
Provisioning Multi-tier Cloud Applications Using Statistical

Bounds on Sojourn Time

Upendra Sharma, Prashant Shenoy, Don Towsley

Dept. of Computer Science, University of Massachussetts

Amherst, MA, USA

{upendra,shenoy,towsley}@cs.umass.edu

ABSTRACT
In this paper we present a simple and effective approach for re-
source provisioning to achieve a percentile bound on the end to
end response time of a multi-tier application. We, at first, model
the multi-tier application as an open tandem network of M/G/1-PS
queues and develop a method that produces a near optimal appli-
cation configuration, i.e, number of servers at each tier, to meet
the percentile bound in a homogeneous server environment – using
a single type of server. We then extend our solution to a K-server
case and our technique demonstrates a good accuracy, independent
of the variability of service-times. Our approach demonstrates a
provisioning error of no more than 3% compared to a 140% worst
case provisioning error obtained by techniques based on an M/M/1-
FCFS queue model. In addition, we extend our approach to han-
dle a heterogenous server environment, i.e., with multiple types of
servers. We find that fewer high-capacity servers are preferable for
high percentile provisioning. Finally, we extend our approach to
account for the rental cost of each server-type and compute a cost
efficient application configuration with savings of over 80%. We
demonstrate the applicability of our approach in a real world sys-
tem by employing it to provision the two tiers of the java implemen-
tation of TPC-W – a multi-tier transactional web benchmark that
represents an e-commerce web application, i.e. an online book-
store.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

Keywords
Performance modeling, cloud computing, multi-tier applications

1. INTRODUCTION
Cloud computing platforms are becoming increasingly popular

for hosting enterprise applications due to their ability to support
dynamic provisioning of virtualized resources to handle workload
fluctuations and also because of usage based pricing. Enterprise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’12, September 18–20, 2012, San Jose, California, USA.
Copyright 2012 ACM 978-1-4503-1520-3/12/09 ...$15.00.

applications are known to observe dynamic workload and provi-
sioning correct capacity for these applications remains an important
and challenging problem. High variability in workload is caused
by a variety of reasons, such as flash crowds, short term sustained
surges, or long-term fluctuations based on change in business or
underlying IT infrastructure etc. Predicting these workload fluctu-
ations or the peak workload is challenging. Erroneous predictions
often lead to under-utilized systems or in some situations cause
temporarily outage of an otherwise well provisioned web-site; e.g.
in November 2000 Amazon.com site suffered a forty-minute out-
age due to overload. Consequently, rather than provisioning server
capacity to handle infrequent (and hard to predict) peak workloads,
an alternate approach of dynamically provisioning capacity on-the-
fly in response to workload fluctuations has become popular. Dy-
namic provisioning is especially well suited to the cloud due to the
ability of cloud platforms to provision capacity when needed and
charge for usage on pay-per-use basis.

There have been numerous efforts that have addressed the is-
sue of dynamic provisioning of server capacity to distributed ap-
plications [8, 11, 20, 19] . These efforts fall into two categories -
proactive, where a model of the application is used to compute the
capacity needed to service a particular workload at a certain per-
formance level, or reactive, where additional capacity is allocated
after a workload spike arrives and causes significant performance
degradation.

In case of proactive approaches, application models have been
derived to predict how much capacity is needed to provide a certain
mean response time for a given workload [19, 20]. However, typi-
cal service level agreement (SLAs) for the application are specified
in terms of the worst case (or peak) response times [7] (e.g. 99%
of the requests should see no more than a 1-sec response time).
Consequently, there is a mismatch between the provisioning mod-
els which allocate capacity for a target mean response, time and the
SLA, which dictates that the capacity should be allocated based on
a high percentile (peak) response time.

Second, many enterprise applications are distributed or repli-
cated with multi-tier architecture. Typically SLAs are specified on
an end-to-end basis for the entire application. The few provision-
ing efforts that focus on allocating capacity for the tail of the work
translate it to per-tier SLA metrics [20]; provisioning for per-tier
SLA can result in large errors in provisioning the capacity if the
tier response time estimates are incorrect.

Third, most provisioning techniques to-date are cost oblivious
– they can determine how much server capacity to allocate but do
not consider the cost of allocating the server capacity. In cloud
platform, different server configurations are available at different
prices. The capacity does not scale linearly across configurations
and nor does the price. Since multiple combinations of servers can

provision a certain capacity C for an application, a cloud specific
provisioning scheme must take the cloud costs into account when
making provisioning decisions.

In this work we present a new model driven provisioning ap-
proach targeted for cloud platforms. Our approach focuses on i.)
allocating capacity based on peak (high percentile) of the work-
load, ii) takes a holistic view of the entier multi-tier application by
considering bounds on on end to end response times while mak-
ing provisioning decisions and iii) takes cloud server configs and
pricing models when determining the most cost effective config to
provision a certain amount of capacity.

1.1 Research Contributions
The contributions of this paper are the following:
Cost aware provisioning subject to a percentile response time

SLA. We present an algorithm for resource provisioning for a multi-
tier cloud application, subject to an SLA expressed in terms of high
percentile of end to end response time, that minimizes the total
cost of compute resources required by the application. Our formu-
lation models the application as an open tandem queue network of
M/G/1-PS queues.

Service time and response-time approximations. We present
an approximation of the response time distribution of the M/G/1
processor sharing queue based on the distribution of conditional
expected response times given the service times and show it to be
accurate for our purposes. In addition, we present a new service
time characterization based on a mixture of shifted exponential dis-
tributions.

Cost-efficient configuration with heterogeneous servers sub-
ject to percentile SLA. We extend the above approach to account
for the presence of multiple types of servers with different costs
and computational capabilities. This is achieved by formulating an
integer optimization problem with the constraint that per-tier ca-
pacity should be at least as much as that computed by the queueing
theoretic model.

Prototype implementation and experimentation. We have im-
plemented our analytical model in MATLAB and tested it using a
multi-tier application, i.e. java implementation of TPC-W, over a
private cloud. For comparison, we also implemented a baseline
case using M/M/K-FCFS queues. Our experimental results show
that our approach is able to provision the application to meet the
SLA specified on 99 percentile of end-to-end response time with
less than 3% provisioning error, while the baseline techniques pro-
visioned with an error as large as 140%. In the case of heteroge-
neous provisioning, our approach shows, as high as, 81% savings
in server cost as compared to that of the corresponding optimal ho-
mogeneous configuration. In case of private cloud experiments we
found that heterogeneous approach showed around 11% cost sav-
ing (using Amazon EC2 pricing) over homogenous configurations.

2. BACKGROUND AND PROBLEM FORMU-
LATION

In this section, we present the system model and a high level
problem description. We describe the SLA performance metric,
and thereafter formulate the provisioning problem that we address
in this work.

