
Hot or Not: Leveraging Mobile Devices for Ubiquitous
Temperature Sensing

Joseph Breda, Amee Trivedi, Chulabhaya Wijesundara, Phuthipong Bovornkeeratiroj, David Irwin,
Prashant Shenoy, and Jay Taneja

{jbreda,cwijesundara,jtaneja}@umass.edu,{amee,phuthipong,shenoy}@cs.umass.edu,irwin@ecs.umass.edu
University of Massachusetts, Amherst

ABSTRACT
This paper introduces a novel technique to measure indoor ambi-
ent air temperature using the battery temperature sensor found
on typical smartphones. We develop physics-based models to pre-
dict ambient air temperature that consider the many warming and
cooling scenarios faced by phones and account for the excess heat
generated by smartphone components such as the CPU, screen,
network, and charging hardware. To accommodate never-before-
seen devices, we also develop a domain adaptation technique that
leverages previously derived models, substantially reducing the
overhead of learning accurate models for a new phone. We evaluate
our models for a range of devices, operating scenarios, ambient
temperatures, and phone cases, with mean errors generally less
than 1.5% of ambient temperature. We also present a case study to
demonstrate the utility of our approach for spatial and temporal
monitoring of ambient temperature variations in an office building;
while indoor conditions vary by as much as 13°F, mean error in
measurement by our models is 1.4%.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting.

KEYWORDS
Smartphone, Temperature sensing, Temperature control, Secondary
sensing

1 INTRODUCTION
Smartphones have become ubiquitous in recent years, with nearly 3
billion smartphone users worldwide in 2019. Modern smartphones
are rich in sensing capabilities and equipped with a plethora of
sensors such as GPS, accelerometers, gyroscopes, microphones, and
cameras, among others. This has enabled mobile sensing to emerge
as a viable sensing paradigm, with smartphones being used to mon-
itor our environment in new and interesting ways. In recent years,
researchers have used smartphone sensing and crowdsourcing of
data to monitor water quality [8], state of the electric grid [3], health

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BuildSys ’19, November 13–14, 2019, New York, NY, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7005-9/19/11. . . $15.00
https://doi.org/10.1145/3360322.3360856

parameters such as sleep [16], and social context [19]. Smartphones
can also be employed to sense the ambient environment inside
buildings, which is a target application of our work.

Buildings account for nearly 70% of the total electricity and 40%
of the total energy consumption in most countries [2], with heating
and cooling (HVAC) accounting for nearly half of a typical build-
ing’s energy footprint. A building’s HVAC systems are designed
to provide optimal comfort to its occupants while being energy
efficient. In practice, however, HVAC systems are far from perfect
and can be sub-optimal in terms of providing user comfort, energy
efficiency, or both. Office and commercial buildings, in particular,
use zone-based control for heating and cooling, where each zone,
which comprises part or all of a building floor, can be independently
controlled. Zone-based HVAC systems are often controlled using a
small number of thermostats that are deployed over a larger area, of-
ten resulting in subtle temperature differences across a zone, which
in turn impacts user comfort. In some cases, a single thermostat
may control a large area such as a hallway, atrium, or a suite of
rooms. Residential smart thermostats such as the Nest and Ecobee
have attempted to address this issue by coupling thermostats with
additional temperature sensors deployed in various rooms to track
these temperature differences [1], which enables them to maintain a
more uniform temperature across a zone. In commercial buildings,
deployment of such additional temperature sensors over larger
areas are expensive, labor intensive to install, produce massive
amounts of e-waste as new hardware is rolled out, and may not im-
prove HVAC operation. These reasons motivate a software defined
alternative that leverages the ubiquity of mobile devices of building
occupants as proxy sensors providing the same metrics with no
installation or additional hardware (Also applicable in developing
regions where installation is unfeasible).

Our paper presents such an alternative approachwherewe utilize
smartphone sensing to estimate ambient temperature at different
locations inside a building. Our hypothesis is that the on-board
thermistor-based battery temperature sensor, designed for monitor-
ing battery temperature and maintaining battery safety, can serve
as a proxy sensor for the phone’s surrounding environment. Our
approach comprises modeling the difference between the phone’s
battery temperature and ambient air temperature as a function of
screen activity, battery, CPU, and network processor state as well
as a layer of activity recognition. Our approach, in effect, turns
every smartphone, regardless of its ongoing activity, into a digital
thermometer for ambient temperature sensing, which can then be
used to monitor, or crowdsource, temperatures at different locations
inside a building providing more granular data for building control
systems.

https://doi.org/10.1145/3360322.3360856

BuildSys ’19, November 13–14, 2019, New York, NY, USA J. Breda, et al.

In designing our models and our approach, our paper makes the
following contributions. First, we develop a modeling approach that
combines physics-based models, using Newton’s Law of Cooling,
with statistical state identification methods to infer ambient tem-
perature. Second, since our models are specific to each phone type
and deriving them from scratch is laborious and time-consuming,
we develop a model generalization approach that leverages prior
models learned for other phones with a small amount of sampling
to quickly derive a custommodel for a new phone. Our experiments
validate our models using several phones with different hardware
characteristics and Android OS versions and show that: (i) our mod-
els are able to predict ambient air temperature across a range of
phone states and phone models with mean errors of 2-5%, (ii) we
are able to learn prediction models for a new phone using only a
fewsamples in conjunction with prior models, significantly reduc-
ing the model derivation overhead for new phones, and (iii) our
models are effective even when the phones are equipped with vari-
ous types of phone cases. We also conduct a case study throughout
one floor of an academic research building to show how our models
can track ambient temperature differences over time and spatial
differences in temperature across a floor.

2 BACKGROUND AND RELATEDWORK
In this section, we present background and related work on mo-
bile sensing as well as building heating and cooling, and discuss
challenges to ambient temperature sensing.

Mobile Sensing:As sensor-rich smartphones have become ubiq-
uitous, mobile sensing has emerged as a feasible paradigm for gath-
ering environmental data. Our work aims to extend the capabilities
of a commodity smartphone 1 to measure a new modality: indoor
ambient air temperature. To our knowledge, no current phones pos-
sess an onboard ambient air temperature sensor.2 However, nearly
all phones possess a battery temperature sensor. Our hypothesis is
that the battery temperature sensor can be used to indirectly sense
the ambient air temperature.

