
A Flexible Elastic Control Plane for Private Clouds

Upendra Sharma
IBM Watson

usharma@us.ibm.com

Prashant Shenoy
Dept. of Computer Science

Amherst MA 01003
shenoy@cs.umass.edu

Sambit Sahu
IBM Watson

sambits@us.ibm.com

ABSTRACT
While public cloud computing platforms have become popular in
recent years, private clouds—operated by enterprises for their inter-
nal use—have also begun gaining traction. The configuration and
continuous tuning of a private cloud to meet user demands is a com-
plex task. While private cloud management frameworks provide
a number of flexible configuration options for this purpose, they
leave it to the administrator to determine how to best configure and
tune the cloud platform for local needs. In this paper, we argue for
an adaptive control plane for private clouds that simplifies the tasks
of configuring and operating a private cloud such that each con-
trol plane service is adaptive to the workload seen due to end-user
requests. We present a logistic regression model to automate the
provisioning and dynamic reconfiguration of control plane services
in a private cloud. We implement our approach for two control
plane services—monitoring and messaging—for OpenStack-based
private clouds. Our experimental results on a laboratory private
cloud testbed and using public cloud workloads demonstrates the
ability of our approach to provision and adapt such services from
very small to very large private cloud configurations.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance

Keywords
Cloud computing, dynamic provisioning, logistic regression

1. INTRODUCTION
Cloud computing has become popular in recent years for run-

ning Internet and enterprise applications due to its pay-as-you-go
pricing model and ability to elastically allocate resources. While
public cloud platforms have attracted much attention, the design of
private clouds—cloud platforms that are operated by enterprises for
their own internal use—have begin gaining traction. Today a num-
ber of private cloud management frameworks are available, ranging
from commercial offerings from IBM and VMWare to open-source

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CAC’13, August 5–9, 2013, Miami, FL, USA.
Copyright 2013 ACM 978-1-4503-2172-3/13/08 ...$15.00.

frameworks such as OpenStack, CloudStack and OpenNebula. De-
spite the availability of these platforms, the task of configuring,
managing and operating a private cloud remains challenging. Most
private cloud management frameworks expose a range of flexible
configuration options and settings to support various deployment
architectures. However, they leave it to the system administrator
to determine a deployment architecture and configuration settings
that are best suited for local needs. In particular, most private cloud
management frameworks implement a control plane for managing
various cloud services such as monitoring, messaging, allocation
of compute and storage resources and VM image management (see
Fig. 1). The task of configuring each service, allocating sufficient
resources to service end-user requests, and continuously tuning the
service to adjust to changing needs is left to the administrator.

IT Infrastructure

Server
Server

Server
Server

Server

Storage
Storage

Storage
Storage

Network

IP
Addresses

Control Plane Services

Storage
Mgmt

Network
Mgmt

Hypervisor
MgmtMonitoringMessaging

Figure 1: Architecture of private cloud and its control plane.

In this paper, we argue for an adaptive control plane for private
clouds that simplifies the tasks of configuring and operating a pri-
vate cloud. Such an adaptive control plane must simplify the initial
setup and configuration of each control plane service and ensure
that each service is responsive to the workload seen due to end-
user requests. Further, as the demands imposed by the private cloud
vary over time, the control plane must adapt the service to changing
workloads.

Cloud platforms have long supported the notion of elasticity for
end-user applications. Elasticity implies that the resources (such as
the number of VMs or servers) allocated to the application is au-
tomatically adjusted to match the variations in the incoming work-
load. In this work, we propose that the control plane of the cloud
must itself be elastic and adjust the resources allocated to various
control plane services automatically to changing needs—just as it
does for end-user applications.

Thus our paper focuses on the design of a flexible, adaptive con-
trol plane that automates the initial configuration of each control
plane service to match the needs of a private cloud of a desired
size and elastically provisions resources for these services as their

workload demands change over time. In designing our elastic con-
trol plane, we make the following contributions.

First, we model the interactions of each control plane service
with end-user VMs and between themselves and develop a logis-
tic regression based model to estimate capacity needed to sustain a
certain workload with a certain SLO. A key benefit of using logistic
regression over other techniques is that it does not require a large
training set to model the behavior of the service. Our adaptive con-
trol plane then uses this model to determine how many nodes (or
VMs) are needed to service the expected workload. In the event
the control plane service needs to be replicated, it also determines
whether these replicas should be federated or clustered to meet the
desired SLO in the most efficient manner. Such approach greatly
simplifies the initial setup of each control plane service by the ad-
ministrator.

Second, since the workload seen by a control plane service may
vary or grow over time, our control plane implements elasticity of
each service. We present reactive and proactive elasticity mecha-
nisms that can dynamically provision additional capacity for each
service on-the-fly. Our proactive approach combines our logistic
regression model with workload forecasting techniques to proac-
tively allocate resources to each elastic control plane service.

Prototype implementation and experimental validation: Third,
we implement a prototype of our flexible elastic control plane for an
OpenStack-based private cloud and demonstrate its efficacy for two
essential control plane services: monitoring and messaging. Our
experimental results on a laboratory private cloud testbed and using
public cloud workloads demonstrates the ability of our approach to
provision and adapt these services for private clouds ranging from
very small to very large configurations. We also demonstrate the
ability of our dynamic reconfiguration approach to elastically pro-
vision capacity to these services on-the-fly.

2. BACKGROUND
Private Clouds: A private cloud consists of infrastructure re-

sources like compute, storage and network and allows its users
to create virtual resources on-demand. Private clouds implement
similar functionality as public clouds like Amazon EC2, except
that use they infrastructure owned by an enterprise to implement
cloud functionality for internal use. A number of open source
cloud management platforms are available to establish and operate
a private cloud, namely OpenStack [11], CloudStack, Eucalyptus,
OpenNebula etc. These assume a cluster of linux machines and
provide a control plane to manage the cloud infrastructure and per-
form management tasks, like hypervisor management, user man-
agement, messaging, monitoring, image management, etc. as de-
picted in Figure 1. Each such management task is performed by
a control plane service that runs in one or more virtual machines.
In this work we have chosen OpenStack as our cloud management
system of study; this is primarily because it offers a rich set of con-
trol plane services and has become a popular choice amongst the
open source community [8].

