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Abstract—Content delivery networks (CDNs) are an important
class of Internet-scale distributed systems that deliver web,
streaming, and application content to end users. A commercial
CDN could comprise hundreds of thousands of servers deployed
in over thousand clusters across the globe and incurs significant
energy costs for powering and cooling their servers. Since energy
costs are a significant component of the total operating expense of
a CDN, we propose and explore a novel technique called cluster
shutdown that turns off an entire cluster of servers of a CDN that
is deployed within a data center. By doing so, cluster shutdown
saves not just the power consumed by the servers but also the
power needed for cooling those servers. We present an algorithm
for cluster shutdown that is based on realistic power models
for servers and cooling equipment and can be implemented
as a part of the global load balancer of a CDN. We evaluate
our technique using extensive real-world traces from a large
commercial CDN to show that cluster shutdown can reduce the
system-wide energy usage by 67%. Further, much of the energy
savings are obtainable without sacrificing either bandwidth costs
or end-user performance. In addition, 79% of the optimal savings
are attainable even if each cluster is limited to at most one
shutdown per day, reducing the required operational overhead.
Finally, we argue that cluster shutdown has intrinsic architectural
advantages over the well-studied server shutdown techniques in
the CDN context, and show that it saves more energy than server
shutdown in a wide range of operating regimes.

I. INTRODUCTION

Large Internet-scale distributed systems deploy hundreds
of thousands of servers in thousands of data centers around
the world. Such systems currently provide the core distributed
infrastructure for many popular Internet applications that drive
business, e-commerce, entertainment, news, and social net-
working. The energy cost of operating an Internet-scale system
is already a significant fraction of the total cost of ownership
(TCO) [1]. The environmental implications are equally impor-
tant. A large distributed platform with 100,000 servers will
expend roughly 190,000 MWH per year, enough energy to
sustain more than 10,000 households. In 2005, the total data
center power consumption was already 1% of the total US
power consumption while causing as much emissions as a mid-
sized nation such as Argentina. Further, with the deployment of
new services and the rapid growth of the Internet, the energy
consumption of data centers is expected to grow at a rapid
pace of more than 15% per year in the foreseeable future [2].
These factors necessitate rearchitecting Internet-scale systems
to include energy optimization as a first-order principle.

An important Internet-scale distributed system to have
emerged in the past decade is the content delivery network

(CDN, for short) that delivers web content, web and IP-based
applications, downloads, and streaming media to end-users
(i.e., clients) around the world. A large CDN, such as that
of a commercial provider like Akamai, consists of hundreds
of thousands of servers located in over a thousand data centers
around the world and account for a significant fraction of
the world’s enterprise-quality web and streaming media traffic
today [3]. The servers of a CDN are deployed in clusters where
each cluster consists of servers in a particular data center
in a specific geographic location. The clusters are typically
widely deployed on the “edges” of the Internet in most major
geographies and ISPs around the world so as to be proximal
to clients. Clusters can vary in size from tens of servers in a
small Tier-3 ISP to thousands of servers in a large Tier-1 ISP.

The primary goal of a CDN is to serve content such as
web pages, videos, and applications with high availability and
performance to end users. The key component that ensures
availability and performance is the CDN’s load balancing
system that assigns each incoming request to a server that
can serve that request. To this end, a CDN’s load balancing
system routes each user’s request to a server that is live
and not overloaded. Further, to enhance performance, a CDN
ensures that each user request is routed to a server that is
proximal to that user. The proximity (in a network sense)
ensures that the network path between the user’s device and
the CDN’s server has low latency and loss. The process of
routing user requests to servers is a two stage process. A
global load balancer (called GLB) assigns the user to a cluster
of servers based on the availability of server resources in
the cluster, performance, and bandwidth costs. A local load
balancer (called LLB) assigns the user to a specific server that
is capable of serving the requested content within the chosen
cluster. The choice of server is dictated by server liveness,
content footprint, and current server loads with respect to their
capacities. A comprehensive discussion of the rationale and
system architecture of CDNs is available in [3].

A. Cluster shutdown: a technique for energy reduction

A number of approaches are relevant to reducing the energy
consumption of CDNs. In the past two decades, there has been
significant work in improving the energy efficiency of servers
and data centers. Such improvements yield energy savings
in any deployed distributed system, including CDNs. For
instance, the switch to multi-core architectures, the increasing
use of SSDs, static power management (SPM) to decrease
energy use when the servers are idle, use of low-power
servers [4], and power scaling techniques such as Dynamic
Voltage and Frequency Scaling (DVFS) [5], [6] all help reduce978-1-4799-0623-9/13/$31.00 c© 2013 IEEE



CDN energy consumption. Similarly, the use of temperature
controlled fans and advances in air flow management have led
to increases in cooling efficiency[7], [8].

In addition to the above generic methods, there has been
recent work on CDN-specific techniques that incorporate the
ability to turn off individual servers during periods of low
load to reduce the energy consumption [9]. Such a server
shutdown technique is implemented within the local load
balancer (LLB) of the CDN. The work in [9] shows that the
availability, performance, and operational costs of the CDN
remain unaffected when turning off servers to save energy.

In this paper, we propose and evaluate a novel CDN-
specific technique called cluster shutdown where an entire
cluster of servers in a CDN data center can be turned off.
Cluster shutdown is easily integrated into the global load
balancer (GLB) that will now have the ability to move all
load away from a cluster and shut it down. However, since
the granularity of energy management is to turn off entire
clusters or leave them entirely on, the technique does not have
the ability to turn off individual servers (e.g., a fraction of a
cluster). In contrast, the server shutdown technique studied in
[9] has the ability to shutdown individual servers within the
cluster depending on the load, but has has no ability to control
how much load enters a cluster. Therefore, in this sense, the
two techniques are complementary and may be implemented
together. While cluster shutdown has not been studied before
in the CDN context, it has certain natural advantages that make
it worthy of consideration for CDN energy reduction.