Multi-tier Application: Modern large scale web applications
are developed as multiple tiers for reasons pertaining to scalability.
A multi-tier architecture offers flexibility for development as well
as deployment of applications. Each application tier, typically, pro-
vides a specific functionality and the various tiers form a processing
pipeline. In a typical multi-tier application various tiers participate

in the processing of an incoming request; each of the participat-
ing tier receives partially processed requests from the previous tier
and feeds these requests into the next tier after local processing (see
Figure 1). The tiers are replicated to scale according to the process-
ing demand; a load balancer is used to distribute the load over all
replicas of such a tier. Figure 1 depicts a two-tier applicationwhere
both tiers are replicated. This is a commonly employed architec-
ture by e-commerce web applications where, both, web-server and
database tiers are clustered to scale up according to increase in the
incoming workload.

Server n1

server1
server1

Load

Balancer

server1

Replicated Tier -1

(Java Tier)

Server n2

server1
server1

Load

Balancer
server1

Replicated Tier -2

(DB Tier)

�
HTTP Load Blancer TCP Load Blancer

Client n

server1
server1
Client 1

Remote Web Client

Figure 1: Topological configuration of a typical replicated two-tier
web application

We assume that each tier is placed on a dedicated server and
that replicating a tier essentially means replicating the server. Each
clustered tier is also assumed to employ a protocol-session aware
load balancer responsible for distributing requests to replicas in
that tier. It is assumed that the each tier’s capacity (number of
servers), can be varied dynamically without disturbing the applica-
tion’s normal functioning, and that each tier can be independently
provisioned for capacity.

Cloud Platforms: Cloud computing has emerged as a new IT
delivery model. Infrastructure as a Service (IaaS) cloud-model is
being seriously evaluated by enterprises to deploy their web appli-
cations that support dynamic capacity resizing. In this model, an
organization/client can rent remote compute and storage resources
to host networked applications and resources can be dynamically
added or removed on an as-needed basis. We consider a cloud
computing platform that allows compute servers to run hosted ap-
plications. We assume that the platform offers N heterogeneous
server configurations for rent, each with a different rental-cost and
configuration.

We assume that the cloud platform has an infinite pool of servers
and that servers can be provisioned by invoking server-instance
creation APIs; servers may be requested and terminated at any
time and billing is based on the amount of time for which each
server is used (e.g., based on the number of hours for which each
server is used). We also assume that the cloud platform employs
virtualization—each physical server is assumed to run a hypervisor
that controls the allocation of physical resources on the machine
and offers performance isolation to each of its virtual servers.

2.1 Problem Formulation
Let N and M denote the number of tiers and server-types re-

spectively. Let tier j be jointly served by
P

M

i=1 nij

servers, where
n

ij

denotes the number of servers of type i present at tier j. Let
n

j

= [n1j , n2j , . . . nMj

] be a vector representing the server con-
figuration of tier j and p = [p1, p2, . . . pM], where p

k

denotes
the cost of a server of type k. Let T be the end-to-end response
time of requests to the multi-tier application and F

T

be its CDF,
i.e. F

T

(t) = P (T t). Then for a given percentile bound ✓,
and response-time threshold T

D

, the cost minimization problem
becomes:

minimize
NX

j=1

MX

i=1

n

ij

p

i

, (1)

subject to the constraint

F

T

(T
D

) � ✓. (2)

It should be noted that F
T

, also depends on n

ij

, since n

ij

spec-
ifies the application configuration that determines the end-to-end
response time of the application. In the next section we present a
model of a multi-tier application which enables us to capture the
effect of n

ij

on F

T

.

3. APPLICATION MODEL
In this section we model the multi-tier application as a network

of queues. Our first model of multi-tier application is a chain of
tiers where each tier is modeled as single M/G/1-PS queue (see
Figure 2). Each tier carries out a specific function, for instance, a
web-application server or a database server etc. In this work we
assume single customer class.

T1 T2 Tn...

�1 �2 �n

µnµ1 µ2

�D =

Figure 2: Multi-tier application model

Let A
i

denote the i

th tier of the application, �
i

the average ar-
rival rate of incoming requests at the i

th tier, and µ

i

the average
service rate 8i = 1 . . . N . We define the total response time of a
request as the time between when it enters the first tier and the time
when it leaves the last tier. Note that different �

i

for each tier han-
dles the case where one tier issues multiple requests to the lower
tier.

Let T
j

be a random variable representing the response time for
tier j, then the end-to-end response time of a request is

T =
NX

j=1

T

j

. (3)

Let f
T

(t) be the probability density function (PDF) of the response
time T and L

T

(s) = L(f
T

(t)) be the Laplace transform of the
PDF of response time T then

L

T

(s) =
NY

j=1

L

T

j

(s), (4)

where L

T

j

(s) is the Laplace transform of the PDF of T

j

. Thus
the PDF of end-to-end response time, f

T

(t), can be computed by
taking the Laplace inverse of (4)

f

T

(t) = L�1

NY

j=1

L

T

j

(s)

!
. (5)

To solve (5) we require the PDF of the random variable T

j

. Un-
fortunately there are no exact formulas for response time distribu-
tions of an M/G/1-PS queue. We, therefore, present an approxima-
tion for the same in the next section.

4. ESTIMATING END-TO-END RESPONSE
TIMES

In this section we describe our approach to estimate the PDF of
end-to-end response time of a chain of M/G/1-PS queues. In order
to do that we estimate the PDF of response time of a single M/G/1-
PS queue and then leverage (5) to compute the end to end response
time.

Section 4.1 describes our method of approximating the response
time distribution of a M/G/1-PS queue. The result depends of the
definition of the PDF of service-time distribution of the queue and
we describe a mechanism to approximate the same for any real-life
system in section 4.2. Section 4.3 provides a closed form equation
of the end-to-end response time of the chain of queues.

4.1 Approximate Response Time Distribution
The exact form of the response time distribution for the M/G/1-

PS is not generally known [23]. Thus we approximate it with the
expected conditional response time distribution as described below.
Let T denote the job response time, and X its service time; then
the expected conditional response time, conditioned on the service
time being x is

⌧ = E[T |X = x] =
x

1� ⇢

, (6)

where ⇢ = �/µ is the average load.
We approximate T by ⌧ . Since ⌧ is a function of X ,

F

⌧

(t) = P [⌧ t] = P [X

1�⇢

 t] = P [X t(1� ⇢)],

F

T

(t) ⇡ F

⌧

(t) = F

X

(t(1� ⇢)), (7)

It has been observed in real-life systems that job service time
distributions exhibit heavy tailed behavior [6]. Heavy tailed dis-
tributions have very high variance; high variance in service time
distribution of jobs makes it a dominant factor in determining the
behavior of response time distribution. Approximation proposed in
(7) captures the variability of service time and will be particularly
useful in such situations. We discuss the impact of variability of
service time in section 7 and demonstrate that our approach shows
significant improvement.

4.2 Approximate Service Time Distribution
In real systems, like computer clusters and web servers, there is a

strong evidence that job service times are highly variable [6]. Some
heavy tailed distributions do not have a closed-form Laplace trans-
forms, e.g., the Pareto distribution, while those possessing con-
venient Laplace transforms might lead to an intractable complex
function after undergoing an N

th order convolution in (4). We,
thus, need a distribution function, which can closely approximate a
service time distribution observed by a real world application and
leads to an easily invertible Laplace transform even after undergo-
ing higher order convolutions. In this section we describe such a
distribution function and also present an algorithm to approximate
the service time distribution from the service-time histogram; ser-
vice time histograms can be easily collected from the server either
through logs or through off-line profiling.