Problem Formulation: Consider an organization that wishes to
deploy a private cloud on a cluster of size N . Most private cloud
management frameworks are designed to work with as few as tens
of hosts/machines to very large clusters consisting of thousand ma-
chines, but for successful and efficient operation, the cloud man-
agement system has to be configured according to the size of the
cluster. To do so, the administrator must configure each control
plane service and provision sufficient capacity so that it can service
the control plane workload generated by the management tasks in
a cluster of that size.

In the simplest case, each control plane service will run on a

single virtualized node. A single node per service setup is ade-
quate for a small to medium size clusters. However, as the clus-
ter size grows, a single node setup will become a bottleneck. For
instance, consider a monitoring service, which performs two ma-
jor tasks, recording the monitored metrics for all resource as well
serving queries regarding the same. A single node deployment of
the monitoring service may easily handle the monitoring data from
a cluster containing a few tens to a few hundred nodes. However,
if the cluster grows to a thousand machines or more, the amount of
monitoring data that is generated by the clients will overwhelm the
single node monitoring service.

To scale the control plane in such scenarios, the service will need
to be replicated on multiple nodes and the incoming workload to the
service will need to be distributed across the replicas of the service.
Typically replication can be done in one of two ways: (i) by em-
ploying clustering, where a group of replicas of the control plane
service collectively serve the requests made to it, or (ii) by employ-
ing federation, which partitions the workload across multiple in-
stances of the control plane service. In the clustering approach, all
replicas collectively serve all the requests as a single logical entity –
as shown in Figure 2a. In federation, each service instance services
a subset of clients and forwards only the necessary requests to the
other – as shown in Figure 2b. Both clustering and federation ap-
proaches partition the workload but clustering based approach also
allows high availability while federation does not.

Control plane service nodes

...

clients

(a) Clustering

...

Control plane service nodes

......

clients

(b) Federation

Figure 2: Clustering and Federated approaches

Given such a private cloud management system and the control
plane services, an IT administrator is faced with a two fold task of
appropriately configuring each control plane service and ensuring
that there is sufficient capacity to service the requests. Manual con-
figuration and capacity allocation is a challenging task as a large
number of interdependent services are involved. We, thus, have the
problem of configuring and provisioning each service so that the
task of deploying the control plane service can be automated.

While there are rules of thumb on how to configure these control
plane services, it is not apparent which approach to use to scale up
and in what situations. In addition, it is challenging to determine
how many instances to provision for a private cloud of a certain
size. Our approach is to design a flexible control plane service that
automates this task by solving two sub problems: (i) Given the size
of cluster, say N , choose which approach is suitable, i.e. single
node, clustering, or federation for each service. (ii) Determine and
provision sufficient number of nodes if the service is replicated.

Dynamic Provisioning: The initial setup of the control plane
and its various services is based on an estimate of the workload
likely to be seen by each control plane service. However, the work-
load observed by control plane services may change over time ei-
ther due to imperfect initial estimates of client workloads or due to
incremental growth of the managed infrastructure or even a sudden
change in managed workload. For instance the administrator may
increase the monitoring resolution from 15 min to 1 min, causing

an order of magnitude increase in the monitoring data. In such sit-
uations, some services required to be reconfigured by dynamically
increasing (or decreasing) the capacity of the control plane service.
Thus the control plane must itself be adaptive and elastic—it needs
the ability to dynamically reconfigure a control plane service by
provisioning new capacity for the service when the specified SLOs
can no longer be met. While the problem of dynamic provisioning
of application VMs has been well studied [15, 13, 19, 21, 14, 20,
17], elasticity and provisioning of control plane services of a private
cloud has not received much attention. As we argue in this work,
prior methods such as queuing models for provisioning of applica-
tion VMs are not suitable in this context, primarily because models
often can not account for software artifacts that limit the applica-
tion capacity from scaling. Secondly, models are often specific to
a software with a specific topology type and are very expensive to
develop. Instead we exploit the particular nature of control plane
service interactions to model a control service and design elasticity
mechanisms that are tailored for such scenarios.

System Model: Each control plane service is assumed to be
composed of multiple software components; these components can
be deployed in dedicated virtual machines – we refer to them as
component nodes of a control plane service. In this work we as-
sume that all the component nodes of a control plane service are
identical (thus we also address a component node as a replica).
This is not a limitation of our approach but a simplification, which
we have adopted for ease of exposition of our approach. A fully
functional control plane service is assumed to be created by arrang-
ing these component nodes in a single node, clustered or federated
configuration – as shown in Figure 2. We assume that each com-
ponent node has an associated SLO it and the administrator must
pick a configuration and number of nodes such that there is enough
capacity to serve the request seen by the service. Further, it is as-
sumed that the SLO violations of each service can be monitored by
logging the performance seen by control plane requests.

3. MODELING AND CONFIGURING CON-
TROL PLANE SERVICES

Since each control plane service can be clustered, federated or
run on a single node, we model service as a set of one or more
identical components (referred as component nodes). A component
node is assumed to service two types of requests, namely external
requests from infrastructure nodes or other services and internal
requests from the other component nodes of the same service. Let
λc and λn denote the average workload due to external client re-
quests and internal nodes requests, respectively. We also assume
that each control plane service needs to meet a performance thresh-
old to meet an Service Level Objective (SLO). SLO of a control
plane can be specified using a threshold on application performance
metric (e.g. latency) or on a resource utilization metric, for instance
80% of CPU utilization. Administrators must estimate and provi-
sion sufficient resource capacity to a control plane service to avoid
violating the SLO. We automate this task of configuring and provi-
sioning the control plane service by determining whether a single
node or clustered or federated configuration is best suited for the
control plane service and how many nodes are necessary to provide
the desired capacity.

Our approach comprises of deriving an analytical model to de-
termine the capacity needed and an algorithm to dynamically re-
provision when the workload increases beyond the capacity. We
gather empirical data of system performance by offline empirical
profiling; it aids in accounting for i) software artifacts which limit

the applications capacity and ii) performance variation due to vari-
ous hidden factors, like shared resource allocation, hardware etc.

3.1 Analytical model
Control plane service uses different resources, namely memory,

CPU, network etc. The performance of a control plane service can
be affected by many factors, including its configuration, workload
variations, resource utilization, and also artifacts of the involved
software components as well as those of the system. We present
a probabilistic model, based on logistic regression, to estimate the
capacity needed by a control plane service to service a particular
workload.