(1) Redundant deployments. Large CDNs such as Akamai
can have over a thousand clusters deployed in data centers
around the world [3] with more than a dozen redundant
deployments in any given geographical area. Thus, when some
clusters near a user are shutdown during off-peak hours, other
nearby active clusters can continue to provide CDN service
to users and ensure good availability and performance. In fact,
one of the contributions of this work is determining the impact
of cluster shutdowns on user performance.

(2) Cluster shutdown is consistent with the original CDN
architectural design. Each cluster in a CDN is often architected
to be a self-sufficient unit with enough processing and disk
storage to serve the content and application domains that
are assigned to it [3]. In particular, there is limited data
dependency and resource sharing across clusters. Thus, cluster
shutdown can be implemented with little or no changes to
the CDN’s original architecture. In contrast, servers within
a cluster are closely linked in a fine-grained fashion and
they cooperatively cache and serve the incoming requests.
For instance, servers within the same cluster cooperatively
store application state and content for user requests served by
that cluster. Thus, shutting down individual servers for energy
savings requires greater migration of state and content between
servers in a cluster at levels not customary in a CDN today.
Cluster shutdown, in contrast, does not require state migration
and cached content is already replicated across clusters for
fault-tolerance purposes, which ensures that availability is not
impacted by shutting down a cluster. In this sense, cluster
shutdown is a better architectural design choice for energy
management than server shutdown.

(3) Cluster shutdown has the potential to save on cooling

power in addition to IT power. A key advantage of cluster
shutdown is that the all of the energy consumed by a cluster,
which includes energy consumed by the servers, the network
equipment, and the cooling within that cluster, can be saved
when a cluster is turned off. In contrast, a server shutdown
technique will typically turn off a fraction of the servers
within the cluster and will require the networking and cooling
equipment to stay on. The cooling equipment is not energy
proportional—thus turning off a fraction of the servers only
saves energy consumed by those servers and does not yield a
proportionate reduction in cooling costs.

For cluster shutdown to be effective, a CDN would need
to have control over all of its energy consumption, i.e., both
IT (such as servers) and cooling equipment. Such a scenario is
reasonable given the trend for CDN’s to opt for self-contained,
modular [10], or containerized [11] deployments. With such
deployments a CDN can manage the power consumption of
its own cluster, independent of other tenants in the data center
– an advantage for a CDN that wants manage its power
consumption closely. The savings that can be obtained from
reducing cooling costs can have a significant impact on the
total energy expenditure of a cluster. The key reason is that
the energy consumed by cooling equipment is a significant
fraction of the energy expended by the IT equipment1 such as
servers. The ratio of total energy to IT energy is a standard
metric called PUE (Power Usage Effectiveness) that has a
typical value2 of about 2 implying cooling energy is roughly
equal to IT energy in typical data center deployments. But
in more recent energy-efficient designs, PUE is smaller but
cooling energy is still a significant fraction of the IT energy.
Further, cooling energy consumption is not power-proportional
since cooling still takes a significant amount of energy even
when the servers have low utilization and are not producing
much heat, resulting in disproportional energy savings when
cooling is shutdown entirely (cf. Figure 1a).

Despite these advantages, a cluster shutdown technique is
not without disadvantages when compared to server shutdown
[9]. Shutting down a cluster and moving all its users to other
clusters might degrade performance for users if they have to go
“farther away” in the network sense for their content. Further,
moving traffic across clusters has the potential of increasing
the bandwidth cost, even if it reduces energy. A primary focus
of our work then is to evaluate the energy reduction provided
by cluster shutdown and how it trades off against potential
degradation in performance and increases in bandwidth costs.

B. Our Contributions

We propose algorithms for incorporating cluster shutdown
in the GLB of a CDN and quantify the energy savings
achievable by this technique. Our evaluation uses extensive
real-world traces collected from 22 geographically distributed
clusters over 25 days from one of the world’s largest CDNs.
We show how energy savings are impacted by the energy
characteristics of servers, cooling equipment, and data centers.
Further, we quantify the tradeoffs between three goals of

1IT energy expenditure is primarily the energy consumed by the servers,
since the networking equipment consume significantly less. Likewise, cooling
energy expenditure is dominated by the energy consumed by the chillers[12].

2In a survey by the Uptime Institute [13] in July 2012 , data centers reported
an average PUE between 1.8 to 1.89. Other estimates place PUEs even higher.



CDN architecture: saving energy, reducing bandwidth costs,
and enhancing end-user performance. Finally, we compare the
relative efficacy of cluster shutdown with the well-studied and
complementary approach of server shutdown. Our specific key
contributions are as follows.

• We propose a GLB algorithm that minimizes energy by
routing traffic away from certain clusters and switching them
off. On production CDN workloads with typical assumptions
for server and cooling efficiencies, our algorithm achieved a
significant system-wide reduction in CDN energy consump-
tion of 67%.
• When servers and cooling equipment are energy inefficient,
the energy savings from cluster shutdown can be as large as
73%. These savings can decrease to 61% if the servers be-
come perfectly power proportional, and can further become
almost zero if the cooling also becomes perfectly efficient.
• The outside air temperature has an impact on cooling effi-
ciency and hence influences the energy savings achievable
by cluster shutdown. Energy savings are stable at about 67%
for outside temperatures less than 85◦F but tapers off as the
temperature rises to 44% at 100◦F .
• To obtain the maximum possible energy savings, band-
width costs of the CDN would have to increase by a
factor of 2. However, 73% of the maximum energy savings
are obtainable with no change in bandwidth costs at all.
Likewise, 93% of the maximum energy savings is obtainable
with no significant performance degradation with each user
served from clusters within a 500 km radius.
• Frequent cluster shutdowns and the operational overheads
that it would entail are not necessary to achieve significant
energy savings. Our technique is able to extract 79% of the
maximum savings even when limiting each cluster to at most
one shutdown per day and even when the incoming load is
not known in real-time and must be predicted.
• Cluster shutdown does better than server shutdown within a
broad operating range of outside air temperatures from 40◦F
to 90◦F , while server shutdown is better outside of this
range. In general, cluster shutdown performs better during
lower periods of CDN utilization, while server shutdown has
the edge at higher utilization.

