
mBenchLab: Measuring QoE of Web Applications
using mobile devices

Emmanuel Cecchet, Robert Sims, Xin He, Prashant Shenoy
University of Massachusetts Amherst, CS department

Amhert MA, USA
{cecchet,rsims,xhe,shenoy}@cs.umass.edu

Abstract— In this paper, we present mBenchLab, a software
infrastructure to measure the Quality of Experience (QoE) on
tablet and smartphones accessing cloud hosted Web services.
mBenchLab does not rely on emulation but uses real phones and
tablets with their original software stack and communication
interfaces for performance evaluation. We have used
mBenchLab to measure the QoE of well-known web sites on
various devices (Android tablets and smartphones) and networks
(Wifi, 3G, 4G). We present our experimental results and lessons
learned measuring QoE on mobile devices with mBenchLab. In
our QoE analysis, we were able to discover a new bug in a very
popular smartphone that impacts both performance and data
usage. We have also made the entire mBenchLab software
available as open source to the community to measure QoE on
mobile devices that access cloud-hosted Web applications.

Keywords—benchmarking, QoE, Android, tablets,
smartphones, mobile web, cloud, web applications, web services.

I. INTRODUCTION
The Cloud has become the platform of choice to host

modern Web applications. Cloud services provide elasticity,
reliability and scalability at a low cost by virtualizing Web
applications in large data centers. Concurrent with this server
side transformation, the client side has begun to change
dramatically as well by shifting from traditional desktops to
smartphones and tablets. Wikipedia [9], the free online
encyclopedia has a page view count approaching 20 billion
page views per month with more than 13% for mobile traffic.
From Dec 2011 to Dec 2012, overall Wikipedia traffic has
increased 24%. This increase was dominated by mobile traffic
which increased 77%, while non-mobile traffic increased only
18% [13]. On the hardware side, the latest forecast for 2013
predicts that tablet sales will surpass that of notebooks this year
[10]. Unlike traditional PCs, these new devices not only have
limited hardware resources (such as cpu, memory, storage,
battery-power) but they also have access to a wider variety of
networks (such as Wifi, 3G/4G, LTE). All these factors can
significantly affect the user perceived quality of experience
(QoE) of cloud hosted Web services.

We argue that the complexity of interactions with modern
Web applications (WebApps) requires the use of real software
stacks and network infrastructure that are too hard to simulate
realistically. In this paper, we present mBenchLab, an open
testbed to measure the QoE of Cloud hosted WebApps using
real mobile devices. Unlike other benchmarking frameworks,
mBenchLab does not rely on simulation or emulation. Instead

we use (i) the original software stack of smartphones and
tablets including their native Web browser, and (ii) the real
network infrastructure. In our previous work [6], we focused
on benchmarking server and network performance using
desktop browsers on wired networks. In this paper, we present
our results and lessons learned in developing mBenchLab for
Android mobile devices to measure the QoE of cloud hosted
Web Applications over wireless networks. We have used
mBenchLab to measure the QoE of well-known services such
as Amazon, Craigslist, or Wikipedia. To identify issues in
QoE, we focus not just on overall latency or page load times—
mBenchLab can also record fine grain events such as
connection establishment, DNS resolution, network
send/receive and browser rendering. These finer-level insights
allow us to identify issues that users may face while browsing
web sites from mobile devices. Mobility information is also
recorded on devices equipped with GPS devices. By tracking
the location of devices during an experiment, mBenchLab can
help point out QoE issues related to geolocation.

All mBenchLab experiments are deployed from a
Dashboard that is implemented as a Web Application. A
system designer can deploy his or her own Dashboard and
record experimental results from mobile devices into the
database embedded in the WebApp. This data can then be
exported or directly analyzed in the Dashboard to identify QoE
issues. The Dashboard can also synchronize multiple devices to
participate in the same experiment to generate a workload on a
particular server or set of servers. This functionality can be
helpful to measure the scalability of cloud services or the
performance of wireless networks. In addition to targeting
system designers who measure web application performance,
mBenchLab is also designed for researchers who wish to use
realistic mobile devices and networks to inject workloads into
realistic web applications. To that end, we have reproduced the
entire Wikipedia software stack that can be deployed in private
or public clouds as a realistic server backend to mBenchLab
mobile clients. We were also able to get access to Wikipedia
access logs to reproduce realistic workloads in research
experiments.

Our contributions are the following:

• We have built mBenchLab, a software infrastructure that
can benchmark the QoE of cloud hosted Web applications
with Android devices. We have also rebuilt the Wikipedia
software stack to deploy it on-demand in private and
public clouds. The mBenchLab Android application,

Dashboard and all the Wikipedia virtual machines for
private clouds and Amazon EC2 are publicly available to
the community to advance research in benchmarking cloud
services with mobile devices.

• We perform detailed QoE measurements with Android
smartphones and tablets on popular web sites and
compared it to standard desktop browsers. We show that
our monitoring overhead does not affect significantly the
user perceived QoE. We measure how the device
hardware/software combination influence the overall user
perceived QoE. We also measure how QoE is correlated
with mobile network performance on multiple continents.