Workload

SL
O

Threshold

Capacity

(a)

1

0

0.5

⇡(x)

(workload)

SL
O
-V
io
la
tio
ns

(b)

Figure 3: Intuition of SLO violation curve
Let λT be the be the total estimated workload and let k be the

number of replicas (k ≥ 1) needed to service this workload. Thus,
we must estimate the number of replicas k required by a control
plane to service a workload of requests arriving at rate λT for a
given SLO. Our approach consists of gathering empirical data of
SLO violations of each node/replica of the control plane service
and use these observations to build a probabilistic model/function
of SLO violations given the observed workload at the node. We
then use this model/function to determine the max load λ∗c that can
be serviced by a single node; given this capacity of a single node,
we can estimate the number of nodes, i.e. k, for a specific configu-
ration (i.e. clustered, federated).

We now determine a function that relates λ to the SLO. More
formally, let Y be a binary random variable, which represents pres-
ence/absence of an SLO violation and λ be the total workload ob-
served by a node (i.e. λ = λc+λn). We, then, wish to estimate the
conditional expectation of SLO violation, i.e. E(Y |λ). There are a
number of sophisticated non parametric techniques which can esti-
mate conditional probabilities but these techniques often require a
large amount of training data to create reliable models.

Logistic regression [7] is an alternative that does not require a
large number of training samples to determine the conditional ex-
pectation. Let π(λ) denote the conditional expectation E(Y |λ),
when assuming a logistic distribution. The specific form of logistic
distribution we use is:

π(λ) =
e(β0+β1λ)

1 + e(β0+β1λ)
, (1)

where, β0 is the intercept parameter and β1s is the slope parameter.
We re-write (1) to obtain a linear equation in λ:

g(λ) = ln

(
π(λ)

1− π(λ)

)
= β0 + β1λ. (2)

The parameters β0 and β1 can be estimated using logistic regres-
sion; they are maximum likelihood estimates of π(λ) – expectation
of SLO violation for a given λ.

Using (2), we can compute the value of λ for a given probability
of SLO violation, say =λ∗. For instance, let us suppose we want to

compute the capacity λ∗ for a conservative threshold on probability
of SLO violation, say 0.5; this essentially means that whenever
λ ≥ λ∗ there is more than 50% chance of SLO violation (as shown
in Figure 3b). Thus equating π(λ) = 0.5 in equation 2 yields

β0 + β1λ
∗ = 0 (3)

Estimating β0 and β1 requires some real observations of work-
loads and SLO of a control plane node in a real setting. For that
we perform offline empirical profiling of control plane services in
different topologies as outlined in the next section.

3.2 Workload Estimation
The workload λ seen by a node of each control plane service

has two components, namely requests from the clients (λc) and
requests from the other replicas/nodes of the same service (λn), i.e.
λ = λc + λn. Intra service workload (λn) is a function of client
workload (i.e. λn = f(λc)) and the exact form of the function
depends on the configuration.

We can use knowledge of the control plane to provide the func-
tion f . For instance, in a federated setup the clients are parti-
tioned into smaller groups and each partition is serviced by one
node/replica. Thus λn is a fraction of λc, i.e. λn = δλc. Simi-
larly, in the case of clustering, the intra service workload depends
on the size of the cluster and also on the way it has been imple-
mented. This means that if a clustered configuration implements
information exchange via broadcast then the messages received by
each node will equal the size of the cluster; now, if the service uses
multicast transmission to implement the same then only one mes-
sage need to be sent, however,if the implementation adopts unicast
transmission then the number of outgoing messages will be equal
to the size of the cluster. Thus for a cluster of size n we will have
λn = 2(n − 1)λc if the unicast is adopted, while in the case of
multicast based implementation it will be λn = nλc.

On the other hand if nothing is known about the control plane
service then we can treat the control plane service as a black box
and estimate λn as function of λc by regressing over the empirical
profiling data, i.e.

λn = α0 + α1λc. (4)

For the purpose of computing initial estimate of control plane’s
capacity, and also for performing empirical profiling, we require
an estimate the client workload, i.e. λc, and the workload gener-
ated by a single client, say λ′c. We make use of rules of thumb or
prior experience for the same; for instance, if it is known that for
each monitored machine a monitoring service records an average
of 25 metrics at a granularity of 1-sec, then λ′c = 25. Now, if the
monitoring node services n clients then the average client workload
observed by a single monitoring node will be λc = n× 25 and the
total client workload observed by the whole monitoring service for
a cluster of size N will be λT = N × λ′c.

3.3 Provisioning Algorithm
Having modeled the control plane service and estimated the work-

load parameters, we compute the number of nodes required for ser-
vice as follows:

Step 1: First we use the training data to compute the βs in (2)
using logistic regression. Using the values of βs we compute a
conservative capacity of a control plane node in terms of workload
which it can handle, i.e. λ∗, using (3).

Step 2: Next we estimate the maximum client workload a control
plane node can service, say λ∗c . Since observed internal workload
(λn) is a known function, f(), of client workload (λc) we estimate
the capacity of the service in terms of number of clients that can be

serviced, say λ∗c , by solving the following equation for λ∗c :

λ∗c + f(λ∗c) = λ∗

Step 3: We estimate the capacity of a control plane service, i.e.
total number of control plane nodes (say k), required to service a
cluster of size N , i.e. k = dλT /λ∗ce.

Step 4: If the above steps indicate that a single node is not suffi-
cient to handle the workload, i.e., the k is found to be greater than 1,
then we must determine whether to employ clustering or federation
for the replicated service. To judiciously choose between them, the
above steps are repeated for clustering and federation by using the
appropriate function f() for each configuration as derived in Sec-
tion 3.2. We then choose the configuration that is more efficient,
i.e., yields a smaller k. The final step then provisions the estimated
capacity k for that configuration, i.e. clustered or federated.