The feasibility of using the battery temperature sensor for ambi-
ent temperature sensing has previously been explored [5, 11]. These
efforts accurately estimated the daily average outdoor temperature
across entire cities using crowd-sourced battery temperature data
retrieved by a distributed network of mobile phones gathering mea-
surements. This approach was designed for outdoor temperature
sensing and required data for a large number of phones to obtain a
coarse non-localized temperature estimate. There was no correction
for heat-generating activities on the phone itself. In our case, we
wish to use a single phone as a “thermometer” and use its battery
temperature sensor to predict the ambient air temperature inside a
building without relying on a large number of phones. Of course,
our system can leverage multiple phones, each of which acts as
an independent thermometer, to map out the spatial and temporal
variations in ambient air temperature across a building floor.

Building Sensing: HVAC systems in buildings are responsible
for maintaining user comfort and meeting safety standards, while

1We also note that our approach easily extends to other commodity mobile devices
such as smart watches and tablets.
2The 2013 Samsung Galaxy S4 and Motorola Moto X possessed such a sensor, but in
both cases, the ambient temperature sensor was removed in later model iterations due
to poor accuracy and inefficient use of on-board real estate.

Figure 1: Variability of temperature across one floor of an
office building. Ambient air temperature varies by 13°F.

also being as energy efficient as possible. Commercial and office
buildings typically use a system of zones and controllable air vents
to deliver an appropriate amount of heating or cooling to each
portion of the building floor. Although a zone may be configured
for a specific temperature set-point, differences in airflow, heat gain
or loss through windows, and other thermodynamic factors cause
subtle but noticeable differences in temperature across a floor or
even across a part of a single large room. These temperature differ-
ences can impact user comfort since parts of the room or floor can
be warmer (or cooler) than others. As an example, Figure 1 shows
a heatmap of a single floor of a building with temperatures varying
by as much as 13°F. If the building floor is highly instrumented with
temperature sensors, these spatial differences can be detected and
corrected using individually controllable HVAC vents, thereby im-
proving overall user comfort. However, buildings, especially older
ones, rarely have this degree of instrumentation and controlThis
paper explores the use of smartphone-based mobile sensing to fill
this gap – by sensing ambient air temperature at different locations
on a building floor (i.e., across a single room or among multiple
rooms) to measure spatial and temporal variations.

Many researchers have worked to improve building HVAC per-
formance, including efforts to improve control by better managing
zone temperatures [4, 14], providing personalized thermostat rec-
ommendations [13], designing entire personalized HVAC control
systems at the individual scale [12], or even assigning people to
desks by comfort preferences [10]. Others have focused on alterna-
tive measurement methodologies, including using WiFi [15] and
video [7]. Our work aims to be another channel of granular and ac-
curatemeasurement to allow thermostat control to improve comfort
of building occupants, enabling better coverage in more common
zone-based thermostat/HVAC control loops, or providing the basis
for future personalized HVAC alternatives.

Challenges in ambient temperature sensing: The use of
smartphones for ambient air sensing involves many challenges.
The first challenge is the lack of an onboard sensor to directly
sense ambient air temperature, which needs to be inferred through
data from other sensors. Here, we work from the principle that
the battery temperature at any instant is a function of the ambi-
ent temperature and the heat dissipated by the battery and other
hardware due to ongoing phone activities . As a result, the battery
temperature will always be higher than the ambient air tempera-
ture, and we need to develop techniques that infer the ambient air
temperature by accounting for the effects of the phone’s activities
on the battery temperature.

A second challenge is to determine the state and context of
the phone to correctly predict ambient air temperature. Our work
assumes that the software and hardware state (what the phone

Hot or Not: Leveraging Mobile Devices for Ubiquitous Temperature Sensing BuildSys ’19, November 13–14, 2019, New York, NY, USA

is doing) and context (the environment and surroundings of the
phone) has a direct impact on its heat dissipation—for example,
screen activity has a different temperature impact than CPU load,
and likewise resting on a table or in a pocket alters these impacts
as well. Determining context and state of the phone is a precursor
for accurate ambient temperature inference.

A final challenge is that phones differ significantly across vendors
and models in terms of their battery capacities, screen size, CPU
capabilities, and OS versions. As a result, an ambient temperature
sensing model that is designed for a particular phone will not
directly carry over to a different phone (even from the same vendor)
due to differences in the screen, CPU, and battery characteristics
that change the heat dissipation behavior of the phone. At the same
time, deriving a custom model for each phone is time-consuming
and onerous, requiring that our approach be generalizable or easily
boot-strapped to a new phone using models learned from current
phones.

Problem Statement:Given this background and the above chal-
lenges, our paper seeks to develop (i) models for inferring the indoor
ambient air temperature inside a building given the phone’s battery
temperature, (ii) models to determine the phone’s physical context
and state to enable accurate temperature estimates for the current
context and state, and (iii) efficient and automated methods to learn
(“generalize”) these models for a new phone.

3 AMBIENT TEMPERATURE SENSING USING
SMARTPHONES

In this section, we present the key intuition behind our approach,
our physics-based models, and our data-driven methods for infer-
ring phone context and state.

3.1 Physics-based Modeling
As noted earlier, every phone has a sensor for continuously monitor-
ing battery temperature. The primary intuition behind our approach
is that the battery temperature is a function of ambient temperature
and the heat dissipated via the battery and phone components due
to user- and OS-driven phone activity.

When the phone is idle for a sustained period, it follows that the
battery temperature will approach the ambient temperature. How-
ever, when the phone is in active use, the screen, CPU, network,
or charging activities will all dissipate heat causing the battery
temperature to rise far beyond the ambient air temperature. To
determine the ambient air temperature in this case, we must some-
how determine (or model) the increases in temperature due to these
activities and “subtract” their effects from the measured battery
temperature. The residual temperature is then an estimate of the
ambient air temperature. Similarly, when the phone becomes idle
after a period of sustained use, the phone and battery enter a cool-
ing period. In this phase – typically lasting anywhere from 30 to 55
minutes depending on the device and ambient temperature – the
battery temperature converges towards the ambient temperature.
Once again, we must model the residual heat effects from past ac-
tivities during this cooling phase and subtract these effects on the
measured battery temperature to obtain the residual (i.e., ambient)
temperature.