We express the service time distribution as a mixture of K shifted
exponentials, as shown in (8). The motivation behind this is two
fold: i.) the web application workload is a mix of different job
types [12, 5]. Capturing the service time distribution as sum of
shifted exponentials, essentially, means that job-size of each job-
type is exponentially distributed but each job-type has a different
mean job-size. ii.) The formulation leads to a Laplace transform
that is easy to invert.

Formally, we want to fit a mixture of shifted exponentials,

f

X

(x) =
KX

k=1

↵

k

1{x � t

k

}µ
k

e

�µ

k

(x�t

k

)
, x � 0 (8)

to data x1, x2, . . . , xn

, where 1{P} is one if predicate P is true
and zero otherwise. This involves inferring the number of shifted

exponentials, K, the shifts of each exponential, {t
k

}, the mix pro-
portion of the shifted exponential, {↵

k

}, and their average rates
{µ

k

} from the data. Let us begin by assuming that K and t1, . . . , tK

are already known. In other words we want to find the best fit for
{µ

k

} and {↵
k

}; we perform maximum likelihood estimation using
the expectation-maximization algorithm (EM).

4.2.1 EM algorithm for estimating mixture parame-
ters

Suppose we know which shifted exponential distribution each
observation x

i

belongs to, in other words suppose we have y

i

2
{1, . . . ,K} available to us where y

i

2 {1 . . .K} represents the
particular shifted exponential distribution. Then the parameter val-
ues that maximize the log likelihood function can be computed as:

↵

k

=
1
n

nX

i=1

1{y
i

= k}/n, k = 1, . . . ,K (9)

1/µ
k

=

P
n

i=1 1{yi = k}x
iP

n

i=1 1{yi = k} , k = 1, . . . ,K (10)

EM is an iterative algorithm that infers y
i

as needed. Suppose µ

j

k

and ↵

j

k

are the estimates at the end of the j-th iteration. The next it-
eration consists of an expectation step followed by a maximization
step as given below.
Expectation. Let y

i,k

denote the probability (expectation) that sam-
ple x

i

belongs to the k-th shifted exponential. It is given as

y

i,k

= P [Y
i

= k|X = x

i

]

=
↵

j

k

1{x
i

� t

j

k

}µ
k

e

�µ

j

k

(x
i

�t

j

k

)

P
K

l=1(↵
j

l

1{x
i

� t

j

l

}µ
l

e

�µ

j

l

(x
i

�t

j

l

))
(11)

8i = i, . . . , n and k = 1, . . .K. Note that y
i,k

= 0 when x

i

< t

j

k

.
Maximization. Having computed y

i,k

, we now update our estimates
of ↵

k

and µ

k

. This is done by using modified versions of (9) and
(10).

↵

j+1
k

=
1
n

nX

i=1

y

i,k

, k = 1, . . . ,K (12)

1/µj+1
k

=

P
n

i=1 yi,kxiP
n

i=1 yi,k
, k = 1, . . . ,K (13)

This is referred to as the maximization step because the above esti-
mates maximize the likelihood given the current values of {y

i,k

}.
These steps are repeated until the parameters converge; {↵0

k

}
and {µ0

k

} are the initial values, which can be computed as men-
tioned in the section below.

4.2.2 Algorithm for approximating service-time dis-
tribution

We use an iterative approach to determine the best number of
exponentials K, and then determine t

k

, µ

0
k

, and ↵

0
k

, to initialize
the EM algorithm, (11), (12) and (13).

The basic idea underlying the algorithm, as outlined in as men-
tioned in [12], is to iteratively run a k-means clustering algorithm
for every value of k = 1 . . .K

max

and compute the following three
metrics1: coefficient of variation2 of intra-cluster distance (C

intra

),
coefficient of variation of inter-cluster distance (C

inter

), and ratio
of intra-cluster to inter-cluster coefficient of variation (�

cv

). The

1the metrics are computed as mentioned in [12]
2Coefficient of variation or variation coefficient is defined as a ratio
of the standard deviation to the mean, i.e. C

v

= �/µ;

value of �
cv

drops as number of clusters increase and will be mini-
mum (i.e. zero) when number of clusters is equal to the total num-
ber of points. We find that K, where the rate of decrease of �

cv

falls below a threshold (or the slope goes above a negative thresh-
old value).

Having computed K, and the cluster centers e

k

, we compute
initial estimates of the mean service rate {µ0

k

} and mixture fraction
(↵0

k

) as follows:

µ

0
k

=
1

e

k

� t

k

, ↵

0
k

=
number of points in cluster

total number of points
. (14)

We set the shifts to be equidistant from from two neighboring clus-
ter centers, i.e., t

i

= (µ
i�1+µ

i

)/(2µ
i�1µi

), 8i = 2 . . .K. How-
ever, t1 = 0, i.e., the shift for the first exponential is zero (details
of the algorithm can be found in [17].

4.3 Approximate Application Response Time
Distribution

The PDF of the end to end response time of N -tier application is
obtained using (8) and (7) in (5) as

f

⌧

(t) = L�1

0

@
NY

j=1

K

jX

k=1

↵

jk

µ

0
jk

e

�st

0
j

(s+ µ

0
jk

)

1

A
, (15)

where for each tier j = 1, . . . , N , service times are modeled as
mixtures of K

j

shifted exponentials and their density functions are
expressed using (8); we rewrite the result for the j

th tier for the
sake of completeness:

f

X

j

(x) =

K

jX

k=1

↵

jk

1{x � t

jk

}µ
jk

e

�µ

jk

(x�t

jk

)
. (16)

After inverting (15), the final expression of f
⌧

(t) takes the follow-
ing form:

f

⌧

(t) =
K1X

i1=1

. . .

K

NX

i

N

=1

⇣
1{t � t

0}
Q

N

j=1 ↵ji

j

µ

0
ji

j

⇥

P
N

l=1 rle
�µ

0
li

l

(t�t

0)
⌘
, (17)

where µ

0
ji

j

= µ

ji

j

(1 � ⇢

j

), t0 =
P

N

j=1 tj,ij/(1 � ⇢

j

), and r

l

=

1/
⇣Q

N

k 6=l

(µ0
ki

k

� µ

0
li

l

)
⌘

.

Note that ↵
ji

j

and µ

ji

j

are the parameters of the k

th shifted
exponential of the j

th-tier (as shown in (16)); ⇢
j

is the average
utilization of the j

th tier, and r

j

is the j

th residue, where j =
1, . . . , N .

Note that the expression in (15) does not involve higher order
poles3 because none of the rates µ

li

l

is ever equals any of the µ
ji

j

.
This becomes especially helpful in inverting the Laplace transform
as absence of higher order terms in denominator leads to a simple
computation of partial fractions.