• We show through a series of experiments how mBenchLab
can identify QoE issues either related to the network, the
Web service or the mobile device itself. We were able to
find a previously undiscovered bug in the native browser
of the popular Samsung S3 phone (40 million sold as of
January 2013) that significantly affects performance and
bandwidth usage on certain Web sites.

Our paper is structured as follows: section II gives an
overview of the mBenchLab platform. Section III details the
specifics of QoS measurements on Android devices. We
present the results of our experimental evaluation in section IV.
We discuss related work in section IV.F before concluding in
section VI.

II. MBENCHLAB OVERVIEW
mBenchLab is an open testbed for Web application
benchmarking from mobile devices. The load is injected from
real mobile devices that run the mBenchLab Mobile App and
the experiments are coordinated through the mBenchLab
Dashboard (section A). mBenchLab can be used with any
existing Web application without any modification. For
experiments where the user wants to control a real Web
Application, we provide a Wikipedia implementation as
virtual appliances that can be deployed on private or public
clouds (section B).
A. mBenchLab Dashboard and MobileApp
Fig. 1 gives an overview of the mBenchLab components and
how they interact to run an experiment. The mBenchLab
Dashboard is the central component that deploys and controls
experiments. It is built as a Java Web application that can be
deployed in any Java Web container such as Apache Tomcat.
The mBenchLab Dashboard provides a Web interface to
interact with experimenters that want to create experiments
using mobile devices. The Dashboard gives an overview of the
devices currently connected, the experiments (created, running
or completed) and the Web traces that are available for replay.
Web trace files are uploaded by the experimenter through a
Web form and stored in the Dashboard database. The trace file
includes the list of URLs to visit and encodes the values to fill
Web forms as well as buttons to click. Every element is
referred to by its id or name in the HTML page that is being
accessed. The trace file can either be generated using a simple
CSV format or by a traditional desktop browser by recording a
browsing session using the standard HTTP Archive format

(HAR) [11]. Each URL is assigned to a particular session that
will be replayed by a single browser. An experiment that
wants to use simultaneously 10 browsers must use a trace that
contains at least 10 sessions.
mBenchLab does not deploy, configure or monitor any server-
side software. There are a number of deployment frameworks
available that users can use depending on their preferences
(Gush, WADF, JEE, .Net, etc). If the experimenter deploys
her own Web Application to be tested, monitoring the server
software is also the choice and responsibility of the
experimenter (Ganglia and fenxi are popular choices).

Fig. 1. mBenchLab experiment flow overview

Anyone can deploy an mBenchLab Dashboard and therefore
build his or her own benchmark repository. An experiment
defines what trace should be played and how. The user defines
how many mobile devices should replay the sessions with
eventual constraints (specific platform, version, location…).
The experiment can start as soon as enough clients have
registered to participate in the experiment. The Dashboard
does not deploy the application on the mobile devices, rather it
waits for mobile devices to connect and its scheduler assigns
them to experiments.
The mBenchLab Android application (mBA) is a mobile
application that starts and controls the native Web browser on
the mobile device. On startup, the mBA connects the browser
to an mBenchLab Dashboard (step 1 in Fig. 1). When the
browser connects to the Dashboard, it provides details about
the exact browser version and platform runtime it currently
executes on as well as its IP address and GPS location (if
enabled). If an experiment needs this device, the Dashboard
redirects the mBA to a download page where it automatically
gets the trace for the session it needs to play (step 2 in Fig. 1).
The mBA stores the trace on the local storage and makes the
Web browser regularly poll the Dashboard to get the
experiment start time. There is no communication or clock

mBenchLab Dashboard

mBA

mBA
mBA

synchronization between mBAs, they just get a start time as a
countdown in seconds from the Dashboard that informs them
‘experiment starts in x seconds’ through a Web form. The
status of mobile devices is recorded by the Dashboard and
stored in a database.
When the experiment start time has been reached, the mBA
plays the trace through the Web browser monitoring each
interaction (step 3 in Fig. 1). If Web forms have to be filled,
the mBA uses the URL parameters stored in the trace to set
the different fields, checkboxes, list selections, files to upload,
etc. Text fields are replayed with a controllable rate that
emulates human typing speed through the virtual keyboard of
the device. The GPS location when the page was fetched as
well as various QoE statistics (see section III for more details)
are collected locally on the mobile device. The results are
uploaded to the Dashboard at the end of the experiment (step 4
in Fig. 1). The mBA can also record the HTML pages and take
screen snapshots of rendered pages to include in the
Dashboard database. By parsing the HTML or comparing
snapshot images with data from other runs, one can detect
errors or rendering issues that affect user QoE. Fig. 2 shows
an example of the experimental results stored in the
Dashboard database.