We model these thermodynamic effects using Newton’s Law of
Cooling [6], which states that the rate of heat loss is directly pro-
portional to the difference in the temperatures between an object
and its surroundings. Thus, the higher the battery temperature, the
greater the rate of heat loss from the phone to its surroundings. Of
course, when the phone is in active use, two effects come into play.
The phone activity consumes energy and results in heat dissipation
that causes a rise in temperature. At the same time, as the differ-
ence between onboard and ambient temperature grows, this heat
is dissipated at an ever increasing rate, resulting in a cooling effect.
Initially, the heating effect dominates the cooling effect, causing
a net increase in temperature. Since the rate of cooling rises with
increasing temperature as per Newton’s law, the rate of heat loss
rises until an equilibrium point where the heat generated by the
phone is equal to the heat loss to the surroundings, and the battery
temperature stabilizes at this point.

When the user stops using their phone, the phone enters a cool-
ing phase, where the heat loss dominates, causing the battery tem-
perature to drop; the rate of drop diminishes as the battery temper-
ature approaches the ambient temperature as per Newton’s law.

We use an exponential model to model the warming phase when
the phone is in active use:

TB = TA +C · ekt + b (1)

where TB denotes the battery temperature, TA denotes the ambient
air temperature, C and k are parameters that capture the effect of
the material of the device (and possible phone case) on the rate
of warming, t is the time elapsed since the phone became active
from idle state, and b is a parameter that captures the steady state
behavior of the device.

Figure 2 depicts the behavior of the battery temperature of a
Google Pixel phone using active screen use and our exponential
model based on Newton’s Law of Cooling to capture this behav-
ior. Interestingly, the same exponential model, but with inverse
parameters, can capture the behavior during the cooling phase, as
depicted by the following equation:

TB = TA +C · e−kt + b (2)

Again, the decreasing portion of the curve in Figure 2 depicts this
behavior.

The idle as well as the steady equilibrium behavior is modeled
using a linear function.

TB = TA +C · t + b (3)

While theC parameter is useful for capturing gradual drift inTB
during transition periods between idle and cooling or warming and
steady, long periods of idle state are better modeled using C = 0
yielding:

TB = TA + b (4)
Although direct modeling of power consumption on a phone is

known to be challenging [9], our physics-based approach models
its temperature impact on the battery, which we hypothesize is
easier to model.

3.2 Modeling Phone States
While the above functions derived from Newton’s Law of Cooling
describe the overall thermodynamic behavior of the phone, the

BuildSys ’19, November 13–14, 2019, New York, NY, USA J. Breda, et al.

Figure 2: Exponential warming, linear steady state, and ex-
ponential cooling fit to battery temperature as it rises and
falls in our M2 (screen use) experiment.

actual behavior at a particular instant depends on the phone state,
duration in each state, and frequency of state transitions. Phone
state is defined as the different types, and combinations, of activities
that draw varying amounts of power and therefore result in differ-
ent rates of warming and cooling and different peak steady-state
temperatures. Each such behavior can be modeled using a different
set of C , k and b parameters.

We model seven distinct phone states to capture different phone
behavior under different usage scenarios. These seven states do
not characterize all the possible computational states of a device,
but they do capture the four primary activities that largely govern
the phone’s energy usage and heat dissipation from the battery:
(i) screen usage, (ii) CPU usage, (iii) network usage, and (iv) bat-
tery charging. As a general rule of thumb when combining mul-
tiple phone activities, the heat dissipation from CPU activities is
the greatest, followed by battery charging, network activity, and
screen usage in that order – as observed from our experiments with
different phone models. We model the effects of these activities
individually and in various combinations as follows.

(a) M2 (b) M3 (c) M4

(d) M5 (e) M6 (f) M7

Figure 3: Modeling the impact of various combinations of
screen, CPU, network and charging activities on the phone
battery temperature.

State M1: Our first model captures the phone idle state or an
equilibrium steady state where the heat generation equals heat loss,

yielding a fixed difference between battery and ambient tempera-
ture. We use Equation 3, or its simpler variant Equation 4, to model
state M1.

StateM2:Next, wemodel the phone behavior during active screen
usage when the accompanying CPU usage is low. This phone ex-
hibits three distinct phases (referred to as sub-states) with an initial
warming phase when the screen is in active use, an equilibrium
steady state with continued screen activity, and a final cooling
phase when the screen activity stops and the battery temperature
starts cooling down. Figure 3(a) depicts this behavior modeled by
Equations 1, 4, and 2, respectively.

State M3: This state models phone behavior exhibited during
screen usage accompanied by high CPU usage, and models the
combined effects. Like in state M2, the phone exhibits three dis-
tinct phases – warming, steady, and cooling – only with a higher
peak temperature and steeper exponential curves in warming and
cooling. Figure 3(b) depicts this behavior.

State M4: This state models battery charging while idle. Charging
dissipates heat and thus battery temperature changes characteristi-
cally throughout charging. Charging from a low battery level in-
cludes an initial charge phase where the battery is charged rapidly
to a certain charge level, followed by a steady charge to a high
charge level, and a final trickle charge until the battery is full. Con-
sequently, as shown in Figure 3(c), the charging behavior includes a
high heat warming phase during rapid charging to reflect the high
current, a first cooling phase where the battery is charged with
a lower steady current causing it to dissipate less heat (yielding
a slow cooldown), and a second cooling phase during the trickle
charge phase where temperature converges to idle temperature.

State M5: This state models active screen usage accompanied by
low CPU usage while the phone is charging. The heat dissipation of
the phone due to charging is greater than that due to screen usage.
Consequently, the overall phone behavior in this state resembles
stateM4, rather than stateM2, but with a greater rate of temperature
increase during warmup due to added screen usage. Similarly, the
first cooling phase shows a slower decay than that in state M4 as
screen activity raises the equilibrium temperature to which this
cooling phase converges. Figure 3(d) depicts this behavior.

