request patterns of its applications, the time
available to control the sensor has the effect of a resource with vary-
ing supply.

3. MULTISENSE DESIGN
MultiSense extends traditional hypervisors by adding support to

multiplex steerable sensors using a virtual sensor abstraction. A
vsensor behaves like a slower version of the physical sensor that has
identical functionality: an application designed to interface with the
physical sensor should also interface with the corresponding vsen-
sor. MultiSense resides in the hypervisor or a privileged control
domain—e.g., Domain-0 in Xen—and interleaves requests from
each vsensor on the underlying physical sensor, as shown in Figure
2. We separate MultiSense’s functions into three categories de-
scribed below. The goal of this decomposition is to reduce context-
switch overheads while preserving a level of performance isolation.

1. State Restoration. MultiSense tracks the state of the physi-
cal sensor and each vsensor using finite state machines (FSM),
and restores state whenever it detects a state mismatch at
context-switch time.

2. Request Groups. MultiSense prevents wasteful context-switches
by automatically grouping together requests from each vsen-
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sor of the form A∗
i Si and atomically issuing them to the sen-

sor.

3. Scheduling. MultiSense employs a proportional-share sched-
uler and extensions at the granularity of request groups to
determine an ordering that balances fair access to the sensor
with its efficient use.

We describe MultiSense’s FSMs, and their use in restoring state
and inferring atomic request groups in this section, and discuss
scheduling in Section 4. We use the term actuator broadly to in-
clude both mechanical actuators, as well as non-mechanical set-
tings of interest. For instance, a PTZ camera’s state includes both
the pan, tilt, and zoom position of its lens, as well as the image res-
olution and shutter speed settings. Pan and tilt are true mechanical
actuators that require a motor to alter, while zoom, shutter speed,
and image resolution are settings of the lens, camera, and CMOS
sensor, respectively. Each actuation modifies the state of one or
more of these parameters, causing the sensor to transition from one
state to another.

3.1 Sensor State Machines
Finite state machines track the state of each physical and vir-

tual sensor, where a state is an n-tuple that represents a setting for
each of n actuators. Each state transition has a cost that denotes
the time the sensor takes to complete the transition. MultiSense
employs a virtual state machine (VSM) to track the current state
of each virtual sensor and a physical state machine (PSM) to track
the state of the physical sensor. The state of a virtual sensor (and
hence the VSM) changes only when the corresponding user actu-
ates its vsensor. In contrast, the state of the physical sensor (and the
PSM) depends on which vsensor request is currently executing on
the physical sensor. Thus, the PSM and VSM state machines allow
MultiSense to track the state expected by each user, as well as the
current state of the underlying physical sensor.

3.2 Intelligent State Restoration
Whenever MultiSense context-switches from one vsensor to an-

other, it compares the state of the currently executing vsensor state
machine (VSM) and the physical sensor’s state machine (PSM). As
with a CPU, if there is a state mismatch, MultiSense performs state
restoration by automatically issuing requests for each out-of-sync
state parameter to synchronize the vsensor’s state with the phys-
ical sensor’s state. As an example, assume that Alice’s VSM is
in state pan = θa tilt = φa zoom = Za, and the PSM is in state
pan = θb tilt = φa zoom = Zb. The two state machines are out-

of-sync along the pan and zoom dimensions but in-sync along the
tilt dimension. MultiSense synchronizes Alice’s VSM state with
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Figure 3: Constructing and interleaving request groups

the PSM by issuing a pan request to move the camera from θb to
θa and a zoom request to move from Zb to Za. No synchronization
action is necessary along the tilt dimension.

We refer to this simple state restoration strategy as the eager
strategy, since it eagerly synchronizes states with a past state on
every context-switch. For steerable sensors, the eager strategy im-
poses a higher overhead than necessary, since it ignores actuation
requests queued by each vsensor. Recall the example from Sec-
tion 2.2, where Alice issues PaCa followed by P 2

a C2
a , and the Pa

request causes the camera to move to pan position θa. Now suppose
that Bob’s request PbCb executes next, and the camera pans to posi-
tion θb. Before executing Alice’s next request, the eager strategy re-
stores the pan state of the camera by moving it from the current po-
sition θb to position θa. As depicted in Figure 1(c), the approach is
wasteful, since Alice’s queued pan request P 2

a intends to pan to po-
sition θ2

a, making it more efficient to move the camera directly from
θb to θ2

a. To see why, suppose θb = 50◦, θa = 30◦ and θ2
a = 75◦.

Eager restoration pans from 50◦ → 30◦ → 75◦ = 65◦, while a
direct pan from 50◦ to 75◦ requires only a 25◦ movement. For the
PTZ camera we use, an additional 40◦ pan movement wastes more
than 1 second.