The final expression of f
⌧

(t) in (17) is, essentially, a product of
sums of the shifted exponentials, which is easily readable in (15).
This means that the f

⌧

(t) will be expressed, in total, by
Q

N

j=1 Kj

terms; for example let K
j

= a, 8j = 1 . . . N , then f

⌧

(t) will be
expressed as a sum of aN terms. It is easy to see that number of
terms grow exponentially with number of tiers. Fortunately, real
3If for some l, j, µ

li

l

= µ

ji

j

, we slightly perturb the starting µ

0
li

l

for tier-l by adding a small random number and re-run the EM al-
gorithm for that tier-l

life systems do not have more than three or at most four tiers and
thus f

⌧

(t) is easily computable.

5. FINDING NEAR OPTIMAL HOMOGE-
NEOUS CONFIGURATION

In this section we present a solution to the the resource optimiza-
tion problem, as expressed by (1) and (2), but with only one type
of server, M = 1 (homogeneous setting).

We substitute the approximate response time of an M/G/1-PS
queue, i.e. f

⌧

(t) as shown in (17), in (2) to obtain:

F

⌧

(T
D

) =
P

K1
i1=1 . . .

P
K

N

i

N

=1

⇣
1{T

D

� t

0}
Q

N

j=1 ↵ji

j

µ

0
ji

j

P
N

l=1
r

l

(1�e

�µ

0
li

l

(T
D

�t

0)
)

µ

0
li

l

◆
� ✓, (18)

where µ0
jk

j

and r

j

are the same as in (17) while t0 =
P

N

j=1 tj,ij/(1�
⇢

j

).
Thus the problem of minimizing (1) reduces to the problem of

maximizing ⇢

j

(8j = 1, . . . , N) such that F
⌧

(T
D

) � ✓, where
F

⌧

(T
D

) is given by (18). As this is an N -dimensional non-linear
maximization problem, it is not easy to solve. However, the prob-
lem complexity is significantly reduced by assuming same utiliza-
tion at each tier4, i.e.,

⇢1 = ⇢2 = . . . = ⇢

N

= ⇢.

It should be noted that it is desirable to have a balanced utilization
at each tier in real-life systems. In practice, administrators often
use a rule of thumb to bound the max utilization of servers of all
tiers to avoid performance problems and outages [15].

Consequently, (18) reduces to an inequality in a single variable,
namely ⇢.

F

⌧

(T
D

) =
P

K1
i1=1 . . .

P
K

N

i

N

=1

⇣
1{T

D

� t

0}
Q

N

j=1 ↵ji

j

µ

ji

j

P
N

l=1
r

0
l

(1�e

�µ

0
li

l

(T
D

�t

0)
)

µ

li

l

!
� ✓, (19)

where, t0 =
P

N

j=1 tj,ij/(1�⇢), and r

0
l

= 1/
Q

N

k 6=n

(µ
ki

k

�µ

li

l

).
We solve for the maximum value of ⇢, say ⇢

⇤, by numerically solv-
ing (19) as an equality.

5.1 Computing the Application Configuration
In practice, large scale applications have each of their tier repli-

cated for scalability as depicted in Figure 3. The idea is to be able
to handle increasing number of requests while conforming to the
SLA. In an ideal situation an application-tier’s ability to process
the number of requests increases linearly with number of its repli-
cas, which means that if an application or application-tier with a
single replica had a service rate of µ then K replica version of
application-tier will have a request rate of Kµ. We have assumed a
linear scaling in this work but that is not a limitation and any kind
of scaling function can used in the technique to obtain the num-
ber of replicas at each application-tier. We have used replicas and
servers interchangeably because we have assumed dedicated host-
ing model.

We use ⇢

⇤ to compute the number of servers at each tier, i.e.
n

ij

. In the homogenous setup i = 1 and thus we solve for n
j

, j =
1 . . . N . Let �

j

and µ

j

be arrival and service rates respectively, at
4The constraint reduces the solution search space and thus the final
solution is not guaranteed to be an optimal solution as it could result
into a slightly over-provisioned system.

T1 T2 Tn
T1 T2 Tn
T1 T2 Tn
A1 A2 An...

�1 �2 �n

µnµ1 µ2

�D =

Figure 3: Multi-tier application model

tier j then n

j

= d�
j

/(⇣⇢⇤µ
j

)e, where ⇣ is the scale factor, which
can be chosen heuristically and

µ

j

=

K

jX

i=1

↵

ji

(1 + µ

ji

t

ji

)e�µ

ji

t

ji

µ

ji

. (20)

The pseudo code of the algorithm for finding the application con-
figuration in homogenous setup is outlined in [17].

6. COST EFFICIENT HETEROGENOUS CON-
FIGURATION

We extend the solution approach described in Section 5 to be able
to generate a cost efficient configuration in a heterogenous setting.

The basic idea underlying our approach is to greedily search for
a low cost configuration which has a high utilization. At a high
level the algorithm is iterative involving the following three steps
at each iteration: 1.) creating a single hybrid-server from a given
hybrid-configuration for each tier, 2.) solve the homogeneous con-
figuration problem for the hybrid-server, 3.) translate the solution
for hybrid-server into a heterogenous configuration, and the itera-
tions are used to search for new hybird-configuration with lower
cost and higher utilization. Figure 4 shows the block diagrammatic
representation of the cost effective heterogeneous configuration al-
gorithm.

Model

Hybrid
Config

Model

Cost
Comparator

�n

Heterogeneous
Config

Hybrid
Server Hetero

Config
Generator

�ji

ILP

1

2
3

4

Accept

NO

YES

Figure 4: Functional block diagram of heterogeneous configuration
algorithm
Hybrid server: Inorder to reuse our methodology for finding the
near optimal number of servers in homogeneous setting, it is imper-
ative that we approximate each hybrid configuration at each tier by
a single server; we call it a hybrid-server. We construct the service
time distribution of the hybid-server for each tier as a proportional
mixture of the service time distributions of the servers involved in
the heterogeneous configuration. Let n = {n

i

} denote the hybrid-
configuration where n

i

, i = 1, . . . ,M , is the number of servers of
type i. Then the hybrid-server’s service-time distribution function
for tier-j is expressed as

f

0
j

=
MX

m=1

�

jm

f

jm

, (21)

where f

jm

is the service-time probability density function (PDF)
of the m

th-server-type at jth-tier and f

0
j

is the PDF of the hybrid-
server for tier-j; �

jm

is the mixing proportion of the component
server m for tier-j and is computed using the formula

�

jm

=
n

m

µ

jmP
M

j=1 nm

µ

jm

. (22)

We explain our procedure of creating a hybrid-server with the
following example: suppose we have two servers, say s1 and s2,
with corresponding average service rates at tier-j as µ

j1 = 50 and
µ

j2 = 100, respectively. We construct a single hybrid-server, say
s

h

, by proportionally mixing the component shifted-exponentials
of each s1 and s2. Let the configuration be one-server of each
type, i.e. n = [1, 1]; then the mixing proportions using (22) is
�

j1 = 1/3 and �

j2 = 2/3, and the final service-time distribution
of the hybrid-server for the j

th tier is f 0
j

=
⇣

f

j1

3 +
2f

j2

3

⌘
.