II. BACKGROUND, MODELS, AND METHODOLOGY

A. Content Delivery Networks

Our work assumes a global content delivery network
(CDN) that comprises a very large number of servers that are
grouped into thousands of clusters. Each cluster is deployed
in a single data center and its size can vary from tens to many
thousands of servers. The incoming requests are forwarded
to a particular server in a particular cluster by the CDN’s
load balancing algorithm. As outlined earlier, load balancing
in a CDN is performed in two stages: global load balancing
(GLB) that routes a user’s request to an “optimum” cluster, and
local load balancing (LLB) that assigns the user request to a
specific server within the chosen cluster. Load balancing can
be implemented using many mechanisms such as IP Anycast,
load balancing switches, or most commonly, the DNS lookup
mechanism [3]. We do not assume any particular mechanism,
but we do assume that those mechanisms allow load to be
arbitrarily re-divided and re-distributed among servers, both
within a cluster (local) and across clusters (global). This is

a good assumption for typical web workloads that form a
significant portion of a CDN’s traffic.

Our proposed technique of cluster shutdown is imple-
mented in the GLB of a CDN. First, GLB moves away all the
traffic from a cluster, typically by setting the cluster capacity
to zero. Then, the cluster is shutdown by turning off all the
relevant components, inclusive of servers and cooling equip-
ment. Since our focus is on GLB algorithms that incorporate
cluster shutdown, unless mentioned otherwise, we assume that
the LLB evenly distributes the incoming load assigned by the
GLB across servers within that cluster. In contrast, the server
shutdown mechanism studied in [9] is incorporated within the
LLB system that turns off individual servers within a cluster.

B. Workload Model

The workload entering a CDN is generated by users around
the world accessing web pages, video content, and Internet-
based applications. To model the spatial distribution of the
users, we cluster them according to their geographical location.
In particular, we define M client locations where each location
is a compact geographical area, example, Massachusetts, USA.
The workload entering the CDN is modeled as a discrete
sequence3 λt,i, 1 ≤ t ≤ T and 1 ≤ i ≤ M , where λt,i is the
average load in the tth time slot from users in client location
i. We always express load in the normalized unit of actual
load divided by peak server capacity.4 Further, we assume that
each time slot is δ seconds long and is large enough for the
decisions made by the global load balancing algorithm to take
effect. Specifically, in our experiments, we consider δ = 5
minutes.

C. Algorithmic Model for Load Balancing

While a real-life load balancing system is complex [3],
we model only those aspects of such a system that are
critical to energy usage. For simplicity, our load balancing
algorithms redistribute the incoming load rather than explicitly
route incoming requests from clients to servers. The major
determinant of energy usage is the number of clusters that need
to remain active (i.e., turned on) at each time slot to effectively
serve the incoming load. Unless we mention otherwise, we
assume that local load balancer is not energy aware and does
not turn servers on and off on its own accord. But, rather,
the LLB simply distributes the load assigned to each cluster
evenly among the servers in that cluster. However, the GLB
is energy aware and can turn clusters on or off. Therefore a
cluster is either active with all servers turned on, or inactive
with all servers turned off.

At each time slot, an energy aware GLB takes as input
the incoming load λi, 1 ≤ i ≤ M . The global load balancing
algorithm of a CDN routes the incoming load from each client
location i to clusters that are active at that time step, i.e., GLB
determines the values µij that represents the load induced by
client location i on a server in the jth cluster, 1 ≤ j ≤ N ,

3When the time slot is implicit, we often drop the time subscript from our
notation. For instance, we describe the incoming load simply λi, 1 ≤ i ≤ M .

4For simplicity, we assume that the servers in the CDN are homogeneous
with identical capacities, though our algorithms and results can be easily
extended to the heterogeneous case.



such that
∑

1≤j≤N

µijcj = λi, ∀i,

where cj is the number of servers in that cluster. Servers
are typically not loaded to capacity. But rather a target load
threshold µmax, 0 < µmax ≤ 1, is set such that the load
balancing algorithm attempts to keep the load on each server
of the CDN to no more than µmax. Mathematically,

∑

1≤i≤M

µij ≤ µmax, ∀j.

We assume a typical value of µmax = 0.75 in our work, i.e.,
the target load for each server is 75% of its capacity.

D. Power consumption of clusters

We model both the power consumed directly by the servers
(IT power) and the power consumed for cooling those servers
(cooling power). By convention, we indicate power draw for a
single server by using a superscript “server”, while variables
without that superscript represent the power draw for the entire
cluster. Also, note that while we mostly discuss power draw
(in Watts), integrating power draws over time provides us the
energy consumed (in Joules).

1) IT power model: First, we model the power consumed
by a single server as a function of its load. Based on our own
testing of typical off-the-shelf server configurations used by
CDNs, we use the standard linear model[1] where the power
(in Watts) consumed by a server is

P IT,server =
[

P IT, server
idle + (P IT, server

peak − P IT, server
idle )λ

]

(1)

where the load (0 ≤ λ ≤ 1) is the server load, and P IT
peak is

power consumed by the server when it is loaded to its capacity
(i.e., λ = 1). P IT,server

idle is the power consumed by an idle server
when it has no load (i.e., λ = 0). We define a quantity 0 ≤
α ≤ 1 called the server power proportionality factor where

α
∆
= 1− P IT, server

idle /P IT,server
peak .

Note that α = 1 represents a perfectly power proportional
server—the ideal case for an energy-efficient server—while
α = 0 represents the opposite extreme. In our empirical work,
unless mentioned otherwise, we use P IT,server

peak = 92 Watts, α

=0.31, and P IT,server
idle = 63 Watts as typical values based on our

measurements of a typical deployed server today. However, we
also vary α over a wide range to study the impact of server
power proportionality on our conclusions.