Fig. 2. Partial screenshot of an experiment result in the mBenchLab dashboard

mBAs replay traces based on the timestamps contained in the
traces. If an mBA happens to be late compared to the original
timestamp, it will try to catch up by playing requests as fast as
it can. A page loading timeout can also be set to prevent
browsers from being stuck on particular pages.
B. Wikipedia Virtual Appliances
Wikipedia is available in 285 languages all relying on the
same MediaWiki software stack and supervised by the
Wikimedia foundation. Other satellite sites such as Wikibooks
[8] (free content textbooks and annotated texts), WikiNews
(free content news), Wiktionary (dictionary and thesaurus)…
also rely on the same software. The server side is basically a
PHP application with a number of extensions storing content
in a database (MySQL by default).
We have created a Wikimedia server virtual machine that
contains a preconfigured software stack including Apache
2.2.16, PHP 5.3.3, MediaWiki 1.16, as well as all necessary
extensions necessary to run the Wikipedia family of web sites,
including the Lucene search engine and multimedia content.
We have also created a set of virtual machines with the
database software and the content for particular wikis.
Database dumps are freely available from the Wikimedia

foundation in compressed XML format. TABLE I gives an
overview of the databases we have made available as virtual
appliances. Note that the English Wikipedia database (enwiki)
is not available in public clouds due to its 5.5TB size and cost
of storage. The English Wikibooks (enwikibooks) has a
smaller number of articles but still a significant size as each
article is larger than typical Wikipedia articles.

TABLE I VIRTUAL APPLICANCE DATABASES AVAILABLE (DUMPS FROM
JANUARY TO MARCH 2010 TO MATCH OUR TRACES ENDING IN MARCH 2010)

Wiki name # of articles Size on disk Time to generate
db and index

dawiki 122 k 6.5 GB 14 hours
nlwiki 584 k 39 GB 3.25 days
frwiki 901 k 94 GB 7.3 days
enwiki 3.1 M 5.5 TB >3 months
enwikibooks 32 k 4.3GB 10 hours

To prevent copyright issues with multimedia content, we use a
multimedia content generator that produces images with the
same specifications as the original content but with random
pixels. Such multimedia content can be either statically pre-
generated or produced on-demand at runtime. We have similar
generators for audio and video content.
Wikipedia access traces are available from the Wikibench
Web site [7]. The log can be used to reproduce read workload
traces while the wiki history log can be used to reproduce the
exact update workload. mBenchLab traces support both CSV
and HTTP archive (HAR) formats. On top of capturing the
original request, HAR also includes sub-requests, post
parameters, cookies, headers, caching information and
timestamps. We provide mBenchLab traces to use with our
Wikipedia virtual appliances.

III. MEASURING QOE ON ANDROID DEVICES
A central contribution of mBenchLab is the ability to replay
traces through real Web browsers. Major companies such as
Google and Facebook already use open source technologies
like Selenium [12] to perform functional testing. These tools
automate a browser to follow a script of actions, and they are
primarily used for checking that a Web application’s
interactions generate valid HTML pages. We argue that the
same technology can also be used for performance
benchmarking. One of the technical challenges is that
Selenium is originally designed for testing from a desktop
machine that conducts performance tests via an emulator or a
mobile device connected to it. We have extracted the relevant
core pieces of Selenium and have embedded it in a standalone
mobile application on Android devices.
The mBenchLab Android application (mBA) extends the
Selenium framework with mBenchLab functionalities to
download a trace, replay it, record QoE statistics for each page
and upload the results at the end of the replay. Unlike
traditional load injectors that work at the network level,
replaying through a Web browser accurately performs all
activities such as typing data in Web forms, scrolling pages
and clicking buttons. The typing speed in forms can also be
configured to model a real user typing. This is particularly

useful when inputs are processed by JavaScript code that can
be triggered on each keystroke. Through the browser, mBA
captures the real user perceived latency including network
transfer, page processing and rendering time.
Most desktop browsers include debugging tools such as
Firebug for Firefox or the developer tools for Chrome that are
able to capture the timeline of all browser interactions while
pages are being loaded. This data can usually be stored into a
HAR file. No Android Web browser, including the native
Android browser, offers that feature. We therefore have re-
implemented that functionality to obtain and log detailed QoS
information on mobile devices.
An open source proxy developed by WebMetrics called
BrowserMob proxy [14] offers that functionality in a
standalone Java proxy. That proxy being designed for regular
desktop JVMs, we had to port it and adapt it to the
idiosyncrasies of the Android platform in order to integrate it
in the mBA. Running a fully functional Web proxy on devices
with very limited resources can impose a significant overhead
and therefore the proxy is only optional if detailed HAR
recording is not desired. Fig. 3 gives an overview of the
architecture of the mBA.

Fig. 3. mBenchLab Android application architecture

Fig. 4. HAR captured by the mBA when accessing the main page of the

english Wikipedia web site

The detailed information collected by the mBA is the
following: DNS resolution time, connection establishment
time, request failure/success/cache hit rate, send/wait/receive
time on network connections, overall page loading time
including Javascript execution and rendering time.

Unfortunately the current Android APIs do not provide
monitoring of battery usage on a per application level.
Therefore we are not able to measure the power impact of
Web service designs. Fig. 4 shows a partial example of the
information captured when accessing the main page of the
Wikipedia web site.
Additionally the mBA can record HTML page sources and
screen snapshots of rendered pages. This data is automatically
uploaded at the end of the experiment and can be visualized in
the dashboard. As shown on Fig. 5, the screen snapshots can
also capture errors reported by the browser.