MultiSense avoids this overhead using a lookahead strategy that
does not restore state parameters that queued vsensor acutations
will subsequently modify. For example, let V SMprev denote the
VSM state prior to a context-switch, and let V SMnext denote the
VSM state that would result from executing requests queued after
the last context-switch. V SMprev ∩ V SMnext now denotes the
set of state parameters not modified by these requests. The looka-
head strategy only restores the states in V SMprev ∩V SMnext. In
the Alice and Bob example, V SMprev ∩ V SMnext includes the
parameters zoom and tilt, but not pan, since Alice’s queued request
will modify the pan parameter.

3.3 Grouping Requests via
Request Emulation

To eliminate wasteful state restoration overheads, MultiSense
automatically groups requests from each vsensor that the physical
sensor should execute atomically. Each group includes a sequence
of zero or more actuation requests, followed by a sense request
from a single vsensor. Request groups prevent interference from
the actuation requests of competing vsensors. However, since sens-
ing and actuation requests are often blocking calls executed syn-
chronously on the underlying physical sensor, vsensors only see a
single request at a time, which does not permit grouping. To group
requests, MultiSense enables asynchronous execution of blocking
requests by emulating the execution of requests on the vsensor and
deferring their actual execution on the physical sensor.

Request emulation allows the vsensor to behave as if the request
actually executed on the sensor, allowing the blocking call to com-
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plete and the vsensor to continue execution. The vsensor’s VSM
tracks the state changes that result from any emulated requests, and
defers their execution until the vsensor context-switches in. To en-
sure correctness, we only emulate actuation requests, since they do
not return data that alters an application’s control flow. Since sense
requests return real-world data, MultiSense cannot emulate them,
but must execute them using the physical sensor in the appropriate
state to return a correct result. When a sense request arrives, Multi-
Sense flushes the queue of deferred actuation requests to its sched-
uler, which then schedules the request group as a single atomic unit.
The sense request blocks until the result returns.

As an example, consider how Alice’s virtual camera maps onto a
physical camera. Assume that Alice issues an actuation request Pa

to pan to position θa. Request emulation triggers a VSM state tran-
sition to a new pan position θa, as shown in Figure 4. The figure
also shows that MultiSense queues the request for deferred execu-
tion. Once the blocking pan completes, Alice’s application contin-
ues execution and issues an actuation request to tilt to position φa,
causing request emulation to continue by triggering another state
transition in the VSM. Finally, Alice issues a capture request Ca,
which MultiSense groups with the two pending actuation requests
in the vsensor’s queue and flushes it to the scheduler for execution
on the physical sensor. Alice blocks until the group executes and
returns the appropriate image.

One consequence of request emulation is that applications do not
immediately perceive errors from actuations. We report any errors
as a result of an actuation when its corresponding sense request exe-
cutes, similar to any write-back cache that will defer reporting hard-
ware errors until after a write executes. Note that this change affects
neither application correctness nor device safety. MultiSense de-
lays reporting actuation errors to the time of an application’s next
sense request. Since sensor data dictates an application’s control
flow, the application will observe errors prior to making control
flow decisions. Likewise, since MultiSense controls the issuing of
requests to the physical sensor, it is capable of preventing cascading
errors from unknowing applications that may damage the sensor.

4. PROPORTIONAL-SHARE FOR
STEERABLE SENSORS

MultiSense flushes request groups to a proportional-share sched-
uler that decides when to execute them. We design Actuator Fair
Queuing (AFQ) by modifying the standard Start-time Fair Queu-
ing (SFQ) algorithm, originally designed for NICs [3] and CPUs,
to schedule steerable sensors [9].

As background, we provide a brief summary of SFQ. SFQ as-
signs a weight wi to each vsensor and allocates wi/

P
j wj of the

physical sensor’s time to vsensor i. Controlling the weight assign-
ment alters the share and performance of a vsensor’s acuators: a

smaller weight results in a smaller share and slower actuation. For
example, a weight assignment in a 1:2 ratio for Alice and Bob re-
sults in an allocation of 1/3 and 2/3 of the physical sensor’s time,
respectively. An ideal fair scheduler guarantees that over any time
interval [t1, t2], the service received by any two vsensors i and j is
in proportion to their weights, assuming continuously backlogged

requests at each vsensor during the interval. Thus,
Wi(t1,t2)
Wj(t1,t2)

= wi
wj

,

or equivalently,
Wi(t1,t2)

wi
− Wj(t1,t2)

wj
= 0, where Wi and Wj de-

note the aggregate service each vsensor receives over the interval
[t1, t2]. In our case, the aggregate service denotes the total time
the (dedicated) physical sensor consumes scheduling a vsensor’s
request during the interval.

We define the SFQ algorithm for scheduling critical sections in
MultiSense as follows. For ease of exposition, we will use the
terms critical sections and requests interchangeably: SFQ main-
tains a queue of pending requests for each vsensor.