Heterogeneous configuration: Once we obtain the optimal con-
figuration for a given hybrid-server, and given workload and per-
centile, we translate this solution configuration to the correspond-
ing heterogenous server configuration; this is done by reversing
the steps of creating the hybrid-server. Let us assume that the
servers are indexed in increasing order of their average service rate;
i.e. µ1 µ2 . . . µ

M

; let n0
j

be the number of hybrid-
servers at tier-j, then the number of servers of type-i for tier-j is
n

ji

= �

ji

n

0
j

/(µ
i

/µ1).
Searching for a new hybrid-configuration: The cost of the new

heterogenous configuration, computed in the step above, is evalu-
ated using the prices of the servers. If the cost is less than that of
the current solution configuration, then this new configuration is ac-
cepted else it is dropped. The new configuration is again fed to the
model, and its utilization ⇢

⇤ is evaluated for the desired arrival rate
�

D

. We then try to search for a new hybrid-configuration which
has higher utilization but lower cost then the current-configuration;
the new utilization ⇢

n

= (⇢
max

+⇢

l

)/2, where ⇢
max

is maximum
utilization of the hybrid-server and ⇢

l

= ⇢

⇤. The new hybrid con-
figuration is searched for using the following ILP solved for each
tier:

minimize
MX

i=1

n

ji

p

i

, (23)

subject to the constraint

MX

i=1

n

ji

µ

ji

> �

D

/⇢

n

. (24)

Note that if the currently suggested configuration is not accepted
we continue to search for higher ⇢

⇤. The algorithm stops when
⇢

n

� ⇢

max

is less than a pre-decided threshold; the pseudo code is
outlined in [17].

7. EXPERIMENTAL EVALUATION
In this section we demonstrate the efficacy of our approach. We

have implemented our analytical method using MATLAB R�. For
solving the ILP, we have used lpsolve version 5.5.2.0 and have used
mxlpsolve MATLAB Interface version 5.5.0.6 for calling lpsolve
from within the MATLAB environment.

We begin by showing the effectiveness of the service-time ap-
proximation algorithm on lognormal5 distribution with different
coefficient of variations (C

v

). Thereafter we evaluate the good-
ness of the approximation of the response-time distribution for a
1-tier and a 2-tier system by comparing the response times com-
puted using (17) with those obtained using a multi-tier application-
simulator described below. Finally we do a case-study of provi-
sioning of a two-tier application for a SLA specified as a threshold
on the 99th percentile of response time. We evaluate the effective-
ness of our approach by computing the 99 percentile of response
5PDF of a log normal distribution is expressed as f(x, µ,�) =

1
x�

p
2⇡

e

�((ln(x)�µ)/(
p
2�))2 , where mean is eµ+�

2
/2

times obtained using a two-tier application-simulator configured
according to the capacity decisions provided by our approach; note
that the simulator depicts an ideal version of a multi-tier applica-
tion which we analytically model as a chain of M/G/1-PS queues.
We also evaluate the effectiveness of our approach, using a met-
ric called provisioning error (described in Section 7.4), by com-
paring against the two other baseline approaches, which model the
multi-tier application as an open tandem network of M/M/K-FCFS
queues.

7.1 Multi-tier Application Simulator
We implemented a simulator for the PS queue in MATLAB R�. It

takes as input an array of request arrival instants and size of each
request (in terms of service time) and outputs the request departure
instants. We used this queue simulator to simulate a multi-tiered
application by feeding the output of first queue to the input of the
next queue.

To simulate an application with replicated tiers, we have imple-
mented a loadbalancer, as shown in Figure 1, which takes the in-
coming requests from the previous tier and distributes it to the next
tier according to a specific load distribution policy. It also does
the necessary book-keeping to track each request across various
tiers for computing the end-to-end response time. We have imple-
mented a random loadbalancing policy, i.e. loadbalancer distributes
the requests at random but ensures that each server gets the same
load, i.e. ⇢⇤ as computed in section 5. We have assumed an ideal
loadbalancer, which means that it introduces no queueing and pro-
cessing delay. Note that this is not a limitation of our approach,
as our approach can easily account for loadbalancer by considering
it as another tier and its capacity can also be computed, which is
often needed in a real setup.

7.2 Service Time Approximation
We have implemented the EM algorithm (in MATLAB) for find-

ing the parameters of mixture of shifted exponentials, namely ↵

i

, µ

i

in (8), using the E and M steps mentioned in Section 4.2.1. The
shifts and initial values of parameters are estimated using the algo-
rithm outlined in Section 4.2.2. We use MATLAB’s implementa-
tion of KMeans and have kept K

max

= 20 in all our experiments,
which means that we search for the number of shifted exponents
from 3 till 20. We evaluate the accuracy of CDF approximation
using relative percentage error defined as ✏(x) = (F

aprx

(x) �
F

sim

(x))/(F
sim

(x)), where F

aprx

(x) and F

sim

(x) are the val-
ues of approximate and actual CDFs, respectively, evaluated at x.

To evaluate the effectiveness of our approach in approximat-
ing highly variable distribution, we approximated the PDF a log-
normal distribution with same mean rate of 20 but with a coefficient
of variation of 100 (C

v

= 100); it was expressed using 10 shifted
exponentials. Figure 5a shows the CCDF of the actual distribution
in red while our approximated distribution is shown in blue.

The CCDF in Figure 5 highlight the approximation of the tail
of the distribution by plotting the 1 � F (x) in a log log scale. We
observed that the approximation shows a relatively high error at low
percentiles (as high as 21%) but displays low errors at the tail, with
errors less than 1% at 95 percentile. This is because, that at low
percentiles the number of exponentials available to approximate the
distribution are less but as we approach the tail of the distribution a
large number of exponentials contribute towards the approximation
of the PDF and thus we observe much greater accuracy.

Another aspect of our algorithm is K, i.e. the number of ex-
ponentials required to approximate a distribution. We conducted a
large number of experiments on various data sets with C

v

ranging
from 1 to 100. In our experiments we found that K its average

values starts at 14 for C
v

= 1 and slightly decreases to an average
value of 10 for C

v

= 100. It should be noted that we are testing
our approximation scheme for a smooth distribution function, but
the scheme has been designed keeping a web application in vision,
which has only a limited number of request types at each tier and
our approach is tuned to estimate this number as K.

(a) Lognormal with C

v

= 100

Figure 5: Figure shows the log log plot of 20,000 data points sam-
pled from lognormal distribution with C

v

= 100; the simulated
CDF is shown in red and approximate in blue.

In summary, the service time approximation approach offers very
low errors, i.e. less than 1%, in estimating the tail of a distribution.

7.3 Response Time Approximation
In this section we describe the effectiveness of our approach of

approximating the end to end response time of an application mod-
eled as a chain of M/G/1-PS queues.

We evaluated the goodness of the response-time approximation
we compare the response time computed by our approach with that
obtained from the simulator described above. We show the results
for for a 2-tier setup by plotting the response time CDFs for our ap-
proximation and simulation. We have sampled service times from
a lognormal distribution with a C

v

= 10.
We generate the workload which has exponential inter-arrival

times with � = 25 and service times sampled from a lognormal
distribution with µ = 50 at each tier. The simulation results are
considered exact since the simulation model is an exact representa-
tion of the queueing network under study.