Fig. 5. Example of screen snapshots taken during experiments on Amazon,
Craigslist, Wikipedia and a network connection error.

The screen snapshot functionality can also be extended to
measure the QoE on streamed video content by capturing
images at fixed time intervals.

IV. EVALUATION
In this section we present the results of our experimental
evaluation with mBenchLab. First, we describe our
experimental setup and our methodology (section A). Our first
set of experiments targeting well known web sites is presented
in section B. We evaluate the overhead of our instrumentation
mechanisms in section C. We show various use cases of QoE
problem detection in section D and location-based QoE in
section E. Section F summarizes our results.

A. Experimental setup and methodology
We have conducted our experiments on a laptop with Firefox
as a baseline to compare with the native browser of our tablets
and smartphones. We tested various browsers for the desktop
baseline including Chrome and Internet Explorer and we
obtained similar results as Firefox. Therefore we only present
Firefox results for the desktop baseline. Our software only
supports the native Android browser, so we cannot compare
with Firefox or Chrome versions for Android.
TABLE II shows the hardware and software specifications of
our devices. The Trio tablet is an entry-level Android tablet
while the Kindle Fire is a higher end tablet of the same
generation. The smartphones used in our experiments are the
popular high-end Samsung S3 and Motorola Droid RAZR as
well as an entry level HTC Desire C. While devices can have
the same physical screen size, screen resolutions vary greatly
impacting the amount of information provided to the user.

mBenchLab Android App

Native
Android
browser

Selenium

Android driver

HAR
recording

proxy

mBenchLab runtime
GPS

Network

Storage
tra
ce

HAR
#1

snap-
shot HAR

#1 HAR
#1

Wifi

3G/4G

Cloud Web
services

TABLE II ANDROID DEVICES USED IN OUR EXPERIMENTS WITH THEIR RESPECTIVE HARWARE AND SOFTWARE SPECIFICATIONS.

Device Processor RAM /
Storage

Screen size /
resolution / GPU Network OS version Web browser version

MacBook
Pro

2 GHz Intel
Core i7

1GB /
150GB
(VM)

15” / 1440x900
AMD Radeon HD

6490M 256MB
Wifi Windows 7 x64 /

VMWare Fusion
Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:15.0) Gecko/20100101 Firefox/15.0.1

Trio
Stealth

Pro Tablet

Single core
1.2GHz ARM

Cortex A8

512MB /
4GB

7” / 800x480
Mali 400 Wifi

Android 4.0.3
(official release

Dec 2011)

Mozilla/5.0 (Linux; U; Android 4.0.3; en-us;
SoftwinerEvb Build/IML74K)
AppleWebKit/534.30 (KHTML, like Gecko)
Version/4.0 Mobile Safari/534.30

Amazon
Kindle

Fire

Dual core 1.2
GHz TI OMAP4

4430HS

512MB /
8GB

7” / 1024x600
PowerVR SGX540 Wifi

Android 4.1.2
(AOKP Otter Oct

17, 2012)

Mozilla/5.0 (Linux; U; Android 4.1.2; en-us;
Amazon Kindle Fire Build/JZO54K)
AppleWebKit/534.30 (KHTML, like Gecko)
Version/4.0 Mobile Safari/534.30

HTC
Desire C

Single core 600
MHz, ARM
Cortex-A5

512MB /
4GB

3.5” / 320x480
Adreno 200

Wifi/
Edge/3G
Orange

Android 4.0.3
(official release

Dec 2011)

Mozilla/5.0 (Linux; U; Android 4.0.3; fr-fr;
HTC Desire C Build/IML74K)
AppleWebKit/534.30 (KHTML, like Gecko)
Version/4.0 Mobile Safari/534.30

Samsung
S3 GT-
I9300

Quad-core 1.4
GHz ARM
Cortex-A9

1GB /
32GB +
64GB

4.8” / 720x1280
Mali-400MP

Wifi/3G
AT&T

Android 4.1.2
(official release

Dec 2012)

Mozilla/5.0 (Linux; U; Android 4.1.2; en-us;
GT-I9300 Build/JZO54K) AppleWebKit/
534.30 (KHTML, like Gecko) Version/4.0
Mobile Safari/534.30

Motorola
Droid
RAZR

Dual core 1.2
GHz ARM
Cortex-A9

1GB /
16GB

4.3” / 540 x 960
PowerVR SGX540

304 MHz

Wifi/3G/
4G LTE
Verizon

Android 4.0.4
(official release

Mar 2011)

Mozilla/5.0 (Linux; U; Android 4.0.4; en-us;
DROID RAZR Build/6.7.2-180_DHD-16_M
4-31) AppleWebKit/534.30 (KHTML, like
Gecko) Version/4.0 Mobile Safari/534.30

We have generated 4 trace files, each targeted at a particular
web site. The Amazon trace browses products from the
amazon.com US store. The Craigslist trace searches for various
items in the Western Massachusetts Craigslist website. The
Wikipedia trace accesses a number of articles of varying length
on the English Wikipedia web site. Finally, the Wikibooks trace
browses articles from our implementation of the English
Wikibooks website running in our datacenter with the
enwikibooks database described in TABLE I.
Each experiment is repeated at least 5 times and caches are
emptied between each run. All experiments are done on Wifi
networks except where 3G or 4G LTE are indicated. 3G
experiments in the USA use the Straight Talk data plan on
AT&T and Orange in Europe. 4G LTE uses the Verizon
network.