• Upon arrival, the scheduler assigns each request rk
i with a

start tag S(rk
i ), where S(rk

i ) = max(v(A(rk
i ), F (rk−1

i )),
rk

i denotes the kth request of vsensor i, F (rk−1
i ) denotes

the finish time of the previous request, v(t) represents virtual
time, described below, and A(t) represents the actual arrival
time of the request. The start tag of a request is the maximum
of the virtual time at arrival or the finish tag of the previous
request.

• The finish tag of a request is F (rk
i ) = S(rk

i ) +
lki
wi

, where

lkk denotes the length of the kth request and wi denotes the
weight assigned to vsensor i. Intuitively, the finish tag of
a request is its start tag incremented by the length of time
required to execute the entire critical section, normalized by
the vsensor’s weight. To enable precise computation of lkk ,
SFQ computes the finish tag after the request/critical section
completes execution. Once SFQ computes a request’s finish
tag, it computes the start tag of the next request in its queue.

• The scheduler starts at virtual time 0. During a busy period—
when the scheduler is continuously scheduling requests on
the physical sensor—SFQ defines the virtual time at time t,
v(t), to be the start tag of the request currently executing.
At the end of a busy period, SFQ sets the virtual time to
the maximum finish tag of any request completed during this
busy period. The virtual time does not increment when the
physical sensor is idle.

• The scheduler always schedules the request with the mini-
mum start tag next, ensuring that it schedules the vsensor
with the minimum weighted service thus far. This is the key
property that ensures each vsensor receives its fair share of
the psensor over time. Note also that scheduling the request
with the minimum start tag implies that the virtual time dur-
ing a busy period is always equal to the minimum start tag of
any request in the system.

4.1 Actuator-Fair Queuing
AFQ differs from SFQ by setting the length of a request equal to

the time it would take to execute on the dedicated sensor, and intro-
ducing batch-based reordering, discussed in the following subsec-
tion, that address scheduling issues specific to steerable sensors. As
with other proportional-share schedulers, AFQ associates a weight
wi with each vsensor and allocates wi/

P
k wk of the physical sen-

sor’s time to vsensor i. Lowering a vsensor’s weight assignment
affects its performance by slowing down its actuation speed. In
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vsensor VSMs and execute scheduling policies. Each request
passes from application → front-end driver → back-end driver →
daemon → device.

work-conserving mode, actuation speeds may also become faster if
any vsensor is not using its share by being passive.

The ideal is only possible if the physical sensor is able to divide
each actuation into infinitesimally small time units. Since actua-
tions are of variable length and MultiSense schedules at the gran-
ularity of request groups, enforcing the ideal is not possible. We
chose SFQ as our foundation because it bounds the resulting unfair-

ness due to this discrete granularity by ensuring that |Wi(t1,t2)
wi

−
Wj(t1,t2)

wj
| ≤ (

lmax
i
wi

+
lmax
j

wj
) for all intervals [t1, t2], where lmax

i is

the maximum length of a request group from vsensor i. Intuitively,
this bound is a function of the largest possible request group, which
for our PTZ camera is an actuation, from pan = −170◦ tilt =
−90◦ zoom = 1x to pan = 170◦ tilt = 25◦ zoom = 25x. Since
this worst-case scenario takes nearly 16 seconds for our camera,
one goal of our evaluation is to explore performance in the com-
mon, rather than the worst, case for representative applications.

4.2 Batching
SFQ ignores the actuation costs from context-switching between

request groups, causing significant overheads. As an example, con-
sider three users Alice, Bob and Carol sharing a PTZ camera. As-
sume that the camera is currently at position 25◦, and Alice, Bob
and Carol have start tags of 10, 11 and 12, respectively, when Alice
issues a pan request for position 30◦ and Bob and Carol issue pan
requests for positions 75◦ and 40◦. SFQ services these requests
in order of the start tags—Alice, then Bob, and finally Carol—and
triggers pans from 25◦ → 30◦ → 75◦ → 40◦ = 85◦. However,
since Alice and Carol’s requests are close to each other, servicing
the requests in the order Alice, then Carol, and finally Bob lowers
the overhead to 25◦ → 30◦ → 45◦ → 75◦ = 50◦. For our PTZ
camera, this results in nearly a 1 second reduction in overhead. We
address this issue in AFQ by selecting the k pending request groups
with the smallest start tags, one from each vsensor, instead of se-
lecting only the request group with the minimum start tag.

