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Abstract— In this paper, we present mBenchLab, a software 
infrastructure to measure the Quality of Experience (QoE) on 
tablet and smartphones accessing cloud hosted Web services. 
mBenchLab does not rely on emulation but uses real phones and 
tablets with their original software stack and communication 
interfaces for performance evaluation. We have used 
mBenchLab to measure the QoE of well-known web sites on 
various devices (Android tablets and smartphones) and networks 
(Wifi, 3G, 4G). We present our experimental results and lessons 
learned measuring QoE on mobile devices with mBenchLab. In 
our QoE analysis, we were able to discover a new bug in a very 
popular smartphone that impacts both performance and data 
usage. We have also made the entire mBenchLab software 
available as open source to the community to measure QoE on 
mobile devices that access cloud-hosted Web applications. 

Keywords—benchmarking, QoE, Android, tablets, 
smartphones, mobile web, cloud, web applications, web services. 

I. INTRODUCTION  
The Cloud has become the platform of choice to host 

modern Web applications. Cloud services provide elasticity, 
reliability and scalability at a low cost by virtualizing Web 
applications in large data centers. Concurrent with this server 
side transformation, the client side has begun to change 
dramatically as well by shifting from traditional desktops to 
smartphones and tablets. Wikipedia [9], the free online 
encyclopedia has a page view count approaching 20 billion 
page views per month with more than 13% for mobile traffic. 
From Dec 2011 to Dec 2012, overall Wikipedia traffic has 
increased 24%. This increase was dominated by mobile traffic 
which increased 77%, while non-mobile traffic increased only 
18% [13]. On the hardware side, the latest forecast for 2013 
predicts that tablet sales will surpass that of notebooks this year 
[10]. Unlike traditional PCs, these new devices not only have 
limited hardware resources (such as cpu, memory, storage, 
battery-power) but they also have access to a wider variety of 
networks (such as Wifi, 3G/4G, LTE). All these factors can 
significantly affect the user perceived quality of experience 
(QoE) of cloud hosted Web services. 

We argue that the complexity of interactions with modern 
Web applications (WebApps) requires the use of real software 
stacks and network infrastructure that are too hard to simulate 
realistically. In this paper, we present mBenchLab, an open 
testbed to measure the QoE of Cloud hosted WebApps using 
real mobile devices. Unlike other benchmarking frameworks, 
mBenchLab does not rely on simulation or emulation. Instead 

we use (i) the original software stack of smartphones and 
tablets including their native Web browser, and (ii) the real 
network infrastructure. In our previous work [6], we focused 
on benchmarking server and network performance using 
desktop browsers on wired networks. In this paper, we present 
our results and lessons learned in developing mBenchLab for 
Android mobile devices to measure the QoE of cloud hosted 
Web Applications over wireless networks. We have used 
mBenchLab to measure the QoE of well-known services such 
as Amazon, Craigslist, or Wikipedia. To identify issues in 
QoE, we focus not just on overall latency or page load times—
mBenchLab can also record fine grain events such as 
connection establishment, DNS resolution, network 
send/receive and browser rendering. These finer-level insights 
allow us to identify issues that users may face while browsing 
web sites from mobile devices. Mobility information is also 
recorded on devices equipped with GPS devices. By tracking 
the location of devices during an experiment, mBenchLab can 
help point out QoE issues related to geolocation. 

All mBenchLab experiments are deployed from a 
Dashboard that is implemented as a Web Application. A 
system designer can deploy his or her own Dashboard and 
record experimental results from mobile devices into the 
database embedded in the WebApp. This data can then be 
exported or directly analyzed in the Dashboard to identify QoE 
issues. The Dashboard can also synchronize multiple devices to 
participate in the same experiment to generate a workload on a 
particular server or set of servers. This functionality can be 
helpful to measure the scalability of cloud services or the 
performance of wireless networks. In addition to targeting 
system designers who measure web application performance, 
mBenchLab is also designed for researchers who wish to use 
realistic mobile devices and networks to inject workloads into 
realistic web applications. To that end, we have reproduced the 
entire Wikipedia software stack that can be deployed in private 
or public clouds as a realistic server backend to mBenchLab 
mobile clients. We were also able to get access to Wikipedia 
access logs to reproduce realistic workloads in research 
experiments.  

Our contributions are the following: 

• We have built mBenchLab, a software infrastructure that 
can benchmark the QoE of cloud hosted Web applications 
with Android devices. We have also rebuilt the Wikipedia 
software stack to deploy it on-demand in private and 
public clouds. The mBenchLab Android application, 



Dashboard and all the Wikipedia virtual machines for 
private clouds and Amazon EC2 are publicly available to 
the community to advance research in benchmarking cloud 
services with mobile devices. 