2) Cooling power model: The cooling systems deployed
to cool a server cluster consist of a number of components.
An air handler transfers heat out of the server room. An air or
water based chiller cools down the hot air before it is pumped
back into the server room. The coolant, usually a combination
of water and glycol5 is transferred from the chiller to cooling
towers that exchange heat with the outside air before returning
it back to the chiller. The chiller plant’s compressor accounts
for the majority of the cooling cost in most data centers [12].

5For the purposes of modeling a typical cooling system, we assume that
the chilled water coolant is at 44◦F .

To make our model assumptions realistic, we use a set
of benchmark regression curves provided by the California
Energy Commission (CEC) [14] to model our cooling power
requirements. Assuming efficient heat exchange at the cooling
towers, we take the outside air temperature as a proxy for the
temperature of the coolant on return. The power consumed by
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Fig. 1: Cooling power and its dependence on outside air
temperature and cooling efficiency.

the chiller PCOOL is a quadratic function of its utilization u

as shown below [14], where u
∆
= Q

Qpeak
, Q is the heat removed

by the chiller, and Qpeak is maximum heat removal that the
chiller is rated for.

PCOOL = PCOOL
peak ×

(

A+B · u+ C · u2
)

(2)

where u is the utilization of the chiller and the constants A,
B, and C are dependent on the capacity correction factor
(CAP FT) and the efficiency correction factor (EIR FT) that
vary quadratically with the outside air temperature. Given a
value for the outside air temperature the constants A, B, and
C can be derived from the regression curves provided in the
CEC manual [14]. It is worth noting that a chiller consumes
disproportionately more power at higher utilization than lower
ones due to the quadratic nature of the curve. Also, as shown
in Figure 1a, as the outside air temperature gets higher the
power required PCOOL gets larger and curve becomes more
non-linear and steeper.

The chillers deployed in practice vary greatly in terms
of their efficiency, ranging from less efficient older systems
to highly efficient next-generation ones. To study this wide
variation, we propose a family of chiller models that have the
same quadratic functional form for the relationship between
utilization and power consumed as the CEC chiller described in
Equation 2 but different values for the constants. Specifically,
we define a factor β that we call the chiller efficiency factor
and each value of β provides a different curve for the chiller
power consumption PCOOL(β) as described in the equation
below.

PCOOL(β) = PCOOL
peak ×

(

Aβ +Bβ · u+ Cβ · u2
)

, (3)

where Aβ = max{(βA+1−β), 0}, Bβ = βB, and Cβ = βC.

We study five chillers by setting β to five different values
as shown in Figure 1b. The first three curves (0 ≤ β < 1)
represents chillers that are less efficient than CEC’s chiller.
As can be seen from Equation 3, the fourth curve with β = 1
models the CEC chiller exactly. And, the fifth curve with β > 1
models a next-generation chiller that is more efficient than the
CEC chiller and has power consumption of zero when idle.



3) Total power consumed by a cluster: To compute the
total power consumed by a cluster we need to individually
compute the IT power and cooling power as follows and add
them together. The power consumption of a server cluster is
simply the sum of the power consumption for each server.
Thus, the power consumed by a server cluster consisting of c
servers, each running at utilization λ, is

P IT = c× P IT,server

where P IT,server can be computed using Equation 1. And, the
peak IT power of a cluster P IT

peak = c × P IT,server
peak . Given the

PUE of the data center in which the cluster is deployed, we
determine the peak cooling power PCOOL

peak = (PUE−1)×P IT
peak.

Since the chiller removes the heat produced by the servers, the

utilization of the chiller u = P IT

P IT
peak

. Now, given the value of β

that determines the cooling efficiency, we can compute the total
power consumed by the chiller PCOOL(β) using Equation 3.
The total power P consumed by the cluster is simply the sum
of its IT and cooling power:

P = PIT + PCOOL(β)

Note that the quadratic and non-energy proportional nature of
the chiller-based cooling model has interesting implications
on cluster and server shutdown techniques. When a server
shutdown technique switches off a fraction of the servers
within a cluster, the non-energy proportional nature of the
curve works “against” it and does not yield a proportional
reduction in cooling energy usage, while a full cluster shut-
down reduces the cooling costs to zero for that cluster. In
contrast, cluster shutdown “packs” the load from a region onto
a smaller number of clusters (and turns off the remaining
clusters), but the quadratic nature of the curve yields more
than linear increase in cooling costs for the clusters that stay
on; the higher the cluster utilization due to such packing, the
greater the increase in cooling cost due to the quadratic nature
of the curve. A similar effect comes into play due to the outside
air temperature, where increasing cluster utilization in hotter
outside temperature causes a disproportionately larger increase
in cooling costs due to the quadratic curve.

III. GLB ALGORITHMS WITH CLUSTER SHUTDOWN

We now describe our algorithm for global load balancing
that routes traffic from client locations to clusters while turning
clusters on or off with the goal of minimizing the total energy
consumed by the CDN. At any given time, the algorithm takes
as input the load λi from each individual client location i.
Here we make the simplifying assumption that the GLB knows
precisely the load that it needs to route at each time step and
that it can instantaneously turn clusters on or off to minimize
energy usage. This is clearly not strictly true in practice where
both sensing the load and shutting down clusters incur a small
delay. However, our algorithm provides a baseline on what
is achievable with the cluster shutdown technique, leaving a
more complex model that incorporates delays for future work.
The output of our algorithm is two-fold. First, it computes a
binary variable uj that indicates whether the jth cluster should
be turned on (uj = 1) or turned off (uj = 0) in that time step.
Next, it computes a quantity µij that represents the load from
client i that must be routed to cluster j at the given time step.