Given a batch of k request groups, we reorder them to mini-
mize the physical sensor’s total actuation time. In our example,
this strategy selects the more efficient Alice → Carol → Bob or-
dering. For a single actuator, the batching strategy is similar to
proportional-share disk schedulers that use an elevator algorithm

From → To Latency Percentage
application → front-end 0.24 μsecs 7.1x10−8

front-end → back-end 6.35 μsecs 1.9x10−4

back-end → listener 286 μsecs 8.51x10−3

listener → camera 274 μsecs 8.15x10−3

camera → listener 3.35 secs 99.7
listener → back-end 17 μsecs 5.1x10−4

back-end → front-end 27 μsecs 8.0x10−4

front-end → application 229 μsecs 6.8x10−3

total 3.36 secs 100

Table 1: Latency breakdown for a sample vsensor actuation of the
Sony PTZ camera in our Xen implementation. The dominant fac-
tor in the request latency (> 99.7%) is the time to actuate the
camera. Our implementation imposes comparatively little overhead
(< 0.3%).
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Figure 6: Time benchmarks for the pan, tilt, and zoom actuators
of Sony SNC-SRZ30N Network Camera that show the distance
moved by the actuator is roughly linear to the time and energy re-
quired to complete the actuation.

to reorder batched requests [6]. Since our sensors have multiple
actuators, minimizing actuation time is an instance of the NP-hard
Traveling Salesman Problem. We use a greedy heuristic that always
executes the next closest request in the batch. For small values of
k, a brute force search that tries all permutations is also feasible.
Introducing the parameter k defines a new tradeoff: the higher the
value of k the more efficient, but less fair, the schedule. In Sec-
tion 6.2, we show that a value of k that is close to half the number
of vsensors N in the system strikes a good balance between fairness
and efficiency for our examples.

5. MULTISENSE IMPLEMENTATION
Although MultiSense is designed to support a range of steerable

sensor, here we focus on supporting PTZ camera sensors. Our Mul-
tiSense prototype is implemented in the Xen virtual machine and
integrates with Xen’s virtual device framework. Our PTZ camera
sensors are implemented as character devices that transfer streams
of data serially to applications. In Linux, applications typically in-
terface with sensors through character device files using the open,
close, read, write, and ioctl system calls. To support devices, Xen
uses a split-driver approach that divides conventional driver func-
tionality into two halves: a front-end driver that runs in each VM
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Figure 7: Utilization of Domain-0’s 40% CPU share and I/O rate
for streaming data. The number of vsensors vary from 1 to 5, where
the first vsensor is a PTZ camera and the remaining vsensors are
streaming data.

and a back-end driver that typically runs in Domain-0, a privileged
management domain. Details of the split-driver approach can be
found in [2]. Figure 5 depicts MultiSense’s Xen implementation
using a generic front-end character driver that passes the front-end’s
open, close, read, write, and ioctl requests to the back-end driver,
which executes them and returns the response.

As with other character drivers, the front-end/back-end commu-
nication channel supports multiple threads to permit asynchronous
interactions. In our current implementation the back-end driver
passes requests to a user-level daemon running in Domain-0 us-
ing the back-end’s read and write system calls. This daemon in-
cludes the logic to maintain and restore state, group requests, and
schedule groups using a sensor’s conventional application-level in-
terface. Implementing MultiSense at user-level has two advantages
beyond simplifying debugging. First, manufacturers often release
binary-only drivers for Linux that are only accessible from user-
level, necessitating user-level integration. Second, the user-level
daemon decouples our implementation from a specific virtualiza-
tion platform, allowing us to switch to alternatives, e.g., Linux
VServers, if necessary. Since the dominant performance cost for
steerable sensors is actuation time and not data transfer, as we show
in Section 5.2, the overhead of moving data between kernel-space
and user-space in our case is insignificant. For sensors where data
transfer is the dominant cost, we could integrate the functions of
this daemon into the back-end driver.

MultiSense’s front-end/back-end drivers are reusable with dif-
ferent types of sensors since they only serve as a communication
channel for requests. The user-level daemon maintains a vector
and queue for each vsensor that stores the current setting of its ac-
tuators and its backlog of deferred actuation requests, respectively.
The daemon also manages VSMs and state restoration as well as
our extensions, such as request batching. When an actuation re-
quest arrives, the daemon associates a start tag with it, places it at
the end of its vsensor’s queue, sends back a response, and changes
the actuator’s vector entry. When a sense request arrives, the dae-
mon batches it with any deferred requests in order of their mini-
mum start tag, assigns the start tag of batch as the start tag of the
sense request, and flushes the batch to the common queue used by
the AFQ scheduler. As soon as k request batches arrive or time t
passes from the last scheduling opportunity, the scheduler reorders
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Figure 8: Request grouping improves performance 2x.

the request batches in the common queue using our greedy heuristic
and issues them to physical sensor, as described in Section 3.3.