State M6: This state models high CPU and screen usage when
the phone is charging and thus captures the heat dissipation from
all three activities. Overall, heat generated from high CPU usage
is greater than that from battery charging, which is itself greater
than that from screen usage. As shown in Figure 3(e), the warmup
and cooldown phases are most rapid due to the highest peak tem-
perature reached of any state.

State M7: This state models the combined effects of high screen
and network usage (and therefore associated CPU usage). The com-
bined effects of screen and network activity makes the phone be-
have similar to state M3, especially since the energy consumption
of the screen is greater than that of the network chips on the phone,
causing the former effect to dominate – see Figure 3(f).

Note that we have also modeled, but omitted from here, scenarios
with active CPU and/or network use with an inactive screen. In
these cases, since the screen is inactive, signifying no foreground
use, CPU and network usage are from background activities, which
are subject to aggressive power management by the OS in order to
minimize their battery power draw.

Hot or Not: Leveraging Mobile Devices for Ubiquitous Temperature Sensing BuildSys ’19, November 13–14, 2019, New York, NY, USA

Figure 4: Battery temperature behavior varies by phone type
as illustrated by the behavior of three phones for state M2
(screen use).

3.3 Model Derivation
Our seven state models capture the phone’s battery temperature
behavior across a wide range of different scenarios. We have de-
veloped an automated method to derive these state models for any
Android phone empirically. Our approach to automating model
derivation involves a mobile app that runs on the phone and can
emulate the various usage scenarios (e.g., screen on or off, different
CPU loads, etc.) to put the phone in any desired state (e.g., M1, M2,
etc.). To derive a specific model, the app emulates the usage scenario
corresponding to that model and records a time-series of battery
temperature as well as several other OS metrics. It also gathers
ground truth ambient temperature using a HOBO temperature log-
ger (model MX2301) that enables ambient temperature recording on
the phone via Bluetooth. The result is a labeled time-series dataset
of battery temperature, ambient temperature, and OS metric at each
time for each scenario.

Once empirical time-series data for a state have been gathered,
we subtract ground truth ambient air temperature from battery
temperature, leaving the temperature difference, ∆T . Our system
fits a curve to this ∆T time-series using Equations 1–4 for each
sub-state to derive model parameters C , k and b for each. Python’s
Scipy curve fit is used to fit appropriate functions on the raw data
after smoothing it using an off-the-shelf Savitzky-Golay filter.

Since battery temperature behavior under states M1-M7 varies
by phone type due to hardware and software differences, as depicted
in Figure 4, our automated model derivation mobile app will need
to derive a separate set of M1-M7 model parameters for each phone.
This is a time-consuming process and takes over 24 hours to gather
a full data set for M1-M7 states. In Section 4, we describe domain
adaptation techniques to speed-up model derivation by leveraging
past models that have been learned for other phones to bootstrap
model derivation and significantly reduce these overheads.

3.4 Context and State Identification
This section presents models for determining the phone’s physical
context as well as its current state and sub-state.

Context Identification: The phone’s physical context indicates
whether the phone is outdoors or indoors, stationary or in motion,
in a pocket, in a hand, on a table, in a bag, etc., as well as how
long it has been in the current context. Context and phone activity
recognition is well-studied in the literature [17, 18]. Many prior

approaches are based on black-box activity recognition models
using decision trees or k-Nearest Neighbors (kNN) that leverage
onboard sensors such as gyroscopes and accelerometers as well
as other OS measurements for identifying activities. While any
of these past approaches can be adapted for our work, we use a
simple approach inspired by these prior efforts that uses a random
forest (decision tree) classifier to determine whether the phone is
stationary or in motion, and whether it is on a table, in a pocket,
or in a user’s bag/backpack. Using only these 3 classes, trained on
data from each of these three contexts, we were able to design a
classifier with 91.5% accuracy in 5-fold cross validation using only
accelerometer, gyroscope, proximity sensor, and light sensor data
as features.

To distinguish between indoor and outdoor contexts, we deter-
mine the strength of WiFi and GPS signals and predict that the
phone is outdoors if there is a strong GPS signal or when the GPS
signal is stronger than WiFi, and indoors when the WiFi signal is
stronger than GPS. Finally, our context detection also determines
whether the phone is charging by sensing the value and direction
of battery current.

The ideal conditions for ambient temperature prediction occur
when the phone is stationary and directly exposed to ambient air
(e.g., resting on a table). Other conditions such as stationary in a
bag or hand are more challenging but feasible. Our approach is
currently conservative and does not make predictions when the
phone is in motion (e.g., when the user is walking) since we require
a settling time of a few minutes at a location, at minimum, before
making temperature predictions. 3

State and Sub-state identification Once the phone’s context
has been determined, we must then determine its current state and
sub-state – doing so enables our approach to choose the correct
model (e.g, M2-cooling) and the corresponding model parameters
to predict ambient temperature. We model the state and sub-state
identification problem as a decision tree with nodes of the tree
testing the values of features determining the state and sub-state
and the leaf of the tree as the set of parameters (C, k, b) to predict
the temperature using Newton’s Law of Cooling for the identified
state and sub-state.

State identification: As noted earlier, battery temperature is im-
pacted by four primary phone activities: screen use, CPU usage,
network usage, and battery charging. The combination of these four
attributes results in various states; to identify the state of a phone
at a given instant in time we need a state identification mechanism.
Our state identification approach uses a rule-based system that
considers the CPU utilization, network utilization, screen state, and
battery charging as Boolean features, with CPU/network utilization
as "high" if resource utilization exceeds 80% and "low" otherwise,
screen state as either "on" or "off", and battery charging state as
"true" if the phone is being charged and "false" otherwise. Models
M1-M7 consider 7 different combinations of these four Boolean
features; to identify the current state, we use a rule-based approach
that checks the current value of these four Boolean features and
maps the current combination to the corresponding state. It should
be noted that while new privacy restrictions were added in Android

3Temperature sensors, such as the ones on the phone, require a settling period to
"acclimate" to a new location before they can accurately measure temperature.