• We perform detailed QoE measurements with Android 
smartphones and tablets on popular web sites and 
compared it to standard desktop browsers. We show that 
our monitoring overhead does not affect significantly the 
user perceived QoE. We measure how the device 
hardware/software combination influence the overall user 
perceived QoE. We also measure how QoE is correlated 
with mobile network performance on multiple continents. 

• We show through a series of experiments how mBenchLab 
can identify QoE issues either related to the network, the 
Web service or the mobile device itself. We were able to 
find a previously undiscovered bug in the native browser 
of the popular Samsung S3 phone (40 million sold as of 
January 2013) that significantly affects performance and 
bandwidth usage on certain Web sites. 

Our paper is structured as follows: section II gives an 
overview of the mBenchLab platform. Section III details the 
specifics of QoS measurements on Android devices. We 
present the results of our experimental evaluation in section IV. 
We discuss related work in section IV.F before concluding in 
section VI. 

II. MBENCHLAB OVERVIEW 
mBenchLab is an open testbed for Web application 
benchmarking from mobile devices. The load is injected from 
real mobile devices that run the mBenchLab Mobile App and 
the experiments are coordinated through the mBenchLab 
Dashboard (section A). mBenchLab can be used with any 
existing Web application without any modification. For 
experiments where the user wants to control a real Web 
Application, we provide a Wikipedia implementation as 
virtual appliances that can be deployed on private or public 
clouds (section B). 
A. mBenchLab Dashboard and MobileApp 
Fig. 1 gives an overview of the mBenchLab components and 
how they interact to run an experiment. The mBenchLab 
Dashboard is the central component that deploys and controls 
experiments. It is built as a Java Web application that can be 
deployed in any Java Web container such as Apache Tomcat. 
The mBenchLab Dashboard provides a Web interface to 
interact with experimenters that want to create experiments 
using mobile devices. The Dashboard gives an overview of the 
devices currently connected, the experiments (created, running 
or completed) and the Web traces that are available for replay. 
Web trace files are uploaded by the experimenter through a 
Web form and stored in the Dashboard database. The trace file 
includes the list of URLs to visit and encodes the values to fill 
Web forms as well as buttons to click. Every element is 
referred to by its id or name in the HTML page that is being 
accessed. The trace file can either be generated using a simple 
CSV format or by a traditional desktop browser by recording a 
browsing session using the standard HTTP Archive format 

(HAR) [11]. Each URL is assigned to a particular session that 
will be replayed by a single browser. An experiment that 
wants to use simultaneously 10 browsers must use a trace that 
contains at least 10 sessions. 
mBenchLab does not deploy, configure or monitor any server-
side software. There are a number of deployment frameworks 
available that users can use depending on their preferences 
(Gush, WADF, JEE, .Net, etc). If the experimenter deploys 
her own Web Application to be tested, monitoring the server 
software is also the choice and responsibility of the 
experimenter (Ganglia and fenxi are popular choices).   
 

 
 

Fig. 1. mBenchLab experiment flow overview 

Anyone can deploy an mBenchLab Dashboard and therefore 
build his or her own benchmark repository. An experiment 
defines what trace should be played and how. The user defines 
how many mobile devices should replay the sessions with 
eventual constraints (specific platform, version, location…). 
The experiment can start as soon as enough clients have 
registered to participate in the experiment. The Dashboard 
does not deploy the application on the mobile devices, rather it 
waits for mobile devices to connect and its scheduler assigns 
them to experiments. 
The mBenchLab Android application (mBA) is a mobile 
application that starts and controls the native Web browser on 
the mobile device. On startup, the mBA connects the browser 
to an mBenchLab Dashboard (step 1 in Fig. 1). When the 
browser connects to the Dashboard, it provides details about 
the exact browser version and platform runtime it currently 
executes on as well as its IP address and GPS location (if 
enabled). If an experiment needs this device, the Dashboard 
redirects the mBA to a download page where it automatically 
gets the trace for the session it needs to play (step 2 in Fig. 1). 
The mBA stores the trace on the local storage and makes the 
Web browser regularly poll the Dashboard to get the 
experiment start time. There is no communication or clock 
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synchronization between mBAs, they just get a start time as a 
countdown in seconds from the Dashboard that informs them 
‘experiment starts in x seconds’ through a Web form. The 
status of mobile devices is recorded by the Dashboard and 
stored in a database. 
When the experiment start time has been reached, the mBA 
plays the trace through the Web browser monitoring each 
interaction (step 3 in Fig. 1). If Web forms have to be filled, 
the mBA uses the URL parameters stored in the trace to set 
the different fields, checkboxes, list selections, files to upload, 
etc. Text fields are replayed with a controllable rate that 
emulates human typing speed through the virtual keyboard of 
the device. The GPS location when the page was fetched as 
well as various QoE statistics (see section III for more details) 
are collected locally on the mobile device. The results are 
uploaded to the Dashboard at the end of the experiment (step 4 
in Fig. 1). The mBA can also record the HTML pages and take 
screen snapshots of rendered pages to include in the 
Dashboard database. By parsing the HTML or comparing 
snapshot images with data from other runs, one can detect 
errors or rendering issues that affect user QoE. Fig. 2 shows 
an example of the experimental results stored in the 
Dashboard database. 
 