4. ELASTIC RECONFIGURATION
Our provisioning algorithm provides a technique to determine

the appropriate configuration (e.g., single node, clustered or feder-
ated) and the capacity k needed to service the estimated workload.
Since the initial provisioning is based on an estimate of the work-
load likely to be seen, the actual workload may be different or may
grow over time. Hence our control plane implements elasticity for
each service by enabling them to be re-provisioned as and when
needed. For example, if the administrator changes the frequency
of monitoring each node from 5 minutes to 1 minute, there will
be a five-fold increase in monitoring data, which may require the
monitoring service to be reprovisioned if any node gets saturated
due to this change. Such elastic reprovisioning and reconfiguration
involves two steps: i) When to trigger dynamic reprovisioning? ii)
How to migrate from current configuration to new one?

When to trigger? Elastic reprovisioning can be triggered re-
actively or proactively. Reactive reprovisioning is triggered when
the control plane detects SLO violations for a particular service,
while proactive reprovisioning is triggered when future workload
forecasts indicate SLO violations are likely in the near future.

Reactive: The control plane monitors each service and reacts
to observed SLO violations by invoking re-provisioning. In this
simplest case, the control plane can gradually increase the number
of replicas allocated to a service in steps until the SLO violations
stop (e.g., increase the number of replicas by one node at a time
step until the violations stop). A better approach is to use the recent
history of the workload seen by the service re-run the provisioning
algorithm from the previous section. Doing so will yield a new k
for the number of replicas needed by the service and the control
plane can simply start k − k′ new replicas, where k′ is the current
number replicas for the service.

Proactive: Proactive provisioning involves combining workload
forecasting with the provisioning algorithm from the previous sec-
tion to anticipate SLO violations before they occur and take cor-
rective action. To do so, we can employ a workload forecasting
technique to predict the expected workload ∆t time units into the
future. If the predicted workload is higher than the peak estimate
used for the currently provisioned capacity, then SLO violations
are likely and the control plane will invoke the provisioning algo-
rithm from the previous section with the new workload forecast.
While any workload forecasting method can be used by the control
plane, we currently employ time-series forecasting. Similar to the
approach used in [15], we obtain a time series of workload obser-
vations, model the workload as an ARIMA time series [4], and use
standard ARIMA-based forecasting to predict the workload for a
fixed time interval ∆t into the future. This prediction is used by

the provisioning algorithm to compute a new capacity k and addi-
tional replicas are spawned by the control plane for the service.

How to migrate to new configuration? There are two main
steps in migrating the control plane service from old configuration
to new configuration, namely i) redeployment and ii) redistribution
of the clients across the new configuration. Redeployment involves
deploying the necessary additional VM replicas for the service. Ap-
plication topologies can be encoded in an Open Virtualization For-
mat (OVF) [6], which can be used by external deployment scripts
to provision the replicas. Most common cloud management plat-
forms support OVF making it a good implementation choice. In
this work our re-deployment task provisions newly computed ca-
pacity and and inter-connects the deployed components forming
the same configuration pattern; however, selecting and switching
to a different configuration pattern is a relatively easy extension of
this work.

Redistribution: Once new replicas have been provisioned, the
workload has to be redistributed across new and old replicas equally.
This involves identifying the clients of the service and changing
their configurations to append new replicas to the list of available
replicas for the service, and perhaps specifying the preferred replica
to use for the service.

5. PROTOTYPE IMPLEMENTATION
This section describes the prototype of our elastic control plane.

Cloud VM
Provisioning

Provisioning
Algorithm

Dynamic
Reconfigurator

Actuator

Metadata
ManagerData

Model
Generator

Empirical
Profiling

Workload
Monitoring
Forecasting

CP
Service

CP
Service

CP
Service

Cloud Management Layer

Provisioning Engine

Adaptation Controller

Data

Figure 4: Architecture of our elastic control plane

5.1 System Architecture
Our prototype depends on monitoring of the system and perfor-

mance metric of each of the control plane service nodes. Monitor-
ing of systems and resources is a standard practice followed in all
large system deployments and besides this our approach does not
put any additional load on the control plane service. Other compo-
nents of our prototype, namely adaptation controller and monitor-
ing and foreasting components, are hosted on a dedicated VM and
implemented in python; details of each these components are (see
Figure 4):

Model Generator takes the empirical profiling data for each con-
trol plane service and generates a model (set of βs) and stores it in
the Metadata manager. We have used the STATA 10’s implemen-
tation of logistic regression [2] to obtain our models.

Metadata manager stores models for each control plane service,
their current configuration and capacities. We have implemented

it as a python class, which stores all the information in in-memory
data structures with an option to persist the models on disk.

Workload Monitoring and Forecasting Engine collects time-series
monitoring data of all the virtual machines as well as of those of the
control plane services. It stores all the results in a database, which
can be queried. We have implemented this as a part of monitoring
service of OpenStack using Ganglia. We have used STATA 10 for
implementing the ARIMA forecaster [18].

Configuration and Provisioning Engine implements the provi-
sioning algorithm. It takes the generated model from Metadata
manager and computes the number of replicas needed for a con-
figuration. In case of change in configuration, it provisions new
replicas using the Actuator module and updates the details of new
configuration to Metadata manager. It also performs dynamic re-
configuration by constantly evaluating the SLO metric and by com-
puting the change in average client workload. As a solution to the
less frequent situation where the model requires re-learning, the
provisioning engine queries and collects the cases of SLO viola-
tions and updates the learning data. It then re-estimates the model
parameters and updates the records in metadata manager.

Dynamic reconfigurator: This component exposes two interfaces,
redeploy and redistribute. We provide an implementation for each
control plane service. Currently we have implemented a plugins for
monitoring and messaging services.

Actuator: This is module is a part of configuration and provi-
sioning engine. It performs the task of deploying new virtual ma-
chines of each control plane service. After deployment it executes
the necessary scripts in each replica of the control plane service for
creating the correct configuration. The actuator also looks up the
dependent clients and alter’s their configuration so that the client
workload is evenly distributed across all the replicas. It essentially
keeps a fixed number of clients for each replica.

5.2 Private cloud management system
We use OpenStack as our private cloud management system.

OpenStack comprises four main components: compute (Nova), im-
age repository (Glance), authentication (Keystone), and storage (Swift).
Nova, Glance, and Keystone provide hypervisor management, im-
age management and authentication, respectively, while Swift pro-
vides an object-store service [10]. We use Nova as an example to
expose some of the design details of scalable cloud service com-
ponents. Nova has multiple control plane services which together
provide the the functionality of compute and storage management.
Nova’s various services communicate with each other via message
queuing [16]. Here we use an open-source message queuing sys-
tem, namely RabbitMQ [12].