5.1 PTZ Camera
We evaluate MultiSense for PTZ cameras using the Sony SNC-

RZ50N PTZ Network Camera. Beyond the three actuators we fo-
cus on, the camera has many non-obvious actuators, including reso-
lution setting, shutter speed, backlight compensation, night vision,
and electronic stabilization, that influence an image’s fidelity. The
camera is capable of panning between −170◦ and 170◦ and tilt-
ing between −90◦ and 25◦ of center, while supporting 25 different
optical zoom settings (1x to 25x). The camera’s direct drive mo-
tor allows control of pan and tilt increments as small as 1/3◦. We
benchmarked the speed of each of the camera’s actuators indepen-
dently (Figure 6). The camera is capable of panning at 40◦/sec,
tilting at 30◦/sec, and zooming at 12x/sec, although shorter move-
ments are slower due to the acceleration/deceleration of the motor,
which accounts for a major fraction of overall actuation time in case
of shorter movements.

5.2 Benchmarks
Before evaluating MultiSense, we benchmark its implementation

overhead. Our experiments run on our testbed nodes which each
use a 2.00 Ghz Intel Celeron CPU, 1GB RAM, and an 80GB SCSI
disk running version 3.2 of the Xen hypervisor with Ubuntu Linux
using kernel version 2.6.18.8-xen in both Domain-0 and each guest
VM. Each guest uses a file-backed virtual block device to store its
root file system image. Each node consists of a Sony RZ50N PTZ
camera sensor. Using the camera, Table 1 reports the overhead
MultiSense imposes on a single vsensor actuation request and its
response as it flows from the application to the device and then back
to the application. Xen adds two additional layers in the flow—the
front-end and back-end device driver—while MultiSense adds one
layer by using a user-level daemon in Domain-0. As Table 1 shows,
the overhead of these additional layers is minimal compared (order
of μseconds) to the actuation times (order of seconds). We also
benchmark the maximum aggregate I/O that MultiSense is able to
support, and its CPU overhead.

For these experiments, we use Xen’s proportional-share credit
scheduler to allocate Domain-0 40% of the CPU and each VM 10%
of the CPU. Domain-0 requires some CPU to process vsensor I/O
requests and execute MultiSense’s scheduler. We vary the number



 0

 200

 400

 600

 800

 1000

 0  300  600  900  1200  1500  1800

N
um

be
r 

of
 R

eq
ue

st
s

Time (seconds)

Lookahead
Eager

 0

 10

 20

 30

 40

 50

 60

 0  300  600  900  1200  1500  1800

R
eq

ue
st

 L
at

en
cy

 (
se

cs
)

Time (seconds)

Eager
Lookahead

(a) Number of Requests (b) Average Request Latency

Figure 9: The lookahead state restoration strategy outperforms the eager approach in our sample workloads. The number of requests
completed (a) is 2x more and the average latency to satisfy each request (b) is 2x less using the lookahead approach.

 0

 20

 40

 60

 80

 100

1:1 1:2 1:3 1:4 1:5

C
um

ul
at

iv
e 

vs
en

so
r 

T
im

e 
(s

ec
on

ds
)

Weights (vsensor-1:vsensor-2)

vsensor-1
vsensor-2
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of VMs from 1 to 5, where the first VM controls the PTZ camera
and the other VMs are streaming data continuously to stress I/O
request processing. Figure 7 shows the maximum achievable I/O
rate that MultiSense is able to deliver to each vsensor when cam-
eras produce data as fast as possible. The result demonstrates that
MultiSense is able to handle an I/O rate of 4.6 MBps of streaming
data in this extreme case without overloading the CPU allocated to
Domain-0, as shown by the Domain-0 CPU utilization in the fig-
ure. For reference, Netflix’s watch instantly feature has a bit rate 5
MBps using the VC-1 codec [1].

6. EXPERIMENTAL EVALUATION
We first evaluate the impact of MultiSense’s strategies for state

restoration, request groups, and scheduling individually using syn-
thetic workloads. The experiments demonstrate the extent to which
these optimizations improve request throughput and latency. Mul-
tiSense’s primary metric for success is whether or not it accom-
modates real concurrent applications. We present a case study for
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Figure 11: While AFQ enforces performance isolation over many
requests, it may diverge slightly, due to high state restoration costs,
over short intervals of time.

the camera that demonstrates the application-level performance and
timeliness requirements MultiSense can achieve using our example
sensors. We use both deterministic and random synthetic work-
loads to benchmark MultiSense’s functions.

For the camera, the deterministic workload performs continuous
scans using a single actuator in a single direction interspersed with
sense requests, while the random workload repeatedly issues re-
quests for a random setting of the actuators followed by a sense
request. Each scan issues a sense request every 10◦ starting at
one extreme and moving to the other. We intend these synthetic
workloads to be conservative, since they force MultiSense to steer
to extreme points in a sensor’s state space, while also satisfying
randomly generated requests. We describe the workloads for the
applications in our case study in Section 6.3.