 
Fig. 2. Partial screenshot of an experiment result in the mBenchLab dashboard 

mBAs replay traces based on the timestamps contained in the 
traces. If an mBA happens to be late compared to the original 
timestamp, it will try to catch up by playing requests as fast as 
it can. A page loading timeout can also be set to prevent 
browsers from being stuck on particular pages. 
B. Wikipedia Virtual Appliances 
Wikipedia is available in 285 languages all relying on the 
same MediaWiki software stack and supervised by the 
Wikimedia foundation. Other satellite sites such as Wikibooks 
[8] (free content textbooks and annotated texts), WikiNews 
(free content news), Wiktionary (dictionary and thesaurus)… 
also rely on the same software. The server side is basically a 
PHP application with a number of extensions storing content 
in a database (MySQL by default).  
We have created a Wikimedia server virtual machine that 
contains a preconfigured software stack including Apache 
2.2.16, PHP 5.3.3, MediaWiki 1.16, as well as all necessary 
extensions necessary to run the Wikipedia family of web sites, 
including the Lucene search engine and multimedia content. 
We have also created a set of virtual machines with the 
database software and the content for particular wikis. 
Database dumps are freely available from the Wikimedia 

foundation in compressed XML format. TABLE I gives an 
overview of the databases we have made available as virtual 
appliances. Note that the English Wikipedia database (enwiki) 
is not available in public clouds due to its 5.5TB size and cost 
of storage. The English Wikibooks (enwikibooks) has a 
smaller number of articles but still a significant size as each 
article is larger than typical Wikipedia articles. 

TABLE I VIRTUAL APPLICANCE DATABASES AVAILABLE (DUMPS FROM 
JANUARY TO MARCH 2010 TO MATCH OUR TRACES ENDING IN MARCH 2010) 

Wiki name # of articles Size on disk Time to generate 
db and index 

dawiki 122 k 6.5 GB 14 hours 
nlwiki 584 k 39 GB 3.25 days 
frwiki 901 k 94 GB 7.3 days 
enwiki 3.1 M 5.5 TB >3 months 
enwikibooks 32 k 4.3GB 10 hours 

 
To prevent copyright issues with multimedia content, we use a 
multimedia content generator that produces images with the 
same specifications as the original content but with random 
pixels. Such multimedia content can be either statically pre-
generated or produced on-demand at runtime. We have similar 
generators for audio and video content. 
Wikipedia access traces are available from the Wikibench 
Web site [7]. The log can be used to reproduce read workload 
traces while the wiki history log can be used to reproduce the 
exact update workload. mBenchLab traces support both CSV 
and HTTP archive (HAR) formats. On top of capturing the 
original request, HAR also includes sub-requests, post 
parameters, cookies, headers, caching information and 
timestamps. We provide mBenchLab traces to use with our 
Wikipedia virtual appliances. 

III. MEASURING QOE ON ANDROID DEVICES 
A central contribution of mBenchLab is the ability to replay 
traces through real Web browsers. Major companies such as 
Google and Facebook already use open source technologies 
like Selenium [12] to perform functional testing. These tools 
automate a browser to follow a script of actions, and they are 
primarily used for checking that a Web application’s 
interactions generate valid HTML pages. We argue that the 
same technology can also be used for performance 
benchmarking. One of the technical challenges is that 
Selenium is originally designed for testing from a desktop 
machine that conducts performance tests via an emulator or a 
mobile device connected to it. We have extracted the relevant 
core pieces of Selenium and have embedded it in a standalone 
mobile application on Android devices. 
The mBenchLab Android application (mBA) extends the 
Selenium framework with mBenchLab functionalities to 
download a trace, replay it, record QoE statistics for each page 
and upload the results at the end of the replay. Unlike 
traditional load injectors that work at the network level, 
replaying through a Web browser accurately performs all 
activities such as typing data in Web forms, scrolling pages 
and clicking buttons. The typing speed in forms can also be 
configured to model a real user typing. This is particularly 



useful when inputs are processed by JavaScript code that can 
be triggered on each keystroke. Through the browser, mBA 
captures the real user perceived latency including network 
transfer, page processing and rendering time. 
Most desktop browsers include debugging tools such as 
Firebug for Firefox or the developer tools for Chrome that are 
able to capture the timeline of all browser interactions while 
pages are being loaded. This data can usually be stored into a 
HAR file. No Android Web browser, including the native 
Android browser, offers that feature. We therefore have re-
implemented that functionality to obtain and log detailed QoS 
information on mobile devices. 
An open source proxy developed by WebMetrics called 
BrowserMob proxy [14] offers that functionality in a 
standalone Java proxy. That proxy being designed for regular 
desktop JVMs, we had to port it and adapt it to the 
idiosyncrasies of the Android platform in order to integrate it 
in the mBA. Running a fully functional Web proxy on devices 
with very limited resources can impose a significant overhead 
and therefore the proxy is only optional if detailed HAR 
recording is not desired. Fig. 3 gives an overview of the 
architecture of the mBA. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. mBenchLab Android application architecture 