B. Measuring performance of major Web sites
When a browser is directed to a particular URL, it starts to get
the main HTML page and processes it to download any
additional images, style sheets or scripts required to properly
display the page. Fig. 6 shows the average number of requests
issued by Web browsers when trying to access the 5 first pages
of our traces for Amazon, Craigslist and Wikipedia.
The desktop version of the Amazon web pages is the most
complex and can require more than 100 requests to fetch. We
observe a significant variability between runs especially on the
home page as a lot of content is generated dynamically
depending on the user and the current sales. The mobile version
of the same pages never exceeds 20 requests and is consistent
between consecutive runs. The more simple Craigslist Web
pages only require 1 request once the browser cache is hot. The
desktop and mobile versions exhibit the same behavior.

Fig. 6. Comparing the number of browser generated requests on Android/S3

and Firefox/desktop with Amazon, Craigslist and Wikipedia.

Fig. 7. Comparing the page sizes in KB on Android/S3 and Firefox/desktop for

the 5 first request of our Amazon, Craigslist and Wikipedia traces.

The number of requests for Wikipedia on the Samsung S3 is
inflated by a bug that is investigated in section D. The number

of requests and page sizes for Wikipedia are typically smaller
on mobile devices than desktops as show on Fig. 13. Similarly,
Amazon serves much smaller pages to its mobile users that are
not exposed to the large number of ads displayed in the non-
mobile version. Craigslist with its minimalistic design offers
very small page sizes for both mobile and non-mobile clients.
Since Amazon shows significant difference in the content being
fetched between consecutive runs, it is not possible to directly
compare the performance between these runs. This shows that
it is important to understand the details of the generated content
to be able to interpret client side QoE.

Fig. 8. Comparing average observed latency for desktop, tablets and phones on

wireless networks with our Craigslist trace.

Fig. 9. Comparing average latency with our Craigslist trace for the native Razr

browser on Wifi and Firefox on MacBook tethering via the Razr Wifi.

Fig. 8 shows the average latency to load pages from our
Craigslist trace. The spikes on page id 2 are attributed to
varying DNS resolution times. The desktop version is the
fastest though it uses the same Wifi network as the tablets and
phones. The processing power makes the difference in
rendering even simpler pages. The higher latency of the 3G
network almost doubles the page loading time on our Craigslist
trace where half of time is spent in establishing the connection
with the server. The Trio tablet is significantly lower both in
rendering and networking. Its performance over Wifi is
comparable to the one observed for 3G on the S3. 4G
experiments could not be made directly run using the Razr
browser due to certain limitations of the Verizon version of the
phone. However, we were able to use the desktop browser and
tether through the phone’s 4G connection. We verified on Wifi
that the performance of Firefox tethering via the phone was

similar to the Razr browser performance as shown on Fig. 9.
Therefore we expect our 4G results via tethering to be very
close to the performance of the native Razr browser on 4G. The
Razr 4G performance is similar to the Wifi performance of
other devices.

Fig. 10. Comparing average latency for desktop, tablets and phones on wireless

networks with our Wikipedia trace.

Fig. 10 compares the devices’ observed latency for our
Wikipedia trace. While the Kindle has a performance close to
the desktop browser, the Trio shows slower performance due to
reduce Wifi performance and image rendering speed. The S3
results are impaired by a bug in the browser that is analyzed in
more details in section D. The Razr performance on Wifi and
4G (via tether) is very similar showing how 4G brings user
perceived QoE to the same level as Wifi.

C. QoE measurement overhead on mobile devices
We conducted a series of experiments using our Craigslist and
Wikipedia traces with and without our QoE instrumentation on
all platforms and networks. Our HAR proxy recorder intercepts
all outgoing connections and collects statistics on network and
system events that can help troubleshoot QoE issues as we will
see in section D. Running the proxy however requires cpu and
memory resources that could affect performance or the
behavior of the Web browser.

TABLE III QOE INSTRUMENTATION OVERHEAD USING CRAIGSLIST AND
WIKIPEDIA TRACES ON OUR DEVICES ON WIFI AND MOBILE NETWORKS.