Computing the assignment of load to clusters can be stated
as a convex optimization problem as follows. The IT power
required by cluster j is

PIT
j = cj



P IT
idle × uj +

∑

1≤i≤M

(P IT
peak − P IT

idle)µij



 ,

where the value of uj is used to determine if the cluster is
turned on and P IT

idle should be incurred. The chiller utilization

of cluster j can be computed as uj =
PIT
j

cjP
IT
peak

. The correspond-

ing cooling energy for cluster j denoted by PCOOL
j can be

computed using Equation (3), given the chiller efficiency β.
Our objective function is simply the total power drawn by the
CDN summed across all its N clusters and is stated below.

min
∑

1≤j≤N

(

PIT
j + PCOOL

j

)

(4a)

s.t.
∑

1≤j≤N

µijcj = λi, ∀i (4b)

∑

1≤i≤M

µij ≤ ujµmax, ∀j (4c)

The quantities that are varied in the minimization are the output
variables µi,j and uj . Equation 4b ensures that the all of the
incoming load at the given time step is assigned to some
cluster. Further, Equation 4c ensures that no server is loaded
by more than the threshold µmax. We pick a typical value of
µmax = 0.75 that implies that no server is loaded to more
than 75% of its capacity.

Besides the above constraints that always apply, we also
study tradeoffs between energy savings, performance and
bandwidth costs by adding one or both of the constraints below.

∑

1≤i≤M

∑

1≤j≤N µijcjdij
∑

1≤i≤M λi

≤ D, (5a)

∑

1≤i≤M

Bi

µijcj
λi

≤ BWmax(j), ∀j (5b)

Equation (5a) states that the average distance between the users
and the cluster to which they are assigned (weighted by load)
is no more than some specified value D, where dij is the geo-
graphical distance between client location i and cluster j. For
smaller values of D, this equation constrains the global load
balancer to assign users to server clusters that are proximal to
them, so as to ensure good performance. By making D larger,
we are loosening the performance requirement by allowing the
users to be assigned to clusters that are farther away. We are
particularly interested in how the performance requirement D
impacts energy savings. Note that as was assumed in earlier
work [15], we use geographical proximity as a rough proxy
for “network proximity” that governs user performance. Our
formulation could equally well accommodate network latency
instead of geographical distance without significant changes,
though our empirical CDN traces do not provide the required
network information for such an evaluation.

A CDN pays for the bandwidth that their deployed servers
utilize. Typically, CDNs use 95/5 contracts for paying for their
bandwidth use which works as follows [16]. For each cluster
j, the traffic from the CDN’s servers in the cluster is averaged



over 5 minute intervals. Then the 95th percentile of those 5-
minute averages over the billing interval is computed. The cost
of bandwidth for that cluster is proportional to the computed
95th percentile. Since 95th percentile cannot be modeled and
constrained within a convex programming framework, we use
the maximum value instead as a proxy. Equation (5b) above
is used to constrain the maximum bandwidth sent out of
cluster j to be no more than BWmax(j), hence also constraining
the bandwidth cost that is incurred by the CDN in cluster
j. Choosing higher values for BWmax(j) is tantamount to
increasing the allowable bandwidth cost at cluster j. We use
the bandwidth constraint to study the impact of varying the
bandwidth costs on energy savings.

Converting the convex program to a mixed integer program
(MIP). Note that as currently stated the objective of the opti-
mization function in Equation 4 contains the term PCOOL

j that
is quadratic in variables µij . However, since MIPs are more
tractable than convex programs, we used a linear piecewise
approximation of PCOOL

j to rewrite the optimization with only

linear constraints. The domain for the function PCOOL
j (u)

was split into equal sized segments. For each such segment
[xi, xi+1] we sampled the value of the function at its endpoints
[yi, yi+1]. Computing the slope mi and intercept ki, the linear
approximation between the points (xi, yi) and (xi+1, yi+1)
takes the form PCOOL

j,(xi,xi+1)
(u) = PCOOL

j,peak × (mi · u + ki). For
each such segment we added a constraint

PCOOL
j ≥ PCOOL

j,(xi,xi+1)

with cluster j running at a chiller utilization of uj =
PIT
j

cjP
IT
peak

.

PCOOLj is present in the objective and lower bounded by
the piecewise linear approximation. The absence of any other
constraint on the variable ensures that it equals its lower bound
in the optimal solution. Our implementation used 5 linear
segments for an approximation error of 0.25% at 85◦F .

IV. EVALUATION

To evaluate the benefits of integrating cluster shutdown in
a CDN’s global load balancer we used extensive traces from
Akamai, perhaps the largest commercial CDN, and ran the
algorithms presented in Section III. In our experiments, unless
otherwise indicated, we model chillers with β = 1, i.e., the
same as CEC’s chiller model, and we assume that the outside
air temperature is 85◦F . Later, we vary these parameters and
show how energy savings vary with different parameter values.

A. Empirical Data from the Akamai Network

We used extensive load traces collected over 25 days from
a large set of Akamai clusters deployed in data centers in
the US. The 22 clusters captured in our traces are distributed
widely within the US and had 15439 servers in total, i.e.,
a representative sampling of Akamai’s US deployments. Our
load traces account for a peak traffic of 800K requests/second
and an aggregate of 950 million requests delivered to clients.
The traces consist of a snapshot of total load served by each
cluster collected every 5-minute interval from Dec 19th 2008
to January 12th 2009, a time period that includes the busy
holiday shopping season for e-commerce traffic (Figure 2). In
the figure, one may note load variations due to day, night,
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Fig. 2: Average load per server measured every 5 minutes
across 22 Akamai clusters in the US over 25 days.

weekday, weekend, and holidays (such as low load on day no.
8, which was Christmas) Since the clusters are restricted to the
US, we also restricted the trace to clients from North America.
The trace consists of samples taken every 5 minutes indicating
the current load on each cluster, along with a breakup of traffic
from each client location. Specifically, for every 5 minutes, we
measured the load induced by client location i on cluster j and
the corresponding bytes served by cluster j to users in client
location i, for all relevant pairs of i and j. In addition, we also
measured the number of servers present and total capacity of
each cluster. In the course of our optimization, we assume that
the load from a client can be shifted to any cluster as long as
the capacity constraints are met and no server is overloaded.
Our traces also capture the geographic location (city, state,
and country) of both the client location and cluster, which lets
us estimate the geographical distance between the users at a
particular client and location the cluster from which they are
served. The geographical distance computed in this fashion
is used as a proxy for performance. The byte information
captured in our traces is used to compute the bandwidth usage
of the CDN in each cluster that in turn determine the bandwidth
costs incurred by the CDN that we study in our work.
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(b) Applying cluster shutdown to
the top 45% clusters is sufficient
to obtain 94% of the system-
wide energy savings.