 
Fig. 4. HAR captured by the mBA when accessing the main page of the 

english Wikipedia web site 

The detailed information collected by the mBA is the 
following: DNS resolution time, connection establishment 
time, request failure/success/cache hit rate, send/wait/receive 
time on network connections, overall page loading time 
including Javascript execution and rendering time. 

Unfortunately the current Android APIs do not provide 
monitoring of battery usage on a per application level. 
Therefore we are not able to measure the power impact of 
Web service designs. Fig. 4 shows a partial example of the 
information captured when accessing the main page of the 
Wikipedia web site. 
Additionally the mBA can record HTML page sources and 
screen snapshots of rendered pages. This data is automatically 
uploaded at the end of the experiment and can be visualized in 
the dashboard. As shown on Fig. 5, the screen snapshots can 
also capture errors reported by the browser. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Example of screen snapshots taken during experiments on Amazon, 
Craigslist, Wikipedia and a network connection error. 

The screen snapshot functionality can also be extended to 
measure the QoE on streamed video content by capturing 
images at fixed time intervals. 

IV. EVALUATION 
In this section we present the results of our experimental 
evaluation with mBenchLab. First, we describe our 
experimental setup and our methodology (section A). Our first 
set of experiments targeting well known web sites is presented 
in section B. We evaluate the overhead of our instrumentation 
mechanisms in section C. We show various use cases of QoE 
problem detection in section D and location-based QoE in 
section E. Section F summarizes our results. 

A. Experimental setup and methodology 
We have conducted our experiments on a laptop with Firefox 
as a baseline to compare with the native browser of our tablets 
and smartphones. We tested various browsers for the desktop 
baseline including Chrome and Internet Explorer and we 
obtained similar results as Firefox. Therefore we only present 
Firefox results for the desktop baseline. Our software only 
supports the native Android browser, so we cannot compare 
with Firefox or Chrome versions for Android. 
TABLE II shows the hardware and software specifications of 
our devices. The Trio tablet is an entry-level Android tablet 
while the Kindle Fire is a higher end tablet of the same 
generation. The smartphones used in our experiments are the 
popular high-end Samsung S3 and Motorola Droid RAZR as 
well as an entry level HTC Desire C. While devices can have 
the same physical screen size, screen resolutions vary greatly 
impacting the amount of information provided to the user.   
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TABLE II ANDROID DEVICES USED IN OUR EXPERIMENTS WITH THEIR RESPECTIVE HARWARE AND SOFTWARE SPECIFICATIONS. 

Device Processor RAM / 
Storage 

Screen size / 
resolution / GPU Network OS version Web browser version 

MacBook 
Pro 

2 GHz Intel 
Core i7 

1GB / 
150GB 
(VM) 

15” / 1440x900 
AMD Radeon HD 

6490M 256MB 
Wifi Windows 7 x64 / 

VMWare Fusion 
Mozilla/5.0 (Windows NT 6.1; WOW64; 
rv:15.0) Gecko/20100101 Firefox/15.0.1 

Trio 
Stealth 

Pro Tablet 

Single core 
1.2GHz ARM 

Cortex A8 

512MB / 
4GB 

7” / 800x480 
Mali 400 Wifi 

Android 4.0.3 
(official release 

Dec 2011) 

Mozilla/5.0 (Linux; U; Android 4.0.3; en-us; 
SoftwinerEvb Build/IML74K) 
AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

Amazon 
Kindle 

Fire 

Dual core 1.2 
GHz TI OMAP4 

4430HS  

512MB / 
8GB 

7” / 1024x600 
PowerVR SGX540 Wifi 

Android 4.1.2 
(AOKP Otter Oct 

17, 2012) 

Mozilla/5.0 (Linux; U; Android 4.1.2; en-us; 
Amazon Kindle Fire Build/JZO54K) 
AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

HTC 
Desire C 

Single core 600 
MHz, ARM 
Cortex-A5 

512MB / 
4GB 

3.5” / 320x480 
Adreno 200 

Wifi/ 
Edge/3G 
Orange 

Android 4.0.3 
(official release 

Dec 2011) 

Mozilla/5.0 (Linux; U; Android 4.0.3; fr-fr; 
HTC Desire C Build/IML74K) 
AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

Samsung 
S3 GT-
I9300 

Quad-core 1.4 
GHz ARM 
Cortex-A9 

1GB / 
32GB + 
64GB 

4.8” / 720x1280 
Mali-400MP 

Wifi/3G 
AT&T 

Android 4.1.2 
(official release 

Dec 2012) 