Device Craigslist latency
(+overhead)

Wikipedia latency
(+overhead)

MacBook Pro 505 (+166) ms 1576 (+156) ms
Trio Stealth Pro 2200 (-46) ms 2737 (+2781) ms
Kindle Fire 1380 (-506) ms 1709 (-14) ms
Samsung S3 3G 7571 (-2303) ms 14884 (+2167) ms
Samsung S3 Wifi 1185 (-100) ms 4823 (-450) ms
Droid Razr Wifi 978 (-75) ms 2076 (+329)
Droid Razr Wifi tether 838 (+165) ms 1875 (+746) ms
Droid Razr 4G tether 739 (+283) ms 1955 (+467) ms

TABLE III presents our findings by aggregating the latencies
of all pages for a trace in a single average. The overall latency
without monitoring is presented first, followed by the overhead
of monitoring in parenthesis. The latencies are measured by
taking a clock start before directing the browser to a URL and

the clock stops when the browser notifies that the page has
been fully loaded. The instrumented latency includes the timing
of all internal events in memory by the proxy. The storing of
the in-memory data to the device storage is done after the page
is fully loaded and therefore does not impact page loading time
latency.
On most devices, the overhead of monitoring is within the
natural variance observed in real conditions between multiple
runs. 4G offers performances very close to Wifi on the Droid
Razr. Our monitoring shows a slightly higher overhead when
using tethered connections (note that the browser used is
Firefox on the laptop for tethered connections whereas non-
tethered connections use the native browser of the phone). The
variations on 3G are more significant as base latencies are
much higher and network performance varies a lot. The bigger
and more complex Wikipedia pages require the proxy to relay
more data and time more events but still without significantly
affecting the user QoE. A notable exception is the entry-level
Trio tablet that shows a significant overhead in its instrumented
runs on Wikipedia.

Fig. 11. Overhead of instrumentation for our Wikipedia trace on Trio tablet.

Fig. 12. Overhead of instrumentation for our Wikipedia trace on Kindle Fire.

Fig. 11 shows the average latency with min and max values on
5 runs of our Wikipedia trace on the Trio tablet. In most cases,
the instrumented runs (HAR on) are 3 seconds slower than the
non-instrumented ones. Page id 6 is an exception as the page
size is much smaller than any other page (8KB vs 100+KB).
The Trio being a single core tablet, the context switching
between the Web browser threads and our proxy threads are
significantly slower. Other factors that contribute to the no

overhead noticed on page 6 is due to the fact that the page
contains no image at all in its mobile version.
Fig. 12 shows the results for a similar set of experiments with
the Kindle Fire. While the first request where all connections
must be initiated and mapped through the proxy shows a clear
overhead with monitoring (HAR on), all subsequent queries
have similar latencies whether monitoring is enabled or not
(HAR off).
Given the quick pace of technological progress in tablets and
smartphones, we expect that the instrumentation overhead will
not be any more significant than it is today and will most likely
become even more negligible.

D. Identifying QoE issues
1) Why HAR instrumentation is important

Some aspects of the user perceived QoE are specific to the
device such as the physical display size or screen resolution.
However one of the main aspects considered by users is the
page loading latency and of course the correct and successful
completion of all operations involved in loading the page.
While techniques such as HTML recording and screen
snapshots can help detect some issues in the rendered page, the
overall page loading time measurements is not sufficient to
understand the root cause of QoE issues.
When running our experiments on the Amazon store without
instrumentation, we noticed a number of abnormal page
loading latencies that we were not able to explain as the
recorded HTML and the screen snapshots showed properly
rendered page. Instrumented runs also showed similar random
events but the HAR instrumentation allowed us to identify the
root cause of these issues.
Fig. 15 shows the HAR data collected while playing the
Amazon trace on one of our smartphones. Out of the 14 HTTP
GET requests needed to fetch the page, one subrequest blocked
for almost 9.5 seconds on a DNS lookup operation. The
troubled networking layer spent another half second
establishing the connection with the server and nearly 2
seconds to get 57 bytes response!
The blocked DNS requests are usually caused by other DNS
requests that are already being processed in the request queue
and timing out. Given the limited number of threads that the
DNS subsystem can use to issue requests, a small number of
failing requests can block all other application requests. The
slow connection establishment and data transfer is attributable
to network congestion either on the Wifi network or anywhere
on the path to the server. One of the limitations of the HAR
recording is that it does not give us insights where on the
network path the issue might be.

2) The Samsung S3 browser bug
When comparing our results on the different devices and
networks for our Wikipedia trace, we noticed significantly
higher latencies for our Samsung S3 smartphone on both Wifi
and 3G. We first looked at the number of HTTP requests per
page and the size of the pages downloaded from the server. Our
findings are illustrated on Fig. 13. The number of HTTP
requests is always much higher for the Samsung S3 and the
page sizes are much bigger. Note that the page size for
Samsung S3 on 3G is sometimes very small as we only account

for successfully transferred bytes and not expected object sizes.
On a successful page load, the page sizes should be the same on
both networks.
Fig. 14 gives an insight into the cause of the problem. By
looking at the recorded HTML page source, we saw that
Wikipedia pages use srcset HTML tags that indicate a list of
images to pick from depending on the resolution and
magnification needed by the device. It turns out that the S3
browser has a bug and systematically downloads all images in a
srcset instead of picking only the one it needs (left most red
circles on Fig. 14 show 3 different versions of the same image
being downloaded). This can result in a massive amount of
extra data download.

Fig. 13. Comparing number of HTTP requests and downloaded page size for
our devices on Wifi and wireless networks with our Wikipedia trace.

Fig. 14. Example of a Wikipedia page load on a Samsung S3 using a 3G network showing a browser issue loading all images in a srcset and network timeouts.

Fig. 15. Example of an Amazon page load that blocks for 9.42s on a DNS lookup operation increasing overall page loading time by more than 127%.