Fig. 3: CDN energy savings obtainable by cluster shutdown.

B. Overall energy savings

We emulated the GLB-based cluster shutdown algorithm in
Section III on the CDN traces described above. The algorithm
minimizes the energy consumption of the CDN in each time
step by orchestrating which clusters should be on and which
clusters should be turned off. Then the total energy consumed
by the CDN is computed by adding the energy consumed
at each time step across the entire trace. As a basis for
comparison, we used as a baseline the energy consumed by
the user-to-cluster assignment in the trace with no cluster



shutdown, i.e., all clusters are assumed to be on throughout
the trace which is consistent with how CDNs operate today.

The system-wide energy savings that is possible with
cluster shutdown incorporated into the CDN’s GLB is 67%
in comparison with the baseline where all clusters are al-
ways turned on. In performing this analysis, we make typical
assumptions about the energy efficiency of the data centers
(PUE = 2), servers (α = 0.31) and chillers (β = 1). We also
do not constrain performance and bandwidth costs. Therefore,
these are the best case savings possible. However, we vary
each of these assumptions in subsequent sections to examine
how these savings change under different scenarios. To further
breakdown the savings, in Figure 3a we show savings obtained
by individual server clusters. Savings vary between 37% to
84% with the median cluster saving 63%. Further, most of the
savings can be obtained by performing cluster shutdown in
a few key clusters. As shown in Figure 3b, applying cluster
shutdown to top 45% of the clusters is sufficient to obtain 94%
of the optimal energy savings.
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Fig. 4: Energy savings and power proportionality

C. Impact of server and cooling efficiency

CDNs operate with a wide range of server hardware and are
deployed in a wide range of data center facilities. Further, both
server and cooling efficiencies are constantly being improved
over time. To capture these effects, we varied the power
proportionality factor of the servers (α) as well as the cooling
efficiency of the chillers (β) to study how energy savings vary
with these parameters (cf., Figure 4a). When both the servers
and cooling are energy-inefficient (α = β = 0), the cluster
shutdown technique provides the most energy savings of 73%.

As servers become more energy-efficient the idle power
usage gets lower, and thus lowers cooling energy. This results
in energy savings from cluster shutdown dropping to 61%
when servers are perfectly power proportional (α = 1). In
fact for any chiller efficiency β, energy savings decrease as
servers become more efficient.

Likewise, for any given server efficiency α, increasing
cooling efficiency β reduces the energy savings. For perfectly
power proportional servers (α = 1) energy savings fall as
β increases, dropping from 61% when β = 0 to 19% for
β = 1. In the ideal world with highly-efficient servers and
cooling, e.g., α = 1 and β > 1, the energy savings from
cluster shutdown approaches zero, i.e., if the “hardware” is
itself highly-efficient there is no need for an explicit shutdown
mechanism to reduce energy.

D. CDN Power Proportionality

To visualize how server shutdown makes a CDN more
power proportional, it is instructive to view the instantaneous
power consumption of the entire CDN as a function of its
overall utilization. Specifically, in Figure 4b, we plot the
CDN’s total power consumption (as a percentage of its peak)
and its overall utilization at each time step as a single point
of a scatter plot. Note that these plots are the exact analogue
of server proportionality described in Equation 1 that relates
power to utilization, but computed for the CDN as a whole. A
perfectly power proportional system would have all its points
aligned along the 45-degree line shown in the figure. The
scatter plot of the total CDN power without cluster shutdown
deviates from the ideal 45-degree line significantly as the CDN
consumes a lot of power even during periods of low utilization
during the non-peak hours. However, cluster shutdown makes
the scatter plot of the total CDN power much more closely
aligned to the ideal 45-degree line, i.e., cluster shutdown makes
the CDN significantly more power proportional.

20 40 60 80 100
0

20

40

60

80

100

Temperature (F)

 

 

Average active capacity (%)
Average active server util (%)

(a) Avg. active server utiliza-
tion falls as temperature rises

20 40 60 80 100
0

20

40

60

80

100

Outside temperature (F)

E
n
e
rg

y
 s

a
v
in

g
s
 (

%
)

(b) Energy savings drop from
67% at 85◦F to 44% at 100◦F

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

o
w

e
r 

(%
 o

f 
p
e
a
k
)

 

 

85
°
 F

Power proportional

Best fit for 85
°
 F

(c) At 85◦F , the CDN with
cluster shutdown is roughly
power proportional.

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

o
w

e
r 

(%
 o

f 
p
e
a
k
)

 

 

100
°
 F

Power proportional

Best fit for 100
°
 F

(d) At 100◦F , cluster shutdown
is less effective.

Fig. 5: Cluster shutdown is more effective in saving energy at
lower temperatures than higher ones.

E. Impact of Outside Air Temperature

The cooling equipment transfers heat from inside the server
room to the external atmosphere. Physical laws suggest that
the heat transfer rate through convection is larger when the
temperature differential between the inside and outside air
temperatures are greater. Thus, it takes less energy to cool
when the outside temperature is cooler (say, in the winter) than
when the outside temperature is hotter (say, in the summer).
Further, as we saw in Figure 1a, the required power for cooling
rises more sharply in a quadratic fashion with increasing
utilization when the outside air temperature is hotter.