(a) CDF RT of 2-tier app

Figure 6: Figure shows the CDF plot of actual response time dis-
tribution in red and approximated using our approach in blue for a
heavy-tailed service-time distribution with µ = 50 and c

v

= 10

The approximated response time, using our approach, exhibits
high accuracy, as can be seen from Figure 6. The jagged tail of
simulation result is because of less number of data points.

7.4 Provisioning in a Homogenous Setup
In this section we evaluate the effectiveness of our approach, out-

lined in section-5, in finding the homogenous configuration for a
two-tier application, where each tier is replicated using same type
of servers.

For a given SLA, expressed as a cutoff threshold T

D

on the 99th

percentile of end to en response time, we fix a service time distri-
bution and for different arrival rates compute the number of servers
required at each tier of the application. We, then, run the replicated
application simulator with these number of servers and obtain the
end to end response time distribution for the provisioned applica-
tion. To evaluate the goodness of provisioning decisions made, we
define a metric called provisioning error, which essentially calcu-
lates the error in the 99th percentile response time observed from
the simulator, i.e. T

scheme

, and T

D

. Formally, ✏
scheme

= (T
scheme

�
T

D

) ⇤ 100/T
D

. To do a comparative evaluation of our technique,
we have implemented two baseline provisioning algorithms based
on M/M/1-FCFS queues, namely per-tier-exp and end-to-end-exp.
The schemes are described below:

per-tier-exp (pte) : In this scheme we assume the knowledge of
average proportion of time spent by a request at each tier. In other
words, let T be the total time spent by a request in the system and
T

i

be the time spent at tier i; then, pte assumes the knowledge of
E[�

i

], where �

i

= T

i

/T . We model each tier as an M/M/K-FCFS
queue and again approximate multiple servers by a single server,
thus each tier can be approximated by an M/M/1-FCFS queue. For
this system the response time is exponentially distributed with pa-
rameter µ(1� ⇢). Finally, as in Section 5, for each tier j, we solve
for ⇢⇤ with T

D

= �

j

T and compute n

j

= d�
j

/(⇢⇤µ
j

)e
end-to-end-exp (ete): We developed this scheme completely along

the lines of our scheme, however assuming an M/M/K-FCFS queue
based model instead of an M/G/K-PS queue based model. The cor-
responding version of (19) is:

F

T

(t0) =
NX

j=1

r

j

(1� e

�µ

0
j

t

0
) � ✓, (25)

where t

0 = T

D

, r
j

= 1/
Q

N

k 6=j

(µ0
k

� µ

0
j

) and µ

0
j

= µ

j

(1 � ⇢).
The provisioning algorithm for homogenous setting is outlined in
[17].

We ran the experiment with T

D

= 0.4s, µ = 50 and C

v

= 3.
We increased the workload from � = 40 rps to 240 rps and for
each � we computed application capacity using each of the three
algorithms. For pte we used �1 = �2 = 0.5. The results are shown
in Table 1.

� % ✏
our

% ✏
ete

% ✏
pte

Config
our

Config
ete

Config
pte

40 -3.63 16 15.2 [3;3] [2;2] [2;2]
80 -6.17 48.1 27.9 [5;5] [3;3] [4;3]
120 -0.235 94.3 38.5 [8;7] [4;4] [5;5]
160 -2.25 91.6 49.9 [9;9] [5;5] [6;6]
200 -2.17 140 40.7 [12;12] [6;6] [8;8]
240 2.57 91.3 53.7 [15;15] [8;8] [9;9]

Table 1: Homogeneous configuration suggested by the three
schemes and their provisioning errors. Note that, unlike the pos-
itive error, negative value of ✏ is not an SLA violation.

A Positive value of ✏ means that some or all of the tiers of the
application were provisioned with fewer servers than required (we
call it under-provisioning); however, a negative value means the
opposite (we call it over-provisioning). Thus a positive ✏ is an
SLA violation, while a negative ✏ is not. However, a negative ✏

does suggests a possibility of finding a more cost efficient solution.

Note that our scheme reports a worst case provisioning error of
2.57% as opposed to the worst case under-provisioning of 140%
by ete and 53.7% by pte.

In summary: for a single server type scenario (i.e. homogeneous
setup), application provisioned by our scheme reports worst case
provisioning error of 2.57%, while the baseline approaches shows
as high as 140% provisioning error

7.5 Cost Efficient Server Configuration in a
Multiple Server-type Environment

Here we demonstrate the effectiveness of our heterogenous pro-
visioning algorithm in finding a cost-efficient solution when multi-
ple types of servers are available. We have kept the time threshold
T

D

= 0.4-sec and varied the desired load from � = 40-rps to
� = 240-rps. We have considered four types of servers, namely
small (S), medium (M), large (L), and extra-large (XL), with their
corresponding average service rates being 50, 100, 150 and 200
rps, respectively. The coefficient of variation of service times for
requests at each of the tiers is C

v

= 9.

ServerType Small Medium Large XLarge
Price 0.02 0.04 0.06 0.08

(a) server prices

� % ✏
homo

% ✏
hetro

Config
homo

Config
hetro

%Saving
40 1.63 -40.9 [9;9] [0 1 0 0;0 1 0 0] 77.78
80 1.01 -35.7 [17;15] [0 0 0 1;0 0 1 0] 78.13
120 1.16 -22.9 [26;23] [0 0 2 0;0 1 1 0] 77.55
160 1.06 -23.5 [34;30] [0 0 1 1;0 0 2 0] 79.69
200 1.09 -21.5 [43;47] [0 0 3 0;0 1 2 0] 81.11
240 1.04 -9.82 [51;45] [0 0 2 1;0 0 3 0] 80.21

(b) 99-percentile provisioning and cost benefit

Table 2: Heterogeneous configuration suggested by the three
schemes and provisioning error of each scheme. Note that a nega-
tive ✏ only means over-provisioning and is not an SLA violation

We assume linear pricing as depicted in Table 2a. The results of
provisioning algorithms in homogenous and heterogenous settings
are shown in Table 2b. We call the computed capacity configura-
tions in the homogenous and heterogeneous settings as Config

homo

and Config

hetro

, respectively. Only the “small” server-types were
used in Config

homo

, while all the available server types we used
to obtain Config

hetro

. As in previous evaluations, we again test
the computed configuration using the multi-tier application simula-
tor.

Each configuration is N ⇥M dimensional matrix depicting the
number of servers of each type; each row j depicts the configura-
tion of the j

th tier, while each column tells the number of servers
for each type: for e.g. Config

homo

= [9; 9] means 9-small servers
at both the tiers, while Config

hetro

= [0 1 0 0;0 1 0 0] means 0-
small, 1-Medium, 0-large and 0-x-large server at both the tiers. The
“%Cost Saving” is computed as a percentage of cost of homoge-
nous configuration, i.e. Cost(Config

homo

)�Cost(Config

hetro

)
Cost(Config

homo

) .
We make following important observations: 1) the percentage

provisioning error for the heterogeneous scheme is as low as �41%,
which means that not-only is this configuration cost-efficient but it
also provides low average response-times (because negative provi-
sioning error means the system is probably over-provisioned). The
small positive error in the case of homogeneous configurations is
because of approximation used in section 5.1 and can be easily cor-
rected by setting ⇣ < 1, i.e. a sublinear scaling. 2) it is better to
use larger servers that fit the same cost and average service-rate; in

other words its better to use a small number of large servers instead
of a large number of small servers.