BuildSys ’19, November 13–14, 2019, New York, NY, USA J. Breda, et al.

Cooling

Warming

 Idle

Steady

Figure 5: State transition diagram among model sub-states.
8 that prevent applications from accessing CPU load directly, CPU
load is naturally aggregated across both time and cores and is a
function of metrics readily available to unrooted applications such
as battery current.

Sub-state identification: Once we have identified the phone state,
the next step is sub-state identification. Each state of the phone
has sub-states associated with it, such as warming, cooling, steady,
and idle. Some states such as M4 and M5 have multiple cooling
sub-states and lack a steady state as seen in Figure 3.

Our approach first samples the battery temperature over a time
window; since the raw data can be noisy and is non-differentiable,
we first smooth this data using a moving average smoothing filter
and calculate the smooth signal’s gradient. A new time-series state
signal is formed by labeling data points with a positive gradient as
in warming state and points with a negative gradient as in cooling
state. If the gradient is within some margin of zero, we label this
state as steady or idle and differentiate between the two based on
the previous state. As seen in Figure 5, steady state can only be
reached after warming and idle can only be reached after cooling.
We then smooth and bin this state signal to sporadic errors.

3.5 Ambient Temperature Estimation: Putting
it all together

Having discussed modeling of phone battery temperature as well
as context, state, and sub-state identification, we now discuss how
to sequence these mechanisms to predict ambient air temperature.

Ambient air temperature prediction involves three steps. First,
our approach invokes context identification to determine whether
the phone is indoors and if it has remained in the present location for
a period that is greater than a minimum settling period. If the phone
is outdoors or in motion, we terminate the rest of estimation process
and retry after a certain duration. Next, we invoke the state and sub-
state identification techniques to determine the current state and
sub-state (which indicates whether the phone is warming, steady,
cooling, or idle). This reveals the correct C , k , and b parameters to
input into which Equation 1-4 to model ∆T , the difference between
the battery and ambient air temperatures: ∆T = TB −TA. Figure 6
depicts an M2 curve-fit for modeling ∆T . Finally, we sample the
battery temperature TB and use the appropriate sub-state model
function from Section 3.1 to obtain ∆T and subtract it from TB to
obtain TA.

Since all of our sub-state models are functions of time, we need
to know the time since entering the current sub-state ts . If this time
(i.e., model parameter t) is known – for instance by using significant
changes in the battery current as an indicator of state change and
maintaining a counter of ts since that change – then we can simply
substitute the value of ts into the corresponding equation to obtain
∆T at that point. However, this requires our approach to run in the

Figure 6: An example of an M2 (screen use) model and the
empirical TB −TA M2 curve.

background to monitor state and sub-state changes and demands
highly accurate sub-state detection. A different approach involves
sampling the battery temperatures at a minimum of two points t1
and t2. In this case, t1 represents an unknown duration t since the
phone entered the current sub-state, while t2 represents a known
offset ∆t from t1. Since the rise or fall in battery temperatures ∆TB
between these two instants is known and since the warming and
cooling curves are exponential (non-linear), there should be only
exactly one point in the curve where battery temperature changes
by ∆TB over a time duration ∆t . Put another way, the samples at t1
and t2 yield two equations with two unknowns, t and TA, which
can trivially be determined.

A third method leverages the gradient calculation used to derive
the sub-state to make predictions using a single test point. Given a
sample at some absolute time t1 with measured battery temperature
TB , we would like to determine time since entering the current sub-
state ts . We have previously calculated an instantaneous gradient
T ′
B of test data for this point used to detect sub-state. We can then
apply the same gradient calculation to ourmodeling function∆T (ts)
to produce its gradient function ∆T ′(ts). We can then taken the
arдmin of ∆T ′(ts) − T ′

B to find the ts along our model with the
gradient closest to our sample’s gradient. For an exponential model,
we should see a unique gradient at each point along the curve.

Both of these latter methods solve two key problems:
(1) They make our system robust to sub-state detection error as

ts will be found as time since the actual sub-state transition
and not since the detection of sub-state change (which can
be erroneous).

(2) They allow our system to smoothly transition from one
sub-state to another without formally completing the first
sub-state. That is, if the cooling sub-state is entered halfway
through the warming stage, the system can intelligently
estimate ts to be roughly halfway between 0 and the full
duration of the sub-state.

4 DOMAIN ADAPTATION FOR NEW PHONES
In this section, we present our domain adaptation approach that en-
ables accelerated bootstrapping of our models on a new phone. Our
approach involves using an existing model for a previously learned
phone (herein, a "seed") and optimizes its parameters over time to
better characterize the new device. To do so, we use Gradient De-
scent (GD), which requires a ground truth temperature to perform
optimization. We assume that the new model is learned without a

Hot or Not: Leveraging Mobile Devices for Ubiquitous Temperature Sensing BuildSys ’19, November 13–14, 2019, New York, NY, USA

ground truth temperature sensor (ideal for learning models in situ
for a new phone). To estimate ground truth ambient temperature,
recall that battery temperature in the idle state reveals, or closely
resembles, the actual ambient air temperature. Hence,TB measured
in an idle state just before a transition is assumed to be the ground
truth ambient temperature TA at that instant, and we assume that
ambient air temperature does not change over a scale of minutes.

We collect the measurements of the first n samples (at a sampling
rate of 1 sample/minute) and create a minibatch of data points
xi ,yi . Now, using the (C , k , b) parameters of a seed model, we make
predictions of the ambient temperature hθxi . Next, we design a
cost function, which is least sum of squares error of h and is defined
as: ℓ(θ) = 1

n
∑n
t=1((hθxi) − yi)

2

We run GD with the above cost function form epochs and com-
pute the new parameter values. Next, we compute the ratio of the
optimized parameters to seed parameters and adjust the cooling
curve parameters proportionately.

Further, once the parameters of the warming and cooling states
have been optimized, the estimatedTA values at both the transition
point from warming to steady and at the transition point of steady
to cooling can be used as ground truth for optimizing our steady
state model. Alternatively, we can linearly interpolate the TB at
the transition point from idle to warming and from cooling to idle
to generate estimated ground truth for any model, assuming that
∆t between these transition points is short enough. Interestingly,
this method can be applied periodically along a device’s lifespan to
characterize changes in its thermodynamic behavior due to age or
a change in case on the device.