The interplay of outside air temperature with cooling power
impacts what energy savings are achievable by GLB via cluster
shutdown. Specifically, as outside air temperature increases,
the cluster (and server) utilization have to be kept low since
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Fig. 6: Relaxing performance results in greater energy savings.
46%, 93% and 99.9% of the optimal energy savings are ob-
tained at D values of 300 km, 500 km and 795 km respectively

there is a greater cooling power penalty associated with higher
utilization. Thus, as shown in Figure 5a, at low temperatures
the algorithm runs all active servers at the maximum allowed
utilization of µmax = 75%. At high temperatures cooling costs
rise rapidly with utilization, and the optimal solution at 100◦F
corresponds to active servers running at 39% utilization. Note
that to continue to serve the same incoming load, a lower clus-
ter (or, server) utilization means more clusters (and, servers)
need to remain active. Thus, the fraction of total CDN capacity
that is kept active, rises from 27% at low temperatures, to 51%
of total capacity at 100◦F . The increase in active capacity with
rising temperatures combined with lower utilization of active
servers has a negative impact on savings. Figure 5b shows
that energy savings drop from 67% at 85◦F to 44% at 100◦F .
The energy savings achieved by cluster shutdown at different
outside air temperatures can also be viewed as a scatter plot of
the total CDN power versus its utilization. The scatter plots in
Figures 5c and 5d correspond to 85◦F and 100◦F respectively.
At 85◦F the best linear fit to the power-utilization curve has
a slope of 1.26, closer to the ideal 45-degree line with a slope
of 1, i.e., the CDN with cluster shutdown is roughly power
proportional. At 100◦F the slope almost doubles to 2.46.

F. Tradeoff between Energy and Performance

CDNs host a wide range of applications. Some applications
such as dynamic web sites are highly sensitive to network
latency, with even small increases in latency causing significant
degradation in the performance experienced by the user. Other
applications such as software downloads are weakly sensitive
to latency and can even be performed in the background. As
in [15], we use geographical distance as a rough proxy for
the network latency between a user and the cluster assigned to
that user by GLB. To study the tradeoff between performance
requirement and energy savings we add Equation (5a) as a
constraint where different latency requirements can be modeled
by varying the distance bound D. Specifically, larger values
of D allow a larger load-weighted average distance between
the users and their assigned clusters. Allowing larger user-
cluster distances (and latencies) has the effect of degrading
performance, but allows for potentially more cluster-shutdown
opportunities for GLB and greater power savings. Figure 6
illustrates this tradeoff where setting D = 300 km provides
46% of optimal savings. Note that this distance bound is
roughly the distance between Boston and New York with
network latencies often in the 10-15 ms range that is adequate
for even applications with higher latency sensitive. When
D = 500, one can achieve 93% of the energy savings. This
distance bound is roughly the distance between Boston and
Philadelphia where typical latencies are in the 20 ms range,

suitable for most moderately latency-sensitive applications.
Finally, when D = 795 km, a suitable limit for weakly
latency-sensitive applications such as background downloads,
we achieve 99.9% of optimal savings.

G. Tradeoff between Energy and Bandwidth Costs

The operating expenditure (OPEX) of a CDN includes two
major components: the energy costs for powering the servers
and the bandwidth cost for the traffic from the server clusters
to the users. Reducing energy usage by packing traffic into
fewer server clusters could cause increased bandwidth usage
in those clusters, which in turn could drive up the bandwidth
cost at those clusters. The primary question is whether energy
savings can be achieved without significant increase in the
bandwidth cost. Note that if energy savings are only obtainable
by significantly increasing the bandwidth cost, that would serve
as a disincentive for a CDN to implement cluster shutdown.

As noted in Section III, the bandwidth cost incurred by the
CDN at each cluster can be approximated by the maximum
over all 5-minute time slots in the billing period6 of the
average traffic (in Mbps) transmitted in that time slot. We
constrain (through Equation (5b)) the maximum bandwidth
for each cluster j to be at most (1 + r)BWmax(j), where
BWmax(j) is the maximum bandwidth value observed in the
trace and r is the BW relaxation factor that determines how
much extra bandwidth costs we are willing to allow. Figure 7a
shows energy savings relative to optimal as the bandwidth
constraints are relaxed by varying r. With no increase in
bandwidth cost (r = 0), cluster shutdown can still achieve
73% of optimal savings. 47% of the total CDN server capacity
remains turned on, with active servers running at an average
utilization of 48%. Relaxing bandwidth constraints allows
active server utilization to rise to µmax = 75% at r = 1. This
allows the CDN to run with 27% of its server capacity turned
on and achieve optimal energy savings. Overall, our results
indicate that cluster shutdown can still achieve significant
energy savings with little or no increase in bandwidth costs.
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Fig. 7: Energy savings versus Bandwidth cost

H. Impact of Limiting the Cluster Transitions

Frequently switching server clusters on and off can impact
the overall lifetime and reliability of the equipment. Further,
the mechanical nature of cooling equipment limits the rate
at which it can be switched on and off. Chillers, for example,

6In our simulations, we assume that the billing period is length of the trace
which is 25 days, though in reality a billing period is typically one month.
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Fig. 8: Impact of decision period and traffic prediction

require a warm up at partial load before they can be incremen-
tally ramped up to full capacity. Thus it is neither desirable
nor feasible to frequently turn entire clusters on and off, and
we study the amount of energy savings that can be extracted
when limiting the frequency of cluster shutdowns.