In summary, it is better to use a small number of large servers
instead of a large number of small servers for high percentile provi-
sioning ii) Cost efficient heterogenous algorithm offers server con-
figurations with cost savings as high as 81% and also offer a con-
figurations with lower average response-times.

8. EVALUATION ON PRIVATE CLOUD
In this section we describe an experimental investigation for pro-

visioning for a percentile SLA in a private cloud setup. Our goal is
to evaluate our provisioning algorithm under situations which are
typical to multi-tier web applications deployed in a datacenter or
private/public cloud environment.

8.1 Private Cloud Setup
In this section we provide the necessary details of our experi-

mental testbed, i.e private cloud, and necessary steps before we can
perform server provisioning.

Web Application: We used TPC-W for our experiments. TPC-
W is a multi-tier transactional web benchmark that represents an
e-commerce web application – an online bookstore – comprising
of a web server tier and a database tier. It simulates the activities
of a retail store website using 14 different type of pages for web
interactions; each of these pages are created dynamically by the
web server using differing amounts of data stored in the database
tables. TPC-W benchmark defines three different mixes of web in-
teractions, namely browsing, shopping and ordering, each varying
the ratio of inventory browsing related web pages and ordering re-
lated web pages. It applies the workload mixes via remote browser
emulator (RBE).

We used the Java implementation of TPC-W [3]. The web appli-
cation has following two-tiers: i.) Web server tier based on Apache
Tomcat servlet container 5.5.26 ii.) database tier based on MySQL
5.0.77. We deployed each of the tiers on separate dedicated servers.
We performed round robin load balancing between replicas of web
server tier using a dedicated loadbalancer server on HAProxy [9]
on a server as a dedicated load balancer. We used round robin load
balancing at the database tier by setting up a master-slave replica-
tion configuration of MySQL servers; we instrumented TPC-W to
use the replication aware MySQL JDBC connector version 3.1.12.

Private Cloud: We constructed private cloud using OpenNeb-
ula [14] on Xen/linux-based cluster consisting of two types of servers:
8-core 2GHz AMD Opteron 2350 servers and 4-core 2.4 GHz Intel
Xeon X3220 systems. All machines run Xen 3.3 and Linux 2.6.18
(64bit kernel). Our platform is assumed to support small and large
servers, comprising 1 and 4 cores, respectively. These are con-
structed by deploying a Xen VM on the above mentioned servers
and dedicating the corresponding number of cores to the VM (by
pinning the VM’s VCPUs to the cores)

Profiling servers for web server tier: For profiling the servers
for the first tier, i.e. web-server tier, we instrumented Tomcat such
that it reports per-request service times, along with the other default
stats. We profile each server type (e.g. small and large) by provi-
sioning an instance of that server-type and deploying the first tier
of TPC-W on it. We then connect it to an already installed TPC-W
database installed on a large server type instance. We then issue
the browsing workload using the TPC-W clients (i.e. RBEs) for a
duration of 35 mins and collect the service times from the tomcat
server logs.

Profiling servers for database server tier: Profiling the servers
for the second tier of TPC-W (i.e. the database tier) was in two
steps: firstly, we collect the 35-min query logs from MySQL server,

executing the TPC-W workload; then for each server type we slowly
replay each of the SQL query and record their execution time as
service times.

8.2 Percentile Based Capacity Provisioning on
Private Cloud

Given �

D

and T

D

, we outline the high level steps required to
compute application capacities for both homogenous and heteroge-
nous setup. In both the cases we assume to require an SLA where
99th percentile of the end-to-end response time must be less than
0.5 seconds. We follow the following sequence of steps

Step 1: Estimating service time distributions: We use the
service times collected during the offline profiling step and use the
service time approximation algorithm – as outlined in [17].

Step 2: Estimating capacity in a homogenous/Heterogenous
setup: We used the single core virtual machines (i.e. small) in
our homogenous setup. Load across multiple web-server replicas
was distributed using a HAProxy based load-balancer, however, in
the case of database tier, we used the master-slave setup. In this
setup all the wites are sent to the master, whereas the reads are
load-balanced.

We test our approach for both homogenous and heterogeneous
environment. For homogenous setup, we choose small server type
for this case and assume T

D

= 0.5sec. To test the provisioning
setup for large change in workload, we varied �

D

from 15 rps to
90 rps. For each �

D

, using our approach, we computed server ca-
pacities for each of the tier of TPC-W. We ran the setup for 35-mins
and in the end we collected the end-to-end response times from the
first tier (i.e. web-server tier). We ran our heterogeneous provision-
ing algorithm on the same setup and found that it gave a different
configuration, only for �

D

= 90. Table 3a provides the details
of the final configuration and also the 99th-percentile of the end-
to-end response time details of the experiment. We compute the
percentage provisioning error, ✏

our

, as mentioned in 7.4.

�
D

99th % % ✏
our

Config
our

15 0.361 -27.8 [1;1]
30 0.459 -8.2 [1;2]
45 0.488 -2.4 [1;3]
90 0.512 2.4 [2;7]
90 0.46 -8.0 [2,0;2,1]

(a) Server Provisioning

Server Type small large
Prices ($) 0.085 0.34

(b) Server prices

Table 3: Homogenous and heterogeneous provisioning decisions.
Note that a -ve ✏

our

only means that the system is over-provisioned
and thus SLA will not be violated

We found that server provisioning by our approach keeps pro-
visioning error below 3%. The positive 2.4% error at � = 90 for
homogenous setup could be because database tier does not scale
linearly as the master database server gets overloaded by replicat-
ing the updates to each of the 6 slaves. We see that the server
provisioning for the heterogenous environment, is not only 11.11%
cheaper than the corresponding homogenous server setup but also
has a lower 99th response time.

In summary, our algorithm effectively accurately captures the
service time distributions and provisions the two-tier implementa-
tion of TPC-W with the worst provisioning error of 3%. Also, we,
again, find that its better to use bigger server for high percentile
provisioning.

9. RELATED WORK
A number of efforts have modeled internet applications. Mod-

eling single tier has gotten much of the attention. Doyle et al.

propose a queuing model for static content [8], Menasce uses a
queuing model to model the web servers [11], while Abdelzaher et
al. in [1] use classical feedback control theory to model the bot-
tleneck tier for providing performance guarantees for web applica-
tions serving static content, while Chen et al. in [4] use a machine
learning technique for provisioning the database tier.

Ranjan et al. [16] use a G/G/N queuing model to compute the
number of servers necessary to maintain a target utilization level.
This strategy is shown to be effective for sudden increases in re-
quest arrival rate. Other efforts have employed M/G/1 queuing
models in conjunction with offline profiling to model service delay
and predict performance [18] but they do not provision for response
time percentile and neither do they address the problem in heteroge-
nous environment. The approach in [21] formulates the application
tier server provisioning as a profit maximization problem and mod-
els application servers as M/G/1/PS queuing systems; the approach
only considers the impact of different number of end-clients (and
thus, request volumes)

Benanni et al. in [2] employ approximate mean-value analy-
sis (MVA) to develop an online provisioning technique for multi-
ple request classes. Urgaonkar et al. in [19] develop a queuing
network model for multi-tier Internet applications having request
classes with differentiated QoS. Zhang et. al. [24] use a multi-class
model to capture the dynamics of workload by employing a fixed
set of 14 predefined transactions-types and leverage it to predict the
performance of a multi-tier system.