6.1 State Restoration and Request Groups
We demonstrate the impact of state restoration and request group-

ing, independently of our scheduling policy, on throughput—the
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Figure 12: AFQ maintains the work-conserving property when ap-
plied to actuators.

number of requests a sensor is able to satisfy per time interval. We
first compare the eager approach to state restoration, described in
Section 3.2, with our lookahead approach. Figure 9 shows results
from an experiment using five vsensors, with batch size of 3, exe-
cuting the random workloads described above. Figure 9(a) shows
the progress of completed requests on the physical camera for both
approaches, while Figure 9(b) plots the average latency to satisfy
each request.

The lookahead approach is significantly more efficient: it is able
to satisfy nearly 2x as many requests during the same 30 minute
time period with 2x less latency on average per request. We also
demonstrate the impact of request grouping by running the same
experiments above with and without grouping. In this case, we
use a group size of 5. Figure 8 shows the results. Using request
groups, the camera is able to satisfy 2x more requests than without
request groups. Our result highlights the importance of optimizing
state restoration and grouping requests for efficiency, since a poor
strategy may cancel any benefits from better scheduling. The con-
sequences for an application are significant. For our camera case
study (Figure 16), a 2x increase in request latency would mean
capturing an image every 6 seconds, versus capturing it every 3
seconds.

6.2 AFQ Scheduling
The goal of AFQ is to enforce performance isolation between

vsensors—each vsensor should receive performance in proportion
to its weight (Figure 11). While AFQ bounds the maximum un-
fairness within any time interval, our extensions relax this bound to
increase efficiency. We first demonstrate AFQ’s strengths and limi-
tations when scheduling steerable sensors, and then present results
that show the performance gains, as well as the impact on fairness,
for each of our extensions.

AFQ advances virtual time in relation to the time each actua-
tion consumes on the dedicated sensor, which we denote as vsen-
sor time. The more vsensor time each actuation consumes the
slower the actuator. Figure 10 shows the total vsensor time of
two vsensors with different weight assignments using AFQ, where
each vsensor executes the continuous scan workload. The figure
demonstrates that a straightforward adaptation of SFQ for actua-
tors isolates vsensor performance: the cumulative vsensor time it
allocates is in proportion to the assigned weights. As shown in Fig-
ure 12, AFQ proportionally distributes shares of the passive vsensor
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Figure 13: AFQ shows better global performance in terms of av-
erage throughput in requests/seconds as batch size increases. For
this experiment, each increment in the batch size results in roughly
a 10% improvement.

(vsensor-5’s share during time interval 500-1000 and 1500-2000
seconds) among active vsensors (vsensor-1 and vsensor-2). How-
ever, while SFQ enforces performance isolation over large numbers
of requests, high context-switch costs cause it to perform unfairly
over short intervals.

To demonstrate the point, Figure 11 shows how the cumulative
vsensor time progresses over the course of an experiment. Since
each workload includes 100 requests, at any point in time the cu-
mulative vsensor time for each vsensor should be in proportion to
the assigned weights. The experiment uses five vsensors—four run-
ning the continuous scan workload (1-4) and one running the ran-
dom workload (5). The result demonstrates that over short time
periods SFQ is not always fair: during the period 0-100 seconds
both vsensor-3/vsensor-4 and vsensor-1/vsensor-2 receive similar
performance that is not in proportion to their weights. Further,
vsensor-1/vsensor-2 receive similar performance by time 200 and
vsensor-3/vsensor-2 receive similar performance up to time 400,
which diverges from the weight assignments. However, as before,
as MultiSense services larger numbers of requests, performance
converges to the assigned weights by 550 seconds.

6.2.1 Request Batching
Figure 13 demonstrates the performance improvement from batch-

ing for the camera. The experiment uses random workloads from 5
vsensors to stress actuation, and shows that the average throughput
increases as the batch size increases—each increment in batch size
results in roughly a 10% improvement. However, the improvement
comes at a cost: the scheduler diverges from strict fairness. Fig-
ure 14(a) shows the cumulative request latency for each of the five
vsensors as a function of batch size, using the same five vsensors
and workloads as Figure 13. The cumulative request latency is the
sum of the latencies to satisfy all requests at each vsensor, which is
equivalent to each vsensor’s makespan.

Figure 14(b) plots the cumulative vsensor time over the course
of the experiment for a batch size of 4. Comparing the result with
Figure 11 in the previous section emphasizes the decrease in per-
formance isolation. As expected, SFQ, which corresponds to a
batch size of 1, exhibits strong performance isolation. As the batch
size increases, though, performance isolation decreases, causing
the height of the bars to approach each other. For these workloads,
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Figure 15: The difference in latency when coordinating multiple
vsensors on different nodes to sense the same point.

a batch size of 3 exhibits an appropriate balance by increasing per-
formance by 20% while achieving similar fairness properties. In
practice, we have found that a batch size of roughly half the num-
ber of active vsensors strikes the appropriate balance.