Suppose that cluster transitions are allowed to occur only
once every τ time slots, where τ is defined as the decision
period and is required to be an integral multiple of δ. In our
experiments we vary τ from 5 minutes to 1 day. In Figure 8a
the left-most point in the graph corresponds to τ = 5 minutes
which is the smallest time granularity at which the trace data is
collected. It is nearly infeasible to turn clusters on or off every
5 minutes. However, the τ = 5 minutes measurement provides
the theoretical optimal of how much energy savings is possible
in the best case that can serve as a benchmark for comparing
other values of τ . Increasing τ could decrease energy savings
as GLB has a lesser ability to turn clusters on or off in response
to load variations. However, as we see in Figure 8a, even with
τ = 1 day where clusters are transitions just once a day,
we achieve 80% of the optimal savings possible. Thus, we
establish that frequent cluster transitions are not necessary for
obtaining most of the benefits of cluster shutdown.

I. Impact of inaccurate real-time load information

Thus far, we have assumed that the load for the current
decision period τ is accurately available and can be used
for decision making for that period. This is a reasonable
assumption for smaller decision periods (say τ ≤ 30 minutes)
but not so much when the decisions are more infrequent and
decision periods are longer. Therefore we consider the situation
where our algorithm does not know the current load but would
have to predict it for the purpose of deciding which clusters
are transitioned. When cluster transitions are made based on
a prediction of load over any extent of time there always
exists the chance of insufficient active capacity and users being
denied service. We allow active CDN clusters to run to 100%
utilization before they drop incoming workload. We define
availability as the ratio of workload served to total workload.
Under these assumptions, we define a simple algorithm that
predicts the load and computes the optimal cluster allocation
under this prediction. The predicted load equals the load
at the previous decision period, for small decision periods
(τ ≤ 1 hour), or the load at the same decision period from
the previous day, for larger periods (τ > 1 hour). Using this
simple prediction algorithm, Figure 8b shows energy savings
for decision period 5 minutes ≤ τ ≤ 1 day. Energy savings
dropped from 100% to 79% of optimal over this range. In

each case, the algorithm provided at least “three nines” of
availability (i.e. 99.9%).

J. Cluster vs Server shutdown

We look at the relative energy savings of two comple-
mentary techniques: GLB that incorporates cluster shutdown
and an LLB that incorporates server shutdown. We assume
that LLB always keeps the exact number of servers required
to serve the incoming load for every cluster and at every
time step. This is of course an optimistic assumption but it
helps understand the best possible savings achievable using
LLB. However, unlike GLB, LLB is unable to move traffic
across clusters to shutdown entire clusters. Figure 9 plots
the difference between the energy savings of implementing
cluster shutdown in GLB and the corresponding savings from
implementing server shutdown in LLB. In Figure 9a, we see
that at low outside air temperatures when cooling is relatively
inexpensive (cf., Fig 1a), LLB with server shutdown performs
better due to its greater impact on server energy. At high
temperatures GLB with cluster shutdown runs active clusters at
lower utilization to reduce cooling energy. The limited ability
of GLB to shutdown clusters at higher temperatures implies
that it performs worse than LLB. Thus, GLB outperforms LLB
at moderate temperatures outside of these two extremes. The
relative performance of GLB versus LLB also depends on the
CDN utilization. Figure 9b shows that when the CDN is lightly
loaded, GLB has greater flexibilty to move traffic around
and switch off clusters. There are fewer such opportunities at
higher system utilization, where larger clusters need to be kept
active for serving the incoming CDN load. At 85◦F , GLB out
performs LLB in all cases. But the additional energy savings
drop from 42% to 4% as CDN utilization increases from
7% to 35%. This trend is exaggerated when the temperature
increases to 100◦F . In this case, LLB is better than GLB but
the additional savings provided by LLB increases from 9% to
68% over the same range of utilization.
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Fig. 9: GLB (cluster shutdown) vs LLB (server shutdown)

V. RELATED WORK

Data center energy management has emerged as an active
area of research in recent years. Several approaches have
emerged for reducing the energy consumption of data centers,
including server shutdown during off-peak periods [17], [18],
[19], [20], the use of low-power server nodes [4], OS-level
energy management through methods such as DVFS, the use of
renewable energy [21], [22], and routing requests to locations
with the cheapest or greener energy [15]. Separately, there
has also been work on designing cooling-aware or thermal-
aware algorithms for data centers. Cooling-aware workload



management techniques have been studied in [23]. Thermal-
aware workload placement techniques that place load on cool
portions of the data center have been studied in [24], [25].
Models for air- or chiller-based cooling data centers have been
studied in [23], [26]; the cooling models used in our paper
are inspired by this work and also the data published by the
California Energy Commission [14].

A key difference between the prior work and our work
is our focus on content delivery networks; the design choices
made by a CDN require these ideas to be customized to the
CDN case, for instance by integrating energy management
with the CDN’s load balancing algorithms. Another key CDN-
specific issue is to design energy saving methods that minimize
the impact on user performance and bandwidth costs. Specif-
ically we use realistic power and cooling models for clusters,
based on prior work, and use them to design cluster shutdown
algorithms that can be implemented in the CDN’s global load
balancing algorithms. In this sense the approach also differs
from, and is complementary to, prior work on server shutdown
technique for CDN energy management [9].

VI. CONCLUSIONS

We focused on the design of energy-efficient CDNs. Since
a CDN could comprise thousands of server clusters across
the globe consuming a significant amount of energy, we
propose a new technique called cluster shutdown to turn off
entire clusters to save energy. Our experimental results using
extensive traces from a commercial CDN shows that cluster
shutdown can reduce system-wide energy usage by 67% in
the optimal case, and most of these savings can be achieved
without sacrificing end-user performance and bandwidth costs.
In addition, the technique works well even when shutdown is
limited to once per day for each cluster and when the load
is not known in real-time and must be predicted. We believe
that cluster shutdown is a strong candidate for implementation
in an actual CDN, especially since it fits in more easily with
current CDN architectural principles in comparison with server
shutdown techniques studied in the past. However, integrating
both cluster and server shutdown in a complementary fashion
to make both GLB and LLB energy-aware might lead to even
greater efficiencies and is an interesting topic for future work.
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