Although monitoring is a key component of a cloud platform,
OpenStack currently lack a full fledged monitoring service. We
implement our own prototype monitoring service for OpenStack to
mimic Amazon’s CloudWatch monitoring service in the EC2 pub-
lic cloud. We build monitoring for OpenStack by integrating two
open-source monitoring systems into OpenStack: Ganglia and Na-
gios [9]. Ganglia is used to monitor nodes and VMs and archive
monitored data in its database while Nagios is used to set simple
triggers on monitored data; for instance, we can use Nagios to re-
port if the average resource utilization of a group of nodes exceeds
a threshold.

5.3 Empirical profiling
As the first step towards learning the parameters we perform em-

pirical profiling of each control plane service in both clustered and
federated configurations. In order to empirically profile a compo-
nent node of a service in a particular configuration, we start with

a single node configuration and systematically increase the client
workload on the service (i.e. λc) until we observe SLO violations.
We, then, repeat the same procedure with the next bigger graph of
the same configuration and so on; at each step we record the aver-
age intra service workload as well (i.e. λn)

n

C C

C

Clients

C

CC
C

C

(a)
Star/Single
Node

n n

n n

Clients

(b) Cluster

n n

n n

Clients

(c) Federated -
Ring

n

n
n

n

Clients

n

(root)

(intermediate)

(leaf)

(d) Federated -
Heirarchical

Figure 5: Profiling configurations; grey nodes represent control
plane service nodes and the white nodes are its clients

Single node: this is the smallest configuration – Figure 5a. We
assume the average workload generated by a single client, i.e. λc
and for the purpose of increasing λc we simply increase the number
of clients until we observe SLO violations. Cluster configuration:
We start with a cluster of size 2 and distribute the clients between
the two nodes. We, then gradually increase the workload on both
the nodes, distributed evenly, until we observe SLO violations on
any of the nodes. We measure both the average number of client re-
quests per sec, λc, and the average number of intra service requests
per sec, λn. We repeat the same experiment for larger cluster sizes.
This helps us gather data necessary for capturing the impact of clus-
ter size as well.

Federated configuration: A federated configuration partitions its
clients between component nodes and can be hierarchical or non
(e.g., a ring). For nonhierarchical kind of federated configuration,
the method of profiling is like that of clustered configuration, i.e.
we start with smallest possible configuration and profile till it is sat-
uration and then increase the number of component nodes by one
and repeat the same procedure. In the case of hierarchical config-
uration, we have to differentiate between nodes, i.e. leaf nodes,
intermediate nodes and root node. This makes the profiling a little
more involved. We start with a tree of depth=1, i.e. with a root node
and single leaf node; Then, similar to cluster topology we increase
the client workload on the leaf node while keeping the client work-
load of root node to zero until leaf node’s saturation. We keep the
root node’s client workload to zero and gradually increase the λn
by adding more leaf nodes. We repeat the same experiment with a
tree of depth two, where there is a leaf node and intermediate node
and then a leaf node. We empirically profile the intermediate node.

Determining SLO metric: SLO metric of each control plane ser-
vice should selected such that a faithful operation of the manage-
ment service can be ensured by monitoring an easily observable
value threshold of the metric. In situations where the SLO metric
is not directly observable, administrators can empirical profile the

service in a closely controlled environment and choose that met-
ric (or a set of metrics) which are strongly correlated with SLO.
Empirical profiling also assists administrators to heuristically de-
termine a conservative threshold value for the monitored metrics,
which can be used to trigger dynamic provisioning much before
the actual SLO violation happens.

We manually perform empirical profiling by gradually increas-
ing the workload and record SLO violations. This data is used to
obtain the model of the management service. Offline empirical pro-
filing is not a limitation of the approach as administrators often per-
form empirical profiling before deploying a large-scale system; in
addition to this, the empirical profiling data can be used as a starting
point of the dynamic provisioning algorithm.

6. EXPERIMENTAL EVALUATION
This section describes our experimental setup and our experi-

ments to test the efficacy of our elastic control plane.

6.1 Experimental Setup
We have used OpenStack as our private cloud management sys-

tem and have experimented with two of its control plane services,
namely monitoring and messaging.

Monitoring: As explained earlier, we have implemented the mon-
itoring control plane service of OpenStack using Ganglia. Ganglia
consists a monitoring agent, gmond, which gathers and broadcasts
monitored data using UDP multicast/unicast. The monitored data
is pushed to a metadata server, gmetad, for archival; gmetad stores
data in a Round Robin Database (RRD) and leverages rrdtool to
extract and graph the monitored data using Apache web-server and
php technology. For our experiments, we defined SLO of our mon-
itoring subsystem as a threshold on the percentage of data loss due
to unreliable message delivery or system saturation. We have used
Ganglia 3.3.6 on Ubuntu to create each node of our monitoring con-
trol plane service by deploying both a gmetad and a gmond daemon
on it. This server is responsible for gathering all data from the mon-
itored nodes. Client workload generated by a single client (i.e. λ′c)
is dependent on number of metrics being monitored and the fre-
quency at which they are monitored. We have considered three
types of monitoring workloads for our experiments. Each of these
workloads involve monitoring 25 metrics but at different monitor-
ing frequencies, i.e. 1-sec, 5-sec and, 15-sec.

To simulate large clusters than available in our testbed, we cre-
ated client workload generators that emulate the data sent by gan-
glia on real nodes. Our clients generate and send synthetic gmond
2.x data packets to gmond. For each monitored node we sent 25
separate metrics at the pre-configured monitoring frequency. On
the monitoring node the metrics are saved in separate files and fold-
ers, where files are named using the metric’s name and the folder is
named using the host name.

Messaging: OpenStack’s message queuing subsystem is the back-
bone of this scalable private cloud management system. All con-
trol plane services of the compute cloud of OpenStack (i.e. Nova)
communicate with each other via blocking and non-blocking RPC
calls using the message queuing system [16]. We use RabbitMQ
2.8 as OpenStack’s message queueing system for our experiments.
We experimented on a private cloud created over 12 Intel Xeon
(X3430) machines each with 8 GB RAM and 500 GB SATA Disk.
The machines were installed with Ubuntu 12.04 and we created
the private cloud using OpenStack Essex release. Each RabbitMQ
node possesses both queue-management capabilities as well as router
capabilities. We installed each such node on single core VMs with
6GB of RAM. The clients were deployed on the hosts described
above. On each VM as well on each host we set the limit to num-

ber of open files to 81920 (80 K). In order to synchronize the clock
we used NTP 4.2.6.