Mozilla/5.0 (Linux; U; Android 4.1.2; en-us; 
GT-I9300 Build/JZO54K) AppleWebKit/ 
534.30 (KHTML, like Gecko) Version/4.0 
Mobile Safari/534.30 

Motorola 
Droid 
RAZR 

Dual core 1.2 
GHz ARM 
Cortex-A9 

1GB / 
16GB 

4.3” / 540 x 960 
PowerVR SGX540 

304 MHz 

Wifi/3G/
4G LTE 
Verizon 

Android 4.0.4 
(official release 

Mar 2011) 

Mozilla/5.0 (Linux; U; Android 4.0.4; en-us; 
DROID RAZR Build/6.7.2-180_DHD-16_M 
4-31) AppleWebKit/534.30 (KHTML, like 
Gecko) Version/4.0 Mobile Safari/534.30 

 
We have generated 4 trace files, each targeted at a particular 
web site. The Amazon trace browses products from the 
amazon.com US store. The Craigslist trace searches for various 
items in the Western Massachusetts Craigslist website. The 
Wikipedia trace accesses a number of articles of varying length 
on the English Wikipedia web site. Finally, the Wikibooks trace 
browses articles from our implementation of the English 
Wikibooks website running in our datacenter with the 
enwikibooks database described in TABLE I. 
Each experiment is repeated at least 5 times and caches are 
emptied between each run. All experiments are done on Wifi 
networks except where 3G or 4G LTE are indicated. 3G 
experiments in the USA use the Straight Talk data plan on 
AT&T and Orange in Europe. 4G LTE uses the Verizon 
network. 

B. Measuring performance of major Web sites 
When a browser is directed to a particular URL, it starts to get 
the main HTML page and processes it to download any 
additional images, style sheets or scripts required to properly 
display the page. Fig. 6 shows the average number of requests 
issued by Web browsers when trying to access the 5 first pages 
of our traces for Amazon, Craigslist and Wikipedia.  
The desktop version of the Amazon web pages is the most 
complex and can require more than 100 requests to fetch. We 
observe a significant variability between runs especially on the 
home page as a lot of content is generated dynamically 
depending on the user and the current sales. The mobile version 
of the same pages never exceeds 20 requests and is consistent 
between consecutive runs. The more simple Craigslist Web 
pages only require 1 request once the browser cache is hot. The 
desktop and mobile versions exhibit the same behavior. 
 

 
Fig. 6. Comparing the number of browser generated requests on Android/S3 

and Firefox/desktop with Amazon, Craigslist and Wikipedia. 

 
Fig. 7. Comparing the page sizes in KB on Android/S3 and Firefox/desktop for 

the 5 first request of our Amazon, Craigslist and Wikipedia traces. 

The number of requests for Wikipedia on the Samsung S3 is 
inflated by a bug that is investigated in section D. The number 



of requests and page sizes for Wikipedia are typically smaller 
on mobile devices than desktops as show on Fig. 13. Similarly, 
Amazon serves much smaller pages to its mobile users that are 
not exposed to the large number of ads displayed in the non-
mobile version. Craigslist with its minimalistic design offers 
very small page sizes for both mobile and non-mobile clients. 
Since Amazon shows significant difference in the content being 
fetched between consecutive runs, it is not possible to directly 
compare the performance between these runs. This shows that 
it is important to understand the details of the generated content 
to be able to interpret client side QoE. 
 

 
Fig. 8. Comparing average observed latency for desktop, tablets and phones on 

wireless networks with our Craigslist trace. 

 
Fig. 9. Comparing average latency with our Craigslist trace for the native Razr 

browser on Wifi and Firefox on MacBook tethering via the Razr Wifi. 

Fig. 8 shows the average latency to load pages from our 
Craigslist trace. The spikes on page id 2 are attributed to 
varying DNS resolution times. The desktop version is the 
fastest though it uses the same Wifi network as the tablets and 
phones. The processing power makes the difference in 
rendering even simpler pages. The higher latency of the 3G 
network almost doubles the page loading time on our Craigslist 
trace where half of time is spent in establishing the connection 
with the server. The Trio tablet is significantly lower both in 
rendering and networking. Its performance over Wifi is 
comparable to the one observed for 3G on the S3. 4G 
experiments could not be made directly run using the Razr 
browser due to certain limitations of the Verizon version of the 
phone. However, we were able to use the desktop browser and 
tether through the phone’s 4G connection. We verified on Wifi 
that the performance of Firefox tethering via the phone was 

similar to the Razr browser performance as shown on Fig. 9. 
Therefore we expect our 4G results via tethering to be very 
close to the performance of the native Razr browser on 4G. The 
Razr 4G performance is similar to the Wifi performance of 
other devices. 
 