There has been some work for finding the pdf of response time,
for e.g. Muppula et al. in [13] derive the response time for a closed
queuing network using pteri-nets and sojourn time distribution was
calculated for large Markov chains in [10]. The approach leads
to an inversion of a complex Laplace transform. Xiong et al. in
[22] perform the provisioning of a multi-station setup for a given
percentile bound. The model the system as a open tandem network
of M/M/1-FCFS queues and compute the response time PDF by
numerical inversion of its Laplace transform; they assume that each
station is serviced by same type of servers.

In contrast to these efforts, our work automatically characterizes
service time distribution as a mixture of shifted exponentials and
leverages this to estimate the response time distribution. The es-
timated distribution is used to estimate the capacity of the system
which assists in finding a near optimal solution to the provision-
ing problem in homogeneous environment. Further, while most
of these efforts have focused on a single server type environment
(i.e. homogeneous), we extend our approach for a cloud specific
heterogenous environment as well. We developed a full prototype
implementation and our experiments were conducted on an actual
private cloud.

10. CONCLUSION
Multi-tier architecture is a preferred architecture for enterprise

web applications and high response time percentile provisioning
is the more meaningful than mean response time based ones. We
present an approach of optimizing server allocation for a multi-
tier application to achieve a percentile bound on the end to end
response time. We model the application as an open tandem net-
work of queues and model each tier as an M/G/1-PS queue. We
have developed an approximate model to compute the response
time distribution and have also developed a technique to estimate
the service time distribution from the service time histograms. We
have developed an algorithm to compute per tier server allocation
of the application and in a homogenous setup. We also have ex-
tended the homogenous setup solution to solve the server alloca-
tion problem in a heterogenous setup. We have tested the efficacy

of our approach using a multi-tier application simulator and also
compared it against two other baseline approaches developed us-
ing models based on M/M/K-FCFS queue. We have demonstrated
superior performance of our approach as compared to the baseline
approaches. Our experiments indicated that its better to use small
number of large servers than large number of small servers. Fi-
nally we tested our approach using the multi-tier implementation
of TPC-W benchmark over private cloud created using Xen over
Linux.

11. ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers. This research

was supported in part by NSF grants CNS-1117221, CNS-0916972,
CNS-0855128 and OCI-1032765. Upendra Sharma was supported
by an IBM PhD fellowship.

12. REFERENCES
[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance

Guarantees for Web Server End-Systems: A
Control-Theoretical Approach. IEEE Transactions on
Parallel and Distributed Systems, 13(1):80–96, 2002.

[2] M. N. Bennani and D. A. Menasce. Resource allocation for
autonomic data centers using analytic performance models.
In ICAC ’05, pages 229–240, Washington, DC, USA, 2005.
IEEE Computer Society.

[3] H. W. Cain and R. Rajwar. An architectural evaluation of
Java TPC-W. In In Proceedings of the Seventh International
Symposium on High-Performance Computer Architecture,
pages 229–240, 2001.

[4] J. Chen, G. Soundararajan, and C. Amza. Autonomic
Provisioning of Backend Databases in Dynamic Content
Web Servers. In ICAC, pages 231–242, June 2006.

[5] L. Cherkasova and P. Phaal. Session based admission control:
a mechanism for peak load management of commercial web
sites. IEEE Transactions on Computers, 51(6), June 2002.

[6] M. Crovella. Performance evaluation with heavy tailed
distributions. In Proceedings of the 11th International
Conference on Computer Performance Evaluation:
Modelling Techniques and Tools, TOOLS ’00, pages 1–9,
London, UK, 2000. Springer-Verlag.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev., 41:205–220,
October 2007.

[8] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-based resource provisioning in a web service utility.
In Proceedings of Fourth USENIX Symposium on Internet
Technologies and Systems (USITS ’ 03), Seattle, WA, March
2003.

[9] Haproxy the reliable, high performance tcp/http load
balancer. http://haproxy.1wt.eu/.

[10] P. G. Harrison and W. J. Knottenbelt. Passage time
distributions in large markov chains. In SIGMETRICS ’02:
Proceedings of the 2002 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems, pages 77–85, New York, NY, USA, 2002. ACM.

[11] D. Menasce. Web Server Software Architectures. In IEEE
Internet Computing, volume 7, November/December 2003.

[12] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A.
Mendes. A methodology for workload characterization of

e-commerce sites. In EC ’99: Proceedings of the 1st ACM
conference on Electronic commerce, pages 119–128, New
York, NY, USA, 1999. ACM.

[13] J. K. Muppala, K. S. Trivedi, V. Mainkar, and V. G. Kulkarni.
Numerical computation of response time distributions using
stochastic reward nets. In Annals of Operations Research,
pages 155–184, 1994.

[14] Opennebula. http://www.opennebula.org.
[15] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder,

A. Tantawi, and A. Youssef. Managing the response time for
multi-tiered web applications. In IBM, Technical Report,
January 2005.

[16] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. Qos-driven
server migration for internet data centers. In Proceedings of
the Tenth International Workshop on Quality of Service
(IWQoS 2002), May 2002.

[17] U. Sharma, P. Shenoy, and D. F. Towsley. Provisioning
Multi-tier Cloud Applications Using Statistical Bounds on
Sojourn Time. Technical Report UM-CS-2012-009, Dept. of
Computer Science, Univ. of Massachusetts, March 2012.

[18] C. Stewart and K. Shen. Performance Modeling and System
Management for Multi-component Online Services. In Proc.
USENIX Symp. on Networked Systems Design and
Implementation (NSDI), May 2005.

[19] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An Analytical Model for Multi-tier Internet
Services and Its Applications. In Proc. of the ACM
SIGMETRICS Conf., Banff, Canada, June 2005.

[20] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood.
Agile dynamic provisioning of multi-tier internet
applications. ACM Transactions on Adaptive and
Autonomous Systems (TAAS), Vol. 3, No. 1, pages 1–39,
March 2008.

[21] D. Villela, P. Pradhan, and D. Rubenstein. Provisioning
Servers in the Application Tier for E-commerce Systems. In
Proceedings of the 12th IWQoS, June 2004.

[22] K. Xiong and H. Perros. Qrp01-6: Resource optimization
subject to a percentile response time sla for enterprise
computing. In Global Telecommunications Conference,
2006. GLOBECOM ’06. IEEE, pages 1 –6, 27 2006-dec. 1
2006.

[23] S. F. Yashkov. Processor-sharing queues: some progress in
analysis. Queueing Syst. Theory Appl., 2(1):1–17, 1987.

[24] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni. A
regression-based analytic model for capacity planning of
multi-tier applications. Cluster Computing, 11(3):197–211,
2008.