Since RabbitMQ is memory bound and stops receiving messages
when memory gets saturated, for our experiments, we define a SLO
as a high threshold of the memory utilization of the RabbitMQ
node (E.g., 75% utilization threshold). To generate the workload,
we assume that each client, i.e. Nova-compute and Nova-volume
generate one VM and volume creation and deletion request every
hour. We assume that each client node is of 64 cores and thus each
node create one VM as well as volume creation request every sec-
ond. Since a VM creation requires 5 messages and VM-deletion
requires 6 messages and equal for volume creation and deletion,
thus λ′c = 22.

6.2 Empirical Profiling and Capacity Estima-
tion

In this section we empirically profile two control plane services,
namely monitoring and messaging, in different configurations, namely
single node, cluster and federated. We then use the profiling data
and the results developed in Section 3 to compute the maximum
capacity of a configuration. Finally, we test our dynamic reconfig-
uration approach on monitoring subsystem deployed in a federated
topology.

6.2.1 Single Node Configuration
Monitoring: We created a single node configuration of monitor-

ing control plane service by using the m2.xlarge instance of EC2
as our monitoring node. We conducted profiling in three different
monitoring granularities, i.e. 1-sec, 5-sec and 15-sec.

We have simulated nc client nodes by sending the monitored
data of nc × 25 metrics1 to the monitoring node from 5 client ma-
chines running the client workload simulator. The λc observed by
the monitoring node in the three respective monitoring granulari-
ties is nc×25, 5×nc, and 5×nc/3. The observed data-loss at the
monitoring node for each of the three different monitoring granu-
larities is recorded for training the model. The SLO plots for each
of the experiment are shown in Figure 6, where each point on the
graph is an average of more than 50 samples.

Figure 6: Data loss in a single node configuration

We used the complete profiling data to compute the capacity
model of a single node configuration in three different settings.
We estimate the parameters of the model using logistic regression
and compute capacity using (3). Figure 7b summarizes the results
of profiling of a single node configuration with the three different
monitoring workloads as a table.

It can be seen from Figure 7a that capacity does not vary lin-
early in λc and that the model provides a conservative estimate of
capacity with the data generated by empirical profiling.
1Amazon cloudwatch monitors 25 metrics for an instance and its
volume

(a) Estimated and observed capacities as a function
of λc

1-sec 5-sec 15-sec
(λc = 25) (λc = 5) (λc = 5/3)

Capacity 58 122 256

(b) Estimated Capacities

Figure 7: Empirical and estimated capacities of single node moni-
toring configuration with monitoring node on an m2.xlarge instance
type.

Messaging: We conducted the experiment with a single node
configuration by using a single core VM but with varying amount
RAM to RabbitMQ, i.e. starting from from 400MB to 2.4GB.
For each RAM configuration, we gradually increase the number
of compute and volume nodes, which increases the message traffic
via the message queue. We, then, measure memory utilization of
the RabbitMQ node. The results are shown in Figure 8.

RabbitMQ
Compute
Compute
Compute

Compute

VolumeVolumeVolumeVolumeVolumeVolume

Scheduler

Network

(a) Single node setup

(b) Memory utilization (c) Capacity

Figure 8: Memory utilization and average message latency ob-
served in a single node configuration of RabbitMQ

In each experiment we gradually increased the number of com-
pute nodes, keeping a single scheduler and a single network node.
Increasing scheduler and network is not a recommended configu-
ration in openStack. In each experiment we scaled up the number
of clients in batches of 250 clients. We stop adding clients when
the memory utilization reaches 75% of the total allowed memory to
RabbitMQ server. We found that the memory utilization linearly in-
creases with number of clients, as shown in figure 8b. To generate
a model of single node configuration, we conducted experiments

where we varied the RAM from 400MB to 2400MB and the results
are shown in figure 8c. It can be observed that the capacity scales
linearly with RAM for workload generated by OpenStack clients
and the model captures a conservative estimate of the same.

Conclusion: Empirical profiling effectively captures the software
artifacts. In addition the model allows us to capture that knowledge
and generate conservative estimates.

6.2.2 Federated configuration
For a federated configuration we conducted an experiment with

a tree of depth two, as shown in figure 9a (which means a tree
of depth one for control plane nodes). In this configuration there
are multiple monitoring nodes each of which gathers the data from
their individual group of monitored nodes, called clusters. It is
often useful for administrators to have a summary of monitored
metrics at cluster level. In our case the root node pulls the summary
statistics data every tr-seconds. This places additional load on the
leaf monitoring nodes and thus impacts data loss.

In a hierarchical configuration there are three types of nodes,
namely a leaf metadata node (subjected to both client and intra-
service workload) and a root node (with only intra service work-
load); we profiled each of these nodes. For leaf metadata nodes,
we generated the client workload in the same manner as for single-
node configuration profiling. However, for generating intra ser-
vice workload (λn), we setup the root node to pull data from the
leaf metadata nodes at three different granularities, i.e. 15-sec, 30-
sec and, 1-min. This is because the higher level nodes in the tree
collect only summary statistics of the lower level nodes and thus
the resolution is often quite low. For each resolution, we measure
SLO while gradually increasing λn. The variation in the SLO met-
ric with increase in workload, for both leaf as well as root meta-
data node, is shown in Figure 9b and 9c respectively. We have
used an average workload of 25 metrics per monitored client, thus
λc = 25/tl, where tl is the monitoring granularity of the leaf meta-
data node. Similarly average workload generated by a leaf meta-
data node for its parent node is λn = 150/tr , where tr is the
monitoring granularity of the root metadata node. We conducted
nine profiling experiments and developed capacity models for each
of them. As expected, we find that the data loss characteristics of
the leaf monitoring nodes are very similar to those of a single node
configuration except only slightly less (shown in Table 1a). How-
ever, as the root metadata node’s monitoring granularity increases
to 30-sec and 60-sec the impact becomes nearly negligible.