6.3 Case Studies for PTZ Camera Sensors
Our case study explores MultiSense’s use for the camera with

four example applications with specific performance metrics. We
use the lookahead state restoration approach, request groups, and
AFQ.

• Continuous Monitoring. Continuously pan in increments
of 65◦—nearly one-fifth of the possible pan range—and cap-
ture an image. The performance metric is the time to cover
the sensor’s entire range.

• Fixed-point Sensing. Pan, tilt, and zoom the lens to a fixed
point and repeatedly capture images at a regular interval. The
performance metric is the sensing rate.

• Object Tracking. Periodically track a pre-defined path along
both the pan and tilt axes and capture images every 10◦. The
performance metrics are both the latency between sensing
requests, and the minimum overall latency necessary to keep
up with the moving object.

• Multi-sensor Fixed Point Sensing. For two cameras, pan,
tilt, and zoom the lens to a fixed point and repeatedly cap-
ture images at a regular interval. The sensor must also sat-
isfy competing applications. The performance metric is the
rate at which both sensors capture the fixed-point, which is
equivalent to the minimum sensing rate of the two sensors.

With a dedicated camera, fixed-point sensing has near video qual-
ity. The sensing rate is 11 images/second with an average inter-
image interval of 0.09 seconds. However, even on a dedicated sen-
sor, actuation does have a significant effect on performance. Exe-
cuting our random workload, reduces the rate to 0.3 images/second
with an average inter-image interval of 3.35 seconds. Similarly, two
fixed-point sensing applications—at a distance of 180◦—are both
able to capture 0.2 images/second with an average inter-image in-
terval of 4.65 seconds.

We first execute both continuous monitoring (Figure 16(a)) and
object tracking (Figure 16(b)) concurrently with the fixed-point
sensing application for the camera. We maintain a weight of 1 for

fixed-point sensing, while varying the weights assigned to contin-
uous monitoring and object tracking. Figure 16 shows the results
for the camera, where the left y-axis plots the application’s per-
formance metric, the right y-axis plots sensing rate for fixed-point
sensing, and the dotted line depicts performance on a dedicated
sensor. The results show that MultiSense is able to satisfy the con-
flicting demands of concurrent applications. Of course, the appli-
cations must be able to tolerate less performance than possible with
the dedicated sensor, which in these examples ranges from 1.5x to
8x less performance for the different weight assignments. Since
weight dictates performance, some applications may need a mini-
mum weight to satisfy their requirements.

Consider continuous monitoring for the camera with a 1:30 weight
ratio, the application is able to pan all 340◦ in 20 seconds. Thus, in
the real-world, the monitoring application is able to capture 5 dis-
tinct points 113 feet apart, e.g. four doorways, at distance of 100
feet from the camera every 4 seconds. The example assumes the
points are along a circle with radius 100 feet with camera’s lens as
its center. Simultaneously, fixed-point sensing maintains an aver-
age sensing rate of nearly 0.2 images/second, allowing it to contin-
uously capture a single point, such as a nearby intersection. Like-
wise, for a 1:3 weight ratio, the object tracking application is able
to scan a pre-defined path every 10◦ and capture images at least
every 6 seconds, which is suitable for tracking a moving object at a
distance of 300 feet moving at 2.66 miles/hour, e.g., a person walk-
ing, for up to 1779 feet (over 1/3 mile) of the object’s motion with
25x zoom. Both the specific speed and the total distance tracked
are dependent on the object’s trajectory, its distance from the cam-
era, and the camera’s optical zoom and resolution settings. Our
example assumes that the object’s trajectory is along a circle of ra-
dius 300 feet with the camera’s lens as its center. During tracking,
the fixed-point sensing application maintains a sensing rate of 0.3
images/second.

We also ran an experiment for a networked multi-sensor scenario
where the application coordinates multiple sensors to sense a fixed
point, while competing with continuous monitoring on one sensor
and fixed-point sensing on the other. The experiment demonstrates
the extent to which MultiSense satisfies timeliness requirements.
Figure 15 shows the results. The x-axis shows experiments with
different weight ratios assigned to the competing applications on
each sensor, while the y-axis plots the average difference in latency
between two requests. The magnitude of this difference determines
how close in time the two sensors are able to capture data for the
same point. As the graph shows, higher weight assignments de-
crease the difference, and provide near (< 1 second) simultaneous
sensing. Even with a low relative weight assignment the sensors
sense the same point within 2 seconds of each other, which is suit-
able for a range of scenarios, such as estimating the pedestrian en-
try/exit points for cameras. We are exploring other challenges that
arise in distributed multi-sensor scheduling as part of future work,
including applications with tighter time constraints.