The Wikipedia page dedicated to the Internet Explorer
browser that typically requires 600KB of data download
jumped to 2.1MB on the S3. This bug significantly affects the
Wikipedia performance on 3G were these massive number of
requests for image downloads overwhelmed the network and
ended up timing out rendering an incomplete page. This can
be seen on Fig. 14 where a large number of requests are
blocked for very long amount of time and many of them fail
with a ‘NO RESPONSE’ HTTP error code.
Note that we were able to reproduce these results with the
latest Android 4.2.2 for the S3 GT-I9300 (international
version of the phone). The issue was also reproduced with an
S3 SGH-I747 which is the AT&T US version of the phone.
We believe that this problem affects all S3 versions and have
contacted Samsung to report the issue.
Having a database with results from other devices helped us to
quickly locate the origin of the problem and detect this
previously undiscovered bug. Based on this experience, a
possible direction for future work is to design tools that
automatically analyze and report anomalies by comparing
experience reports between devices/networks for the same
trace.

E. QoE based on location
We have previously observed [6] that latency is very
dependent on user location in wired networks. Identifying
geographical regions where user QoE is poor is crucial for the
design of CDNs or replicated systems. To measure the effect
of location with wireless networks, we use our Wikipedia
implantation running the English Wikibooks database
(enwikibooks in TABLE I). The application server and
database are deployed in our datacenter at the University of
Massachusetts Amherst. The Wikibooks pages usually show
higher loading time as they contain entire books.
Fig. 16 shows the observed latencies from a Samsung S3
phone on a Wifi network within 2 network hops of the
datacenter (S3 Wifi USA), an S3 phone on AT&T 3G network
within 1 mile of the datacenter and an HTC phone on a
residential Wifi in eastern France (HTC Wifi France).

Fig. 16. Comparing latencies from an HTC phone in Europe vs an S3 phone

near a data center in the US running our Wikibooks implementation.

The Wifi latencies are actually very close to each other (note
that the y scale starts at 10 seconds). The 3G performance

remains much slower even compared to cross-continental
accesses. From this experience it looks like the QoE is more
linked to the network access than the geolocation of the user.
We conducted a similar experiment using our Amazon trace
on the US store. This time we experimented with access from
a Wifi, Edge and 3G networks in Europe. Our results are
presented in Fig. 17. The Wifi latencies are comparable
regardless of the user location even though the Samsung S3 is
technically a more powerful phone. Overall the Orange France
3G network offers latencies at most 2 seconds higher than the
Wifi latencies. The AT&T 3G network exhibits worse
performance with latencies that can more than double
compared to Wifi. As expected the Edge network is the
slowest though in some cases it is not that far from the AT&T
3G performance. The latency spikes observed on the Orange
network are due long period of inactivity where the phone
waits for network access. Once again the provider used to
access the network had a dominant effect over user
geolocation or device performance.

Fig. 17. Comparing average observed latency for devices in US and Europe

over Wifi, Edge and 3G with our Amazon trace accessing Amazon.com (US).

F. Results summary
Dynamic content on complex Web Applications can introduce
a lot of variability even between consecutive experiments
using the same trace. This makes it hard to interpret QoE
measurements without a detailed monitoring of individual
page loading events. We have shown that such
instrumentation can be achieved without being detrimental to
the user perceived QoE while providing crucial information to
isolate root causes of QoE issues. Using mBenchLab we were
able to discover a new bug in the native browser of the
Samsung S3 smartphone that prevented certain Wikipedia
pages from loading properly.
Our set of experiments is restricted to a small number of
devices and networks which limits their statistical validity.
However, we can identify some trends like mobile
performance is still limited by hardware resources on low-end
devices, newer higher-end devices are more limited by
network capabilities. 4G networks seem to approach Wifi
performance on mobile devices. Unlike wired networks where
the location of the user dominates latency, the performance of
mobile networks largely defines the user QoE independently

of his/her location. We are working on larger scale
experiments to verify these observations.

V. RELATED WORK
As Web browsing constitutes the majority of traffic on
smartphones [3] it is a necessity to analyze the QoE of mobile
devices at various levels. mBenchLab’s approach of running
unmodified software stacks is closer to the one presented in
[1] various mobile apps were observed at the network level of
with more than 30K users all over the world. They found that
3G performance varies according to the network provider and
that browser performance increases with connection
parallelism. We made similar observations on the various
mobile networks we have tested with mBenchLab. The device
influence was mostly perceived on Javascript execution and
download performance. The authors in [15] also showed that
the device storage performance could adversely affect the
browsing experience. A more intrusive approach [2]
instrumenting Webkit showed that network RTT was
detrimental to browser performance. Also resource loading
was more important than JavaScript execution, layout
calculation or formatting. The device processor was still
playing a significant role in overall performance. While we
have seen that low-cost entry devices like the Trio tablet are
still limited by their hardware performance, the playfield is
being leveled with the network provider performance
dominating over the device capabilities.