5 EXPERIMENTAL RESULTS
Experimental Methodology. The experimental setup for evalu-
ating our models and our approach involves using five different
phones that vary by vendors, hardware characteristics such as
screen size and battery capacity, and OS version (Android 5 through
7). Table 1 lists the phones used in our experiments. We also con-
ducted experiments with phones running Android 8 and 9, but new
privacy restrictions on Android 8 and 9 limit the type of OS sta-
tistics that can be monitored by user-level processes and the time
resolution at which some sensor data is exposed is limited; when
a phone is rooted, which effectively removes these restrictions,
our techniques produce similar results to those shown below for
Android 8 and 9, but we omit these results for brevity and visual
clarity. These restrictions do not prevent unrooted devices from
making temperature estimates although they reduce the sampling
rate, limiting the frequency of temperature estimates.

Unless specified otherwise, we use the Google/HTC Pixel phone
as the default phone for our experiments; further, while we experi-
ment with a range of model states, unless specified otherwise, we
report results for the default M2model, since it is a common case for
phone usage representing screen activity by the user with CPU and
network utilization of less than 80%. To conduct our experiments,
we first use our automated model derivation app to gather data and
derive M1-M7 models for each of our five phones. We then subject
these phones to various scenarios, as discussed below, and compare
the efficacy of our model predictions with ground truth data from
the HOBO temperature loggers.

Make Model OS Screen Size (in.)
Google/HTC Pixel Android 7.1 5.0
LG Stylo3 Android 7 5.7
Alcatel 5044R Android 7 5.0
Samsung sm-g550t Android 6 5.0
Motorola Moto X Android 5 4.7

Table 1: Characteristics of phones used in our evaluation.

5.1 Model Derivation
We begin by deriving models M1-M7 for various phones using our
automated model derivation app. Figure 7 depicts the empirical
behavior of battery temperature of the Google/HTC Pixel phone
running Android 7.1 as well as the model curves, obtained using
curve fits, for different states and sub-states. As can be seen, the
phone behavior and the derived models closely resemble the ideal
models depicted in Figure 3.

Next, we conduct an experiment to validate the accuracy of each
of these models in predicting ambient air temperature. We put each
phone into different states and sub-states, sample a few data points
for each, and use our models to predict the ambient air temperature.
As an example, Figure 8 depicts the predicted and ground truth
temperatures for one such state, namely M2 on the Pixel phone;
as can be seen, the predicted temperature tracks the ground truth
ambient temperature closely across all sub-states of M2, although
we see more errors in the initial phase of each sub-state.

Figure 11 depicts the percentage error, shown as box plots, for
temperature predictions seen across various states and sub-states
for the Pixel phone. The figure shows that models which capture
the effects of charging (M4, M5, M6) experience more error than
those that do not. But more importantly, models which capture high
CPU load (M3, M6, M7) experience higher error. Most models yield
mean errors of 1-2%, while high CPU load based models experience
as high as 4-7% mean error in some sub-states. Note that since the
majority of a device’s lifetime is spent in idle state (M1) or with
screen activity (M2), our models will typically exhibit low errors.

Next, we repeat this experiment for all our phone models. Fig-
ure 12(a) depicts the accuracy of ambient temperature predictions
for various phones for the M2 state. As shown, the error in ambi-
ent temperature predictions is less than 2% for all phone models,
and is less than 1% for several phones. This result shows that our
approach works across a range of phones with varying hardware
characteristics and Android OS versions.

Finally, we repeat our experiments under different ambient tem-
perature conditions. While our models are derived for ambient
temperature close to 70°F (21°C), this experiment evaluates the
effectiveness of these models in predicting a range of indoor tem-
peratures – from 70°to 85°F (21°to 29°C). Figure 12(b) shows the
percentage error across different ambient air temperatures. The
result shows that the temperature predictions are accurate, with
mean error of 0.4-2% over a range of indoor temperatures, and our
models maintain their accuracy even for ambient temperatures that
are as much as 15°F higher than that used for deriving the models,
likely due to our use of physics-based models. 4

4Though we note that by the definition of Newton’s laws of thermodynamics, variation
in ambient temperature should have a slight effect on warming and cooling and

BuildSys ’19, November 13–14, 2019, New York, NY, USA J. Breda, et al.

(a) M2: Screen (b) M3: CPU (c) M4: Charging

(d) M5: Charging + Screen (e) M6: Charging + Screen + CPU (f) M7: Networking + Screen (g) M1: Idle

Figure 7: Phone battery temperature behavior for a Google/HTC Pixel phone during various phone states.

Figure 8: An example of using the M2 (screen use) model to
predict ambient air temperature.

5.2 State and Sub-state Identification
As discussed in Section 3.4, context and activity recognition is a
well-studied problem with state-of-the-art approaches providing
high accuracy; our simple random forest classifier, inspired by
these approaches, yields 91.5% accuracy in 5-fold cross validation
using only accelerometer, gyroscope, proximity sensor, and light
sensor data. Consequently, we omit further evaluation of context
identification and focus on state and sub-state identification instead.

To evaluate the efficacy of the decision tree and rule-based model
for state and sub-state identification, we used a time series of sen-
sor readings from the phone and periodically involved our model
to determine the current state and sub-state. Figure 9(a) depicts
the smoothed battery temperature, while Figure 9(b) depicts the
sub-states identified by our approach, while Figure 9(c) shows the
accuracy of these predictions. As can be seen, there are occasional
errors immediately after a sub-state transition, but our approach
yields good accuracy for most predictions.

therefore steady equilibrium temperature. As the range of ambient air temperatures of
commercial buildings is small, this effect is negligible for our scenarios.

82.5

85.0

87.5

90.0

92.5

95.0
Te

m
p.