Table 1c summarizes the maximum capacities of a tree topol-
ogy of depth one with nine different settings of monitoring gran-
ularities. The total capacity of each of the nine configurations is
computed by multiplying capacities of leaf and root nodes. This is
because of the fact that we assume λn = 150/tr (a constant). Note
that an approximate functional form of λn = f(λc) is estimated
using the knowledge of the monitoring service. Since the root node
collects only the averaged values from each child metadata nodes,
it computes to λn = λ′c × 6/tr .

Conclusion: Empirical profiling assists in capturing the appli-
cation artifacts. This coupled with our modeling approach helps in
estimating maximum capacity of any configuration.

6.2.3 Cluster Configuration
RabbitMQ supports a clustering configuration, where each bro-

ker node in the cluster has all a replica of all the data necessary for
operation. This means that any queue can be accessed from any
broker node, however, the queues and its messages are not repli-
cated and thus it saves unnecessary excess communication. We

Monitoring
Node

...

Monitoring
Node

...

Monitoring
Node

...

...

Root
Node

Monitored Nodes

(a) A federated configuration

(b) Data loss on leaf monitoring node; root node mon-
itoring at 15-sec granularity

(c) Data loss on root monitoring node

Figure 9: Data loss in a federated configuration

experimented with three types of cluster node configurations and
the results are shown in Figure 10.

We conducted two set of experiments: First with by hosting Rab-
bitMQ on a single core VM but with 2.4GB RAM, second with a
RabbitMQ server with single core VM and with 0.4GB RAM. For
both the experiments we varied the size of cluster, say k, and for
each such cluster we gradually increased the number of clients till
SLO violations were observed. The second experiment was con-
ducted with a limited RAM to study the asymptotic behavior of the
configuration and also to test if the model can capture this knowl-
edge faithfully.

In the case of clustering configuration, the intra service workload
(i.e. λn) scales linearly with λc. The linear function is such that
it also depends on the size of cluster, say k. So we estimated the
following function from our empirical profiling data λn = α0 +
kα1λc.

We estimate the capacity of the clustered setup using our logistic
regression. Results of empirical observations for the cluster with
2.4GB RAM are shown in figure 10d. We observed that this data
creates a model which depicts a linear growth. To study the im-
pact of increasing cluster size on the capacity we conducted the
same experiment but with much less amount of RAM to the Rab-
bitMQ nodes, i.e. 0.4GB. Since λn is not linearly dependent on
λc (because cluster size k is also a variable), we ran a multiple
logistic regression with λc and λn as our independent variables
and SLO as the dependent variable. Capacity in terms of number

RootNode/LeafNode 15-sec 30-sec 1-min
λn = 10 λn = 5 λn = 2.5

1-sec (λc = 25) 56 58 58
5-sec (λc = 5) 118 133 133

15-sec (λc = 1.67) 272 284 285

(a) Leaf metadata node capacity

15 -sec 30-sec 1-min
Capacity 28 32 55

(b) Root metadata node capacity

RootNode/LeafNode 15-sec 30-sec 1-min
1-sec 1568 1856 3190
5-sec 3304 4256 7315
15-sec 7616 9088 15675

(c) Capacity of a hierarchical configuration pattern

Table 1: Empirical capacity of federated monitoring configura-
tion deployed as a tree of depth of two; monitoring node on an
m2.xlarge instance type.

of clients which a node can handle reduces to the following form:
λ∗c = 22.25/(0.01 + k × 0.003). We plot the capacity for each k
using this result and the capacity curve is shown in figure 10e. The
figure depicts that the capacity of a clustered configuration starts to
saturate as cluster size increases. Thus after some point in time it
will not be useful to scale using clustered configuration.

Conclusion: Capacity of a clustered configuration starts to sat-
urate as the size of the cluster increases. Also the model provides
better estimates of SLO violation with more number of independent
parameters, namely λc and λn.

6.3 Dynamic Provisioning
To showcase the efficacy of our dynamic provisioning approach

we conducted two experiments: First where we perform reactive
provisioning, i.e. we trigger provisioning at SLO violations. Sec-
ond, where we use a model and a forecaster that causes proactive
provisioning based on forecasted workload. We have experimented
with monitoring service deployed in a federated topology, more
precisely, we started with a tree with one root metadata node and
one leaf metadata node. We setup the leaf node with monitoring
granularity of 1-sec, while the root node at 15-sec granularity. The
capacity model of this configuration is already evaluated in Table 1a
and 1b. We used this model, which reports a capacity of 56 clients
for leaf node and 28 clients for root node. In both the cases, namely
reactive and proactive, we conducted the experiment in following
manner: i) We started with the two node tree with 10 clients at-
tached to the leaf metadata node. The leaf metadata node was con-
figured to monitor at 1-sec monitoring granularity, while the root
metadata node at a 15-sec granularity. ii) We increased the work-
load in units of 10 clients (i.e. nc+ = 10) after every 5-minutes.

In the case of reactive-provisioning experiment, first reconfigu-
ration process triggered when the n-c connections reached 50 nodes
because the SLO got violated (shown in Figure 11). The new con-
figuration at this point contains a second leaf node (n2). We dis-
tribute the client workload equally between n1 and n2. As we
gradually increase the workload each of the reconfigurations are
triggered by SLO violation and leads to increase in capacity by one
additional node. We used this SLO violation data from the reac-
tive experiment as additional training data to re-learn the capacity
model of leaf metadata nodes. Our new model reported a much
conservative estimate of capacity, i.e. 33 client nodes for each leaf

Unit Unit

(a) Two Node

Unit Unit

Unit

(b) Three Node

Unit Unit

Unit Unit

Clients

(c) Four Node

(d) Configuration Capacity (RAM=2.4GB)

(e) Configuration Capacity (RAM=0.4GB)

Figure 10: Various cluster configurations and their empirically es-
timated capacity.

metadata node. We used this capacity model and a single step per-
fect forecaster (i.e. provides perfect forecast of workload at the
next time instant) to evaluate the proactive provisioning approach.
As mentioned, this approach triggers provisioning when the fore-
casted workload is more than the capacity of current configuration;
thus in our experiment the provisioning happened at time instants
when the number of clients reach 30, 60, 90 and 130; this is because
when the workload reached 30-client node, the forecaster predicted
a workload of 40-clients but the monitoring system’s capacity was
only 33-clients thus it provisioned an extra node in advance. We
observe that proactive provisioning approach observes a slightly
higher average data loss (i.e. 5.4%) at 90 clients than that observed
by the reactive approach at 100 client workload. We believe that
such randomness is because Ganglia uses UDP and the routers in
EC2 would be observing higher workload at that instant, which
could contribute to increase in data loss.