 
Fig. 10. Comparing average latency for desktop, tablets and phones on wireless 

networks with our Wikipedia trace. 

Fig. 10 compares the devices’ observed latency for our 
Wikipedia trace. While the Kindle has a performance close to 
the desktop browser, the Trio shows slower performance due to 
reduce Wifi performance and image rendering speed. The S3 
results are impaired by a bug in the browser that is analyzed in 
more details in section D. The Razr performance on Wifi and 
4G (via tether) is very similar showing how 4G brings user 
perceived QoE to the same level as Wifi. 

C. QoE measurement overhead on mobile devices 
We conducted a series of experiments using our Craigslist and 
Wikipedia traces with and without our QoE instrumentation on 
all platforms and networks. Our HAR proxy recorder intercepts 
all outgoing connections and collects statistics on network and 
system events that can help troubleshoot QoE issues as we will 
see in section D. Running the proxy however requires cpu and 
memory resources that could affect performance or the 
behavior of the Web browser. 

TABLE III QOE INSTRUMENTATION OVERHEAD USING CRAIGSLIST AND 
WIKIPEDIA TRACES ON OUR DEVICES ON WIFI AND MOBILE NETWORKS. 

Device Craigslist latency 
(+overhead) 

Wikipedia latency 
(+overhead) 

MacBook Pro 505 (+166) ms 1576 (+156) ms 
Trio Stealth Pro 2200 (-46) ms 2737 (+2781) ms 
Kindle Fire 1380 (-506) ms 1709 (-14) ms 
Samsung S3 3G 7571 (-2303) ms 14884 (+2167) ms 
Samsung S3 Wifi 1185 (-100) ms 4823 (-450) ms 
Droid Razr Wifi 978 (-75) ms 2076 (+329) 
Droid Razr Wifi tether 838 (+165) ms 1875 (+746) ms 
Droid Razr 4G tether 739 (+283) ms 1955 (+467) ms 

 
TABLE III presents our findings by aggregating the latencies 
of all pages for a trace in a single average. The overall latency 
without monitoring is presented first, followed by the overhead 
of monitoring in parenthesis. The latencies are measured by 
taking a clock start before directing the browser to a URL and 



the clock stops when the browser notifies that the page has 
been fully loaded. The instrumented latency includes the timing 
of all internal events in memory by the proxy. The storing of 
the in-memory data to the device storage is done after the page 
is fully loaded and therefore does not impact page loading time 
latency. 
On most devices, the overhead of monitoring is within the 
natural variance observed in real conditions between multiple 
runs. 4G offers performances very close to Wifi on the Droid 
Razr. Our monitoring shows a slightly higher overhead when 
using tethered connections (note that the browser used is 
Firefox on the laptop for tethered connections whereas non-
tethered connections use the native browser of the phone). The 
variations on 3G are more significant as base latencies are 
much higher and network performance varies a lot. The bigger 
and more complex Wikipedia pages require the proxy to relay 
more data and time more events but still without significantly 
affecting the user QoE. A notable exception is the entry-level 
Trio tablet that shows a significant overhead in its instrumented 
runs on Wikipedia. 
 

 
Fig. 11. Overhead of instrumentation for our Wikipedia trace on Trio tablet. 

 
Fig. 12. Overhead of instrumentation for our Wikipedia trace on Kindle Fire. 

Fig. 11 shows the average latency with min and max values on 
5 runs of our Wikipedia trace on the Trio tablet. In most cases, 
the instrumented runs (HAR on) are 3 seconds slower than the 
non-instrumented ones. Page id 6 is an exception as the page 
size is much smaller than any other page (8KB vs 100+KB). 
The Trio being a single core tablet, the context switching 
between the Web browser threads and our proxy threads are 
significantly slower. Other factors that contribute to the no 

overhead noticed on page 6 is due to the fact that the page 
contains no image at all in its mobile version. 
Fig. 12 shows the results for a similar set of experiments with 
the Kindle Fire. While the first request where all connections 
must be initiated and mapped through the proxy shows a clear 
overhead with monitoring (HAR on), all subsequent queries 
have similar latencies whether monitoring is enabled or not 
(HAR off).  
Given the quick pace of technological progress in tablets and 
smartphones, we expect that the instrumentation overhead will 
not be any more significant than it is today and will most likely 
become even more negligible. 