(F
)

a

Warming

Cooling

Steady

Idle

Su
bs

ta
te

b

0 5000 10000 15000 20000 25000 30000 35000
0

20

40

60

80

100

%
 A

cc
ur

ac
y

c

Figure 9: Sub-state identification: (a) Smoothed battery tem-
perature (b) Instantaneous sub-state labels (c) Accuracy of
sub-state labels

Model M1 M2 M3 M4 M5 M6 M7
4 sub-states 100.0 94.1 84.2 89.3 86.2 81.5 85.7
2 sub-states 100.0 98.6 99.3 98.6 98.4 96.3 98.3

Table 2: Accuracy (in %) of sub-state detection for eachmodel
treated as (row1) a 4 sub-state systemand (row2)with steady
and warming simply as the asymptotic portions of the expo-
nential curves.

Table 2 shows the accuracy of our state/sub-state identification
across different models M1-M7. We find that model accuracy lies
between 81.5% - 100%. M6 experiences the lowest accuracy (fol-
lowed by M3) due to noise caused by the CPU’s inherently bursty
nature. However, these accuracies can be significantly increased to
96.3% - 100% by treating the steady state and idle state as asymptotic
portions of the exponential warming and cooling curves, respec-
tively. We found the warming model could be applied to steady
sub-state temperatures and even produce higher accuracy in some
cases. This is also true for cooling applied to warming, though due
to the lengthy nature of most idle sub-states (many hours). it is
preferred to be treated as its own sub-state.

Hot or Not: Leveraging Mobile Devices for Ubiquitous Temperature Sensing BuildSys ’19, November 13–14, 2019, New York, NY, USA

Figure 10: Ambient temperature prediction for a warming
curve beyond the training phase after adjusting the param-
eters using domain adaptation.

5.3 Model Adaptation
To evaluate the efficacy of our domain adaptation method, we
assume that we have prior models learned for two phones (Pixel
running Android 7.1 and LG Style3 running Android 7). To learn a
model for a newAlcatel phone, we first use a greedy heuristic to pick
the previously learned model with closest hardware characteristics
– in this case, the heuristic chooses the Pixel phone to serve as
the initial model for Alcatel. we then optimize the selected model
using a few sample data points to customize the model to the new
device. Figure 10 depicts that with just ten samples and iterative
updates of model parameters, the predictions converge to the actual
temperature with an accuracy of 99.8% for the warming curve. This
result demonstrates that new models can be "bootstrapped" using
previously learned ones quickly without having to undertake a
laborious full data collection phase for a new phone.

5.4 Impact of Phone Cases
Since phone cases are common for smartphones, it is important
to consider the efficacy of our predictions method on phones with
cases. For example, based on the material and surface area cover of
the phone, the phone case may alter the rate of the phone’s heat
dissipation, which may also interfere with our temperature predic-
tion. We conducted an experiment where we equipped the Pixel
phone with six cases of varying thickness and materials (ranging
from a slim case to a drop-proof thick Otterbox case).

In each case, we used our learned model for the phone to predict
the ambient temperature and compared it to ground truth. Our
results are shown in Figure 13. As shown, the mean prediction
errors range from 0.3% to 4%, while the mean error without a phone
case was 1%. Of the 6 cases, the Google brand case and the Anccer
case had the lowest error. These cases were made of a thin and
firm polymer plastic and left the most surface area of the phone
exposed to the air (only covering the back and sides of the device).
The Spigen and FDesign cases were both made of a thicker rubber-
like material and covered encased all but the screen. Finally, the
Otterbox and Asuwish cases experienced the highest error. These
cases were multilayered first with a rubber casing which covered
all sides of the device, and then a hard plastic outer shell placed
over the rubber. The Otterbox also incorporated a clear thin plastic
screen protector. This shows that as the surface area coverage and
mass of the phone case increases, so does prediction error.

M1 M2 M3 M4 M5 M6 M7

Model

0

2

4

6

8

10

12

14

%
 E

rr
or

Substate
Warming
Steady/Cooling1
Cooling/Cooling2

Figure 11: Errors (in %) of temperature predictions across
model states and sub-states.

Alcatel LG Motorola Pixel Samsung

Phone

0

2

4

6

%
 E

rr
or

(a)

71(F) 75.75(F) 78(F) 82(F) 83.5(F)

Ambient Air Temp.(F)

0

2

4

6
%

 E
rr

or

(b)

Figure 12: Errors (in %) of M2 (screen use) temperature pre-
dictions for a range of (a) devices and (b) ambient tempera-
tures.

Asuwish Otterbox Google Anccer Spigen FDesign No Case

Phone Case

0

2

4

6

8

10

%
 E

rr
or

Figure 13: Errors in temperature prediction for the Google
Pixel M2 (screen use) state with 6 different phone cases.

Overall these results show that our prediction methods are just
as effective for phones with cases as without, which enhances their
utility for crowdsourcing predictions from a broad set of phones.

BuildSys ’19, November 13–14, 2019, New York, NY, USA J. Breda, et al.

(a) (b)

Figure 14: Temporal (a) and spatial (b) case studies showing
1.3% error in temperature prediction over 12 hours of varied
phone behavior and ambient temperature and 1.4% error in
temperature prediction over the 15 distinct locations with
varying ambient temperatures and environments.

5.5 Case Study: Ambient Temperature
Estimation in Buildings

In this section we discuss two case studies performed using our M2
model: one temporal shown in Figure 14(a) and one spatial shown
in Figure 14(b) and discuss their performance.

‘
In our temporal case study shown in Figure 14(a), we left the

phone alternating between M1 and M2 state with all represented
sub-states for a 12-hour duration. This test saw an aggregate error of
1.3% across this duration while the ambient temperature varied by
6◦F. Similarly Figure 14(b) shows a test of our M2 experiment with
all its sub-states in 15 locations of an office building with ambient
temperatures differing as much as 13◦F from room to room. This
test saw a mean error of 1.4% across all 15 locations, highlighting
the accuracy of our techniques in a range of conditions.