7. RELATED WORK
MultiSense adapts existing techniques from many different ar-

eas, including sensor networks, platform virtualization, and proportional-
share scheduling, to virtualize stateful sensors with actuators. We
briefly review important topics in each of these areas.

Mote-class sensor networks primarily use virtualization as a mech-
anism for safe execution and reprogramming, as demonstrated by
Maté [11], since motes are generally not powerful enough to exe-
cute multiple applications concurrently. While some recent mote-
class OSes incorporate threads and time-sharing [5], the energy
constraints of motes prevent them from using high-power sensors
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Figure 16: For the camera, MultiSense is able to serve concurrent sensing applications. A continuous monitoring application (a) and an object
tracking application (b) both maintain tolerable performance for varying weight assignments, while competing with a fixed-point sensing
application with weight 1.

with rich programmable actuators, such as PTZ cameras or steer-
able weather radars. PixieOS [14] uses proportional-share schedul-
ing techniques (in the form of tickets) to enable explicit conven-
tional resource control (CPU, memory, bandwidth, energy) by in-
dividual mote applications; we extend similar proportional-share
scheduling techniques to the equally important actuation “resources"
of high-power sensors. Finally, ICEM also encounters a prob-
lem with blocking calls to peripheral devices when abstracting de-
vices [10]; ICEM solves the problem for mote power manage-
ment by exposing concurrency to drivers through power locks. In
contrast, MultiSense does not change the application/device inter-
face to support unmodified applications, and, instead, characterizes
actuations as either safe or unsafe and uses request emulation to
“complete" blocking calls asynchronously.

MultiSense uses Xen’s [2] basic abstractions for multiplexing
I/O devices [19]. Other frameworks, including VMedia [22], use
Xen for coordinating shared access to peripheral devices. As with
other device virtualization frameworks, VMedia focuses on station-
ary devices, e.g., web-based cameras and microphones, but does
not extend the paradigm to steerable devices. Modern VMMs, in-

cluding Xen and VMware, focus on virtualizing the hardware at
the lowest layer possible, e.g., the PCI bus, the USB controller,
etc., to support unmodified device drivers. However, virtualizing at
this layer requires the physical device to attach to a single VM and
“pass-through" device requests to the physical bus [23]. We vir-
tualize at the protocol layer—the character device file interface—
so MultiSense can interpret each vsensor request and control their
submission to the physical sensor. Our choice to implement sensor
multiplexing and proportional-share scheduling in Xen is a result of
our broader goal of lowering the barrier to experimenting with these
systems from the ground up. Xen and other virtualization platforms
offer the low-level fault, resource, and configuration isolation that
we require. MultiSense’s FSM that tracks the state of each vsensor
is similar to shadow drivers [18], but we use them to ensure correct
operation and enforce performance isolation and do not focus on
reliability. Many prior approaches structure device drivers as state
machines; the technique is natural for stateful devices [15].

MultiSense applies the proportional-share paradigm, which has
been well-studied in other contexts, to multiplex control of steer-
able sensors. SFQ was originally prototyped for multiplexing packet



streams and later extended to CPUs [9]. More recently, there has
been work on proportional-share scheduling for energy—another
non-traditional resource—using virtual batteries [7]. We extend
the paradigm to the actuation resources of steerable sensors. Per-
haps most related to MultiSense is past work on proportional-share
scheduling for disks. Disk schedulers incorporate a similar batch-
ing technique [6] and often group together write requests and flush
them to disk after a read request occurs. However, there are funda-
mental differences in the relative speed of actuators and their use,
as well as workload characteristics, that present different trade-offs
for steerable sensors. Rather than modeling the shared resource
as I/O bandwidth or aggregate number of I/Os, which is often the
case for disks [16], we use total time controlling the sensor, since
this determines when and what applications are able to sense. We
also introduce and evaluate new extensions for scheduling steerable
sensors and evaluate their impact on applications. As with disk
scheduling, other optimizations, such as Anticipatory Scheduling,
may further improve performance [12].

8. CONCLUSION
MultiSense extends proportional-share scheduling to multiplex

the resource of controlling a sensor’s actuators. For steerable sen-
sors, control of the actuators is the most important resource since
it determines the type of data the sensor collects. This is the first
work, to the best of our knowledge, to multiplex this important, but
often overlooked, class of sensors. One reason multiplexing is crit-
ical for steerable sensor networks is their high deployment costs.
In this paper, we demonstrate techniques for enabling multiplexing
and proportional-share scheduling, and evaluate our techniques on
synthetic workloads, as well as four real applications, that demon-
strate their effectiveness for PTZ cameras.
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