D. Identifying QoE issues 
1) Why HAR instrumentation is important 

Some aspects of the user perceived QoE are specific to the 
device such as the physical display size or screen resolution. 
However one of the main aspects considered by users is the 
page loading latency and of course the correct and successful 
completion of all operations involved in loading the page. 
While techniques such as HTML recording and screen 
snapshots can help detect some issues in the rendered page, the 
overall page loading time measurements is not sufficient to 
understand the root cause of QoE issues. 
When running our experiments on the Amazon store without 
instrumentation, we noticed a number of abnormal page 
loading latencies that we were not able to explain as the 
recorded HTML and the screen snapshots showed properly 
rendered page. Instrumented runs also showed similar random 
events but the HAR instrumentation allowed us to identify the 
root cause of these issues.  
Fig. 15 shows the HAR data collected while playing the 
Amazon trace on one of our smartphones. Out of the 14 HTTP 
GET requests needed to fetch the page, one subrequest blocked 
for almost 9.5 seconds on a DNS lookup operation. The 
troubled networking layer spent another half second 
establishing the connection with the server and nearly 2 
seconds to get 57 bytes response! 
The blocked DNS requests are usually caused by other DNS 
requests that are already being processed in the request queue 
and timing out. Given the limited number of threads that the 
DNS subsystem can use to issue requests, a small number of 
failing requests can block all other application requests. The 
slow connection establishment and data transfer is attributable 
to network congestion either on the Wifi network or anywhere 
on the path to the server. One of the limitations of the HAR 
recording is that it does not give us insights where on the 
network path the issue might be. 

2) The Samsung S3 browser bug 
When comparing our results on the different devices and 
networks for our Wikipedia trace, we noticed significantly 
higher latencies for our Samsung S3 smartphone on both Wifi 
and 3G. We first looked at the number of HTTP requests per 
page and the size of the pages downloaded from the server. Our 
findings are illustrated on Fig. 13. The number of HTTP 
requests is always much higher for the Samsung S3 and the 
page sizes are much bigger. Note that the page size for 
Samsung S3 on 3G is sometimes very small as we only account 



for successfully transferred bytes and not expected object sizes. 
On a successful page load, the page sizes should be the same on 
both networks. 
Fig. 14 gives an insight into the cause of the problem. By 
looking at the recorded HTML page source, we saw that 
Wikipedia pages use srcset HTML tags that indicate a list of 
images to pick from depending on the resolution and 
magnification needed by the device. It turns out that the S3 
browser has a bug and systematically downloads all images in a 
srcset instead of picking only the one it needs (left most red 
circles on Fig. 14 show 3 different versions of the same image 
being downloaded). This can result in a massive amount of 
extra data download.   

Fig. 13. Comparing number of HTTP requests and downloaded page size for 
our devices on Wifi and wireless networks with our Wikipedia trace. 

 

 
Fig. 14. Example of a Wikipedia page load on a Samsung S3 using a 3G network showing a browser issue loading all images in a srcset and network timeouts. 

 
Fig. 15. Example of an Amazon page load that blocks for 9.42s on a DNS lookup operation increasing overall page loading time by more than 127%. 



The Wikipedia page dedicated to the Internet Explorer 
browser that typically requires 600KB of data download 
jumped to 2.1MB on the S3. This bug significantly affects the 
Wikipedia performance on 3G were these massive number of 
requests for image downloads overwhelmed the network and 
ended up timing out rendering an incomplete page. This can 
be seen on Fig. 14 where a large number of requests are 
blocked for very long amount of time and many of them fail 
with a ‘NO RESPONSE’ HTTP error code. 
Note that we were able to reproduce these results with the 
latest Android 4.2.2 for the S3 GT-I9300 (international 
version of the phone). The issue was also reproduced with an 
S3 SGH-I747 which is the AT&T US version of the phone. 
We believe that this problem affects all S3 versions and have 
contacted Samsung to report the issue. 
Having a database with results from other devices helped us to 
quickly locate the origin of the problem and detect this 
previously undiscovered bug. Based on this experience, a 
possible direction for future work is to design tools that 
automatically analyze and report anomalies by comparing 
experience reports between devices/networks for the same 
trace. 

E. QoE based on location 
We have previously observed [6] that latency is very 
dependent on user location in wired networks. Identifying 
geographical regions where user QoE is poor is crucial for the 
design of CDNs or replicated systems. To measure the effect 
of location with wireless networks, we use our Wikipedia 
implantation running the English Wikibooks database 
(enwikibooks in TABLE I). The application server and 
database are deployed in our datacenter at the University of 
Massachusetts Amherst. The Wikibooks pages usually show 
higher loading time as they contain entire books. 
Fig. 16 shows the observed latencies from a Samsung S3 
phone on a Wifi network within 2 network hops of the 
datacenter (S3 Wifi USA), an S3 phone on AT&T 3G network 
within 1 mile of the datacenter and an HTC phone on a 
residential Wifi in eastern France (HTC Wifi France). 
 

 
Fig. 16. Comparing latencies from an HTC phone in Europe vs an S3 phone 

near a data center in the US running our Wikibooks implementation. 