6 CONCLUSIONS
In this paper, we demonstrated the feasibility of using smartphones
for ambient temperature sensing inside buildings for subsequent
HVAC optimization. Our approach is based on modeling battery
temperature behavior using a physics-based model that uses New-
ton’s Law of Cooling. We also presented a domain adaptation
method that leveraged previously derived models to significantly
reduce the overhead of learning a model for a new phone. Our
results show that our approach can provide high sensing accuracy
with errors of 1-7% across a range of operating conditions, with
error dropping to 1% for the most common operating conditions.
Our case study demonstrated the utility of our approach for spatial
and temporal monitoring of temperature variations in office build-
ings, with an error of 1.4% across a building floor whose ambient
temperature varies by 13°F.

Our future work will address many enhancements to our models.
First, we aim to study if model error can be further reduced if the
model parametersC , k , and b are themselves treated as functions of
temperature, CPU loads, and context. This can be done through a
combination of physics-based and black-box models that may yield

further improvements. Generalizing our models to make predic-
tions while the phone is in motion or subjected to other types of
activities (e.g., in-hand, pocket, bag, etc.) is ongoing work. Addition-
ally, incorporating an indoor localization system can broaden the
utility of this work by producing temporal and spatial temperature
mapping across entire buildings automatically.

Acknowledgements: This research is supported by NSF grants
1763834, 1802523, and 1836752. We thank Maha Awaisi and Sivan
Nachum for their help with data collection. We also thank our
shepherd Polly Huang for guidance and the anonymous reviewers
for their insightful comments in preparing our final draft.

REFERENCES
[1] [n. d.]. The Ecobee Smart Thermostat. https://www.ecobee.com.
[2] [n. d.]. Energy Information Association FAQ. https://www.eia.gov/tools/faqs/

faq.php?id=86&t=1.
[3] J. Breda and J. Taneja. 2018. Fancy That: Measuring Electricity Grid Voltage

Using a Phone and a Fan. In Proceedings of ACM COMPASS ’18.
[4] Comfy Inc. 2019. Comfy App. www.comfyapp.com.
[5] A. Grush. [n. d.]. AndroidAuthority, WeatherSignal turns your phone

into a personal weather station. https://www.androidauthority.com/
weathersignal-app-206232/.

[6] F. Incropera, T. Bergman, D. DeWitt, and A. Lavine. 2007. Fundamentals of Heat
and Mass Transfer. John Wiley and Sons.

[7] F. Jazizadeh and S. Pradeep. 2016. Can computers visually quantify human
thermal comfort?. In 3rd ACM Int’l Conference on Systems for Energy-Efficient
Built Environments (BuildSys ’16).

[8] S. Levin, S. Krishnan, S. Rajkumar, N. Halery, and P. Balkunde. 2016. Monitoring
of fluoride in water samples using a smartphone. Science of The Total Environment
551-552 (2016), 101 – 107.

[9] J.C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. Snoeren,
and R. Gupta. 2011. Evaluating the Effectiveness of Model-Based Power Char-
acterization. In Proceedings of the USENIX Annual Technical Conference (June
2011).

[10] S. Nagarathinam, A. Vasan, V. Sarangan, R. Jayaprakash, and A. Sivasubramaniam.
2018. Good set-points make good neighbors - User seating and temperature
control in uberized workspaces. In 5th ACM Int’l Conference on Systems for
Energy-Efficient Built Environments (BuildSys ’18).

[11] A Overeem, James Robinson, H Leijnse, Gert-Jan Steeneveld, Berthold Horn, and
RemkoUijlenhoet. 2013. Crowdsourcing urban air temperatures from smartphone
battery temperatures. Geophysical Research Letters (08 2013).

[12] W. Pasut, H. Zhang, E. Arens, and Y. Zhai. 2015. Energy-efficient comfort with a
heated/cooled chair: results from human subject tests.. In Building and Environ-
ment, Vol. 84, 10-21.

[13] D. Pisharoty, R. Yang, M.W. Newman, and K. Whitehouse. 2015. ThermoCoach:
Reducing Home Energy Consumption with Personalized Thermostat Recom-
mendations. In 2nd ACM Int’l Conference on Systems for Energy-Efficient Built
Environments (BuildSys ’15).

[14] K. Saurav, M. jain, and S. Bandhyopahyay. 2018. Reducing Energy Consumption
for Space Heating by Changing Zone Temperature: Pilot Trial in Lulea, Sweden.
In 9th ACM Int’l Conference on Future Energy Systems (e-Energy ’18).

[15] A. Trivedi, J. Gummeson, D. Irwin, D. Ganesan, and P. Shenoy. 2017. iSchedule:
Campus-scale HVAC Scheduling via Mobile WiFi Monitoring. In 8th ACM Int’l
Conference on Future Energy Systems (e-Energy ’17).

[16] O. J. Walch, A. Cochran, and D. B. Forger. 2016. A global quantification of
“normal” sleep schedules using smartphone data. Science Advances 2 (May 2016),
e1501705–e1501705. https://doi.org/10.1126/sciadv.1501705

[17] J Wiese, S Saponas, and AJ Brush. 2013. Phoneprioception: enabling mobile
phones to infer where they are kept. In Proc. of the SIGCHI Conf. on Human
Factors in Computing Systems.

[18] J. Yang, E. Munguia-Tapia, and S. Gibbs. 2013. Efficient In-Pocket Detection with
Mobile Phones. In UbiComp’13.

[19] O. Yurur, C. Liu, Z. Sheng, V. Leung, W. Moreno, and K. Leung. 2016. Context-
Awareness for Mobile Sensing: A Survey and Future Directions. IEEE Communi-
cations Surveys and Tutorials 18, 1 (2016).

https://www.ecobee.com
https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
www.comfyapp.com
https://www.androidauthority.com/weathersignal-app-206232/
https://www.androidauthority.com/weathersignal-app-206232/
https://doi.org/10.1126/sciadv.1501705

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Ambient Temperature Sensing Using Smartphones
	3.1 Physics-based Modeling
	3.2 Modeling Phone States
	3.3 Model Derivation
	3.4 Context and State Identification
	3.5 Ambient Temperature Estimation: Putting it all together

	4 Domain Adaptation for New Phones
	5 Experimental Results
	5.1 Model Derivation
	5.2 State and Sub-state Identification
	5.3 Model Adaptation
	5.4 Impact of Phone Cases
	5.5 Case Study: Ambient Temperature Estimation in Buildings

	6 Conclusions
	References