Other works are focusing on server side improvements to
increase user perceived QoE. In [4], the authors improve
Wikipedia page loading power consumption by 29% by
improving JavaScript and CSS. They also found that using
JPEG images over other formats improve energy savings.
Mobile proxies can also improve performance by aggregating
multiple small transfers [3]. The same study showed that
increasing the socket buffer sizes at servers can improve
throughput; and reducing radio sleep timers can reduce power
consumption. mBenchLab complements these studies as it can
be used to measure the QoE variations between various server
side designs or detect QoE issues with particular devices or
geographical locations. Complementary approaches try to
rethink the networking infrastructure for mobile devices [5]
and investigate how to transparently switch between networks.
By recording the device GPS location throughout experiments,
mBenchLab allows to build database of geolocalized
performance data to explore further network influence in
modern realistic mobile networking.

VI. CONCLUSION
In this paper, we have presented mBenchLab, an open source
infrastructure to measure the QoE of Web application on
mobile devices. We have shown that our instrumentation
allowed us to identify accurately QoE issues with unmodified
devices on real networks. We were able to identify a new bug
in the native browser of a very popular smartphone that causes
major issues (increased data usage, network overload, loading
errors…) for users of the Wikipedia website.
We measured the performance of several tablets and
smartphones and showed that mobile network performance

was a dominant factor in user perceived QoE over device
performance or user location. The device hardware resources
only had a significant impact for low-end devices while 4G
networks offered performance similar to Wifi.
All our software is freely available on our project page at
http://lass.cs.umass.edu/projects/benchlab/. The software can
be downloaded from https://sourceforge.net/projects/benchlab/
for anyone to use and deploy their own mobile benchmarking
platform. We are actively distributing mBenchLab to collect
worldwide QoE data on popular websites but we hope that
other research groups will use these tools to measure the
impact of their research on mobile device QoE.

ACKNOWLEDGMENT
The authors would like to thank Veena Udayabhanu, Camille
Pierrat, Fabien Mottet and Vivien Quema for their
contributions. This research was supported in part by NSF
grants OCI-1032765, CNS-0916972, CNS-1117221 and CNS-
1040781.

REFERENCES
[1] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z. Morley Mao, Ming

Zhang, and Paramvir Bahl. Anatomizing application performance
differences on smartphones. In Proceedings of the 8th international
conference on Mobile systems, applications, and services (MobiSys '10).
ACM, New York, NY, USA, 165-178.

[2] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. Why
are web browsers slow on smartphones?. In Proceedings of the 12th
Workshop on Mobile Computing Systems and Applications (HotMobile
'11). ACM, New York, NY, USA, 91-96.

[3] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth
Kandula, and Deborah Estrin. A first look at traffic on smartphones. In
Proceedings of the 10th annual conference on Internet measurement
(IMC '10). ACM, New York, NY, USA, 281-287.

[4] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh,
and Jatinder Pal Singh. Who killed my battery?: analyzing mobile
browser energy consumption. In Proceedings of the 21st international
conference on World Wide Web (WWW '12). ACM, New York, NY,
USA, 41-50.

[5] Erik Nordström, David Shue, Prem Gopalan, Rob Kiefer, Matvey Arye,
Steven Ko, Jennifer Rexford, and Michael J. Freedman. Serval: An End-
Host Stack for Service-Centric Networking. In Proc. 9th Symposium on
Networked Systems Design and Implementation (NSDI ’12), San Jose,
CA, April 2012.

[6] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood and Prashant
Shenoy. BenchLab: An Open Testbed for Realistic Benchmarking of
Web Applications. In Proc. of 2nd USENIX Conference on Web
Application Development (WebApps '11), Portland, OR, June 2011,.

[7] WikiBench - http://www.wikibench.eu/.
[8] Wikibooks – http://www.wikibooks.org/.
[9] Wikipedia – http://www.wikipedia.org/.
[10] NPD DisplaySearch Reports. Tablet PC Market Forecast to Surpass

Notebooks in 2013. January 7, 2013. http://www.displaysearch.com/pdf/
130107_tablet_pc_market_forecast_to_surpass_notebooks_in_2013.pdf

[11] HTTP Archive specification (HAR) v1.2 -
http://www.softwareishard.com/blog/har-12-spec/.

[12] Selenium - http://seleniumhq.org/.
[13] Page views for Wikipedia -

http://stats.wikimedia.org/EN/TablesPageViewsMonthly.htm.
[14] WebMetrics BrowserMob proxy -

http://opensource.webmetrics.com/browsermob-proxy/.
[15] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting Storage

for Smartphones. In Proceedings of 10th Usenix Conference on File and
Storage Technologies (FAST’12), San Jose, CA, February 2012

	I. Introduction
	II. mBenchLab overview
	A. mBenchLab Dashboard and MobileApp
	B. Wikipedia Virtual Appliances

	III. Measuring QoE on Android devices
	IV. Evaluation
	A. Experimental setup and methodology
	B. Measuring performance of major Web sites
	C. QoE measurement overhead on mobile devices
	D. Identifying QoE issues
	1) Why HAR instrumentation is important
	2) The Samsung S3 browser bug

	E. QoE based on location
	F. Results summary

	V. Related work
	VI. Conclusion
	Acknowledgment
	References