The Wifi latencies are actually very close to each other (note 
that the y scale starts at 10 seconds). The 3G performance 

remains much slower even compared to cross-continental 
accesses. From this experience it looks like the QoE is more 
linked to the network access than the geolocation of the user. 
We conducted a similar experiment using our Amazon trace 
on the US store. This time we experimented with access from 
a Wifi, Edge and 3G networks in Europe. Our results are 
presented in Fig. 17. The Wifi latencies are comparable 
regardless of the user location even though the Samsung S3 is 
technically a more powerful phone. Overall the Orange France 
3G network offers latencies at most 2 seconds higher than the 
Wifi latencies. The AT&T 3G network exhibits worse 
performance with latencies that can more than double 
compared to Wifi. As expected the Edge network is the 
slowest though in some cases it is not that far from the AT&T 
3G performance. The latency spikes observed on the Orange 
network are due long period of inactivity where the phone 
waits for network access. Once again the provider used to 
access the network had a dominant effect over user 
geolocation or device performance. 
 

 
Fig. 17. Comparing average observed latency for devices in US and Europe 

over Wifi, Edge and 3G with our Amazon trace accessing Amazon.com (US). 

F. Results summary 
Dynamic content on complex Web Applications can introduce 
a lot of variability even between consecutive experiments 
using the same trace. This makes it hard to interpret QoE 
measurements without a detailed monitoring of individual 
page loading events. We have shown that such 
instrumentation can be achieved without being detrimental to 
the user perceived QoE while providing crucial information to 
isolate root causes of QoE issues. Using mBenchLab we were 
able to discover a new bug in the native browser of the 
Samsung S3 smartphone that prevented certain Wikipedia 
pages from loading properly. 
Our set of experiments is restricted to a small number of 
devices and networks which limits their statistical validity. 
However, we can identify some trends like mobile 
performance is still limited by hardware resources on low-end 
devices, newer higher-end devices are more limited by 
network capabilities. 4G networks seem to approach Wifi 
performance on mobile devices. Unlike wired networks where 
the location of the user dominates latency, the performance of 
mobile networks largely defines the user QoE independently 



of his/her location. We are working on larger scale 
experiments to verify these observations. 

V. RELATED WORK 
As Web browsing constitutes the majority of traffic on 
smartphones [3] it is a necessity to analyze the QoE of mobile 
devices at various levels. mBenchLab’s approach of running 
unmodified software stacks is closer to the one presented in 
[1] various mobile apps were observed at the network level of 
with more than 30K users all over the world. They found that 
3G performance varies according to the network provider and 
that browser performance increases with connection 
parallelism. We made similar observations on the various 
mobile networks we have tested with mBenchLab. The device 
influence was mostly perceived on Javascript execution and 
download performance. The authors in [15] also showed that 
the device storage performance could adversely affect the 
browsing experience. A more intrusive approach [2] 
instrumenting Webkit showed that network RTT was 
detrimental to browser performance. Also resource loading 
was more important than JavaScript execution, layout 
calculation or formatting. The device processor was still 
playing a significant role in overall performance. While we 
have seen that low-cost entry devices like the Trio tablet are 
still limited by their hardware performance, the playfield is 
being leveled with the network provider performance 
dominating over the device capabilities. 

Other works are focusing on server side improvements to 
increase user perceived QoE. In [4], the authors improve 
Wikipedia page loading power consumption by 29% by 
improving JavaScript and CSS. They also found that using 
JPEG images over other formats improve energy savings. 
Mobile proxies can also improve performance by aggregating 
multiple small transfers [3]. The same study showed that 
increasing the socket buffer sizes at servers can improve 
throughput; and reducing radio sleep timers can reduce power 
consumption. mBenchLab complements these studies as it can 
be used to measure the QoE variations between various server 
side designs or detect QoE issues with particular devices or 
geographical locations. Complementary approaches try to 
rethink the networking infrastructure for mobile devices [5] 
and investigate how to transparently switch between networks. 
By recording the device GPS location throughout experiments, 
mBenchLab allows to build database of geolocalized 
performance data to explore further network influence in 
modern realistic mobile networking. 

VI. CONCLUSION 
In this paper, we have presented mBenchLab, an open source 
infrastructure to measure the QoE of Web application on 
mobile devices. We have shown that our instrumentation 
allowed us to identify accurately QoE issues with unmodified 
devices on real networks. We were able to identify a new bug 
in the native browser of a very popular smartphone that causes 
major issues (increased data usage, network overload, loading 
errors…) for users of the Wikipedia website. 
We measured the performance of several tablets and 
smartphones and showed that mobile network performance 

was a dominant factor in user perceived QoE over device 
performance or user location. The device hardware resources 
only had a significant impact for low-end devices while 4G 
networks offered performance similar to Wifi. 
All our software is freely available on our project page at 
http://lass.cs.umass.edu/projects/benchlab/. The software can 
be downloaded from https://sourceforge.net/projects/benchlab/ 
for anyone to use and deploy their own mobile benchmarking 
platform. We are actively distributing mBenchLab to collect 
worldwide QoE data on popular websites but we hope that 
other research groups will use these tools to measure the 
impact of their research on mobile device QoE.  
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