Conclusion: i) Our approach of dynamic adaptation is effective
in both the situations, namely reactive and model-drive. ii) Models
for specific workloads can be simple but effective.

7. RELATED WORK
Dynamic provisioning: There is a large body of related work

in the area of dynamic capacity provisioning in data centers or
compute clusters [15, 13, 19, 21, 14]. Much of this work is dy-
namic provisioning of the deployed web applications using ana-
lytic models, while our work considers dynamic provisioning of
control plane services in multiple configurations, namely clustered
and federated.

Figure 11: Dynamic provisioning of monitoring service

Generic system performance model based on ensemble of tree
augmented bayesian networks has been developed by Zhang et al
in [20] to capture the performance behavior of a system application
under changing workload conditions. Watson et al. in [17] de-
velop a probabilistic performance model for virtual machines with
the objective of capturing the effect of statistical multiplexing in
clouds and impact of other measurable factors to provide perfor-
mance guarantees expressed in percentiles. In our work, we have
used a logistic regression based approach to model a control plane
service for performing dynamic provisioning.

Cloud Benchmarking Many researchers have conducted empir-
ical evaluation of cloud platforms; Researchers in [5] benchmark
Amazon EC2 to quantify CPU, disk and network performance of
the provisioned virtual machines. Sharada et al. in [1] evaluate dif-
ferent virtualization technologies by running database workloads in
a virtualized environment. Cooper et al. in [3] propose benchmark
for the data storage subsystems popular in clouds, namely Hadoop,
Cassandra, HBase and compare their bench marking results with
shared MySQL implementation. Unlike much of the prior work,
in this work we benchmark individual control plane services with
different configurations.

8. CONCLUSION AND FUTURE WORK
In this paper we considered the problem of configuring and man-

aging a private cloud and argued that the control plane of such
cloud platforms must themselves be elastic to support dynamic con-
trol workloads. We presented a logistic regression model to au-
tomate the provisioning and dynamic reconfiguration of control
plane services in a private cloud. We presented reactive and proac-
tive methods for implementing the provisioning of elastic control
plane services. We implemented our approach for two control plane
services—monitoring and messaging—for OpenStack-based pri-
vate clouds. Our experimental results on a laboratory private cloud
testbed and using public cloud workloads demonstrated the abil-
ity of our approach to provision and adapt such services from very
small to very large private cloud configurations.

Acknowledgements: We acknowledge the anonymous review-
ers for their valuable suggestions. Upendra Sharma was supported
in part by an IBM Graduate fellowship. This research was sup-
ported in part by an IBM OCR award and NSF grants CNS-1117221,
OCI-1032765, CNS-0916972, CNS-0855128

9. REFERENCES
[1] S. Bose, P. Mishra, P. Sethuraman, and R. Taheri. In

Performance Evaluation and Benchmarking, pages 167–182.
Springer-Verlag, 2009.

[2] M. L. Buis. predict and adjust with logistic regression. Stata
Journal, 7(2):221–226(6), 2007.

[3] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb.
SoCC ’10, pages 143–154, New York, NY, USA, 2010.

[4] M. David, M. Richard, E. M. Errol, and J. Richard A. Hay.
Interrupted Time Series Analysis. SAGE Publications, Inc., 0
edition, 1980.

[5] J. Dejun, G. Pierre, and C.-H. Chi. Ec2 performance analysis
for resource provisioning of service-oriented applications.
ICSOC/ServiceWave’09, pages 197–207, Berlin, Heidelberg,
2009. Springer-Verlag.

[6] Dmtf - open virtualization format specification.
http://dmtf.org/sites/default/files/
standards/documents/DSP0243_1.0.0.pdf, 2
2009.

[7] D. W. Hosmer and S. Lemeshow. Applied logistic regression
(Wiley Series in probability and statistics).
Wiley-Interscience Publication, 2 edition, 2000.

[8] Q. Jiang. Open Source IaaS Community Analysis.
http://www.qyjohn.net/?p=2233.

[9] D. Josephsen. Building a Monitoring Infrastructure with
Nagios. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2007.

[10] Amazon Simple Storage Service.
http://www.amazon.com/s3.

[11] OpenStack Cloud Software.
http://www.openstack.org.

[12] J. Russell and R. Cohn. Rabbitmq. Book on Demand, 2012.
[13] C. Stewart and K. Shen. Performance modeling and system

management for multi-component online services. NSDI’05,
pages 71–84, Berkeley, CA, USA, 2005. USENIX
Association.

[14] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An Analytical Model for Multi-tier Internet
Services and Its Applications. In Proc. of the ACM
SIGMETRICS Conf., Banff, Canada, June 2005.

[15] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood.
Agile dynamic provisioning of multi-tier internet
applications. ACM TAAS., 3:1:1–1:39, March 2008.

[16] S. Vinoski. Advanced message queuing protocol. IEEE
Internet Computing, 10(6):87–89, Nov. 2006.

[17] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and
Z. Wang. Probabilistic performance modeling of virtualized
resource allocation. ICAC ’10, pages 99–108, New York,
NY, USA, 2010. ACM.

[18] R. A. Yaffee. Forecast evaluation with stata. United kingdom
stata users’ group meetings 2010, Stata Users Group, 2010.

[19] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based
analytic model for dynamic resource provisioning of
multi-tier applications. ICAC ’07, Washington, DC, USA,
2007.

[20] S. Zhang, I. Cohen, J. Symons, and A. Fox. Ensembles of
models for automated diagnosis of system performance
problems. DSN’05, pages 644–653, Washington, DC, USA,
2005. IEEE Computer Society.

[21] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia,
S. Singhal, B. McKee, C. Hyser, D. Gmach, R. Gardner,
T. Christian, and L. Cherkasova. 1000 islands: Integrated
capacity and workload management for the next generation
data center. ICAC’08, pages 172–181, 2